NFFT Logo 3.2.3
Functions | Variables
mpolar_fft_test
Polar FFT

Functions

static int mpolar_grid (int T, int R, double *x, double *w)
 Generates the points $x_{t,j}$ with weights $w_{t,j}$ for the modified polar grid with $T$ angles and $R$ offsets.
static int mpolar_dft (fftw_complex *f_hat, int NN, fftw_complex *f, int T, int R, int m)
 discrete mpolar FFT
static int mpolar_fft (fftw_complex *f_hat, int NN, fftw_complex *f, int T, int R, int m)
 NFFT-based mpolar FFT.
static int inverse_mpolar_fft (fftw_complex *f, int T, int R, fftw_complex *f_hat, int NN, int max_i, int m)
 inverse NFFT-based mpolar FFT
static int comparison_fft (FILE *fp, int N, int T, int R)
 Comparison of the FFTW, mpolar FFT, and inverse mpolar FFT.
int main (int argc, char **argv)
 test program for various parameters

Variables

double GLOBAL_elapsed_time

Detailed Description


Function Documentation

static int mpolar_grid ( int  T,
int  R,
double *  x,
double *  w 
)
static

Generates the points $x_{t,j}$ with weights $w_{t,j}$ for the modified polar grid with $T$ angles and $R$ offsets.

We add more concentric circles to the polar grid and exclude those nodes not located in the unit square, i.e.,

\[ x_{t,j} := r_j\left(\cos\theta_t, \sin\theta_t\right)^{\top}\,,\qquad (j,t)^{\top}\in I_{\sqrt{2}R}\times I_T\,. \]

with $r_j$ and $\theta_t$ as for the polar grid. The number of nodes for the modified polar grid can be estimated as $M \approx \frac{4}{\pi}\log(1+\sqrt{2}) T R$.

Definition at line 63 of file mpolar_fft_test.c.

References PI.

Referenced by inverse_mpolar_fft(), main(), mpolar_dft(), and mpolar_fft().


Generated on Tue Apr 30 2013 by Doxygen 1.8.1