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Fig. 7.— Top: Completeness-corrected histogram of planet radii for planets with orbital periods shorter than 100 days. Uncertainties
in the bin amplitudes are calculated using the suite of simulated surveys described in Section C. The light gray region of the histogram for
radii smaller than 1.14 R� suffers from low completeness. The histogram plotted in the dotted grey line is the same distribution of planet
radii uncorrected for completeness. The median radius uncertainty is plotted in the upper right portion of the plot. Bottom: Same as top
panel with the best-fit spline model over-plotted in the solid dark red line. The region of the histogram plotted in light grey is not included
in the fit due to low completeness. Lightly shaded regions encompass our definitions of “super-Earths” (light red) and “sub-Neptunes”
(light cyan). The dashed cyan line is a plausible model for the underlying occurrence distribution after removing the smearing caused by
uncertainties on the planet radii measurements. The cyan circles on the dashed cyan line mark the node positions and values from the
spline fit described in §4.3.
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~ 4300 exoplanets detected so far

Wide diversity of methods

Raise many questions!

Desert: 
Observational gap

Lack of continuum 

Fulton gap

8 Fulton et al.

Fig. 7.— Top: Completeness-corrected histogram of planet radii for planets with orbital periods shorter than 100 days. Uncertainties
in the bin amplitudes are calculated using the suite of simulated surveys described in Section C. The light gray region of the histogram for
radii smaller than 1.14 R� suffers from low completeness. The histogram plotted in the dotted grey line is the same distribution of planet
radii uncorrected for completeness. The median radius uncertainty is plotted in the upper right portion of the plot. Bottom: Same as top
panel with the best-fit spline model over-plotted in the solid dark red line. The region of the histogram plotted in light grey is not included
in the fit due to low completeness. Lightly shaded regions encompass our definitions of “super-Earths” (light red) and “sub-Neptunes”
(light cyan). The dashed cyan line is a plausible model for the underlying occurrence distribution after removing the smearing caused by
uncertainties on the planet radii measurements. The cyan circles on the dashed cyan line mark the node positions and values from the
spline fit described in §4.3.
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• Nature of the planets? 
➔ Composition, size…

EXOPLANETS: Several problematics

• Formation? 
➔ Place of birth, migration…

• Is our solar system unique? 
➔ Need to probe many systems!

• « Habitability »? 
➔ Distance to the star 
(temperature), tectonic…
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Table 1. Stellar parameters of PDS 70.

Parameter Unit Value References
Distance pc 113.43±0.52 1
Te↵ K 3972±36 2
Radius R� 1.26±0.15 computed from 2
B mag 13.494±0.146 3
V mag 12.233±0.123 3
g0 mag 12.881±0.136 3
r0 mag 11.696±0.106 3
i0 mag 11.129±0.079 3
J mag 9.553±0.024 4
H mag 8.823±0.040 4
Ks mag 8.542±0.023 4
Age Myr 5.4±1.0 this work
Mass M� 0.76±0.02 this work
AV mag 0.05+0.05

�0.03 this work

References. (1) Gaia Collaboration et al. (2016, 2018); (2) Pecaut &
Mamajek (2016); (3) Henden et al. (2015); (4) Cutri et al. (2003).

fit as well as the independently determined e↵ective temperature
Te↵ and radius are listed in Table 1. We perform a simultaneous
fit of all these observables. The uncertainties are treated as Gaus-
sians and we assume no covariance between them.
We use a Gaussian prior from Gaia for the distance and a Gaus-
sian prior with mean 0.01 mag and sigma 0.07 mag, truncated at
AV=0 mag, for the extinction (Pecaut & Mamajek 2016). Given
AV , we compute the extinction in all the adopted bands by as-
suming a Cardelli et al. (1989) extinction law. We use a Chabrier
(2003) initial mass function (IMF) prior on the mass and a uni-
form prior on the age. The stellar models adopted to compute
the expected observables, given the fit parameters, are from the
MIST project (Paxton et al. 2011, 2013, 2015; Dotter 2016; Choi
et al. 2016). These models were extensively tested against young
cluster data, as well as against pre-main sequence stars in mul-
tiple system, with measured dynamical masses, and compared
to other stellar evolutionary models (see Choi et al. (2016) for
details). The result of the fit constrains the age of PDS 70 to
5.4 ± 1.0 Myr and its mass to 0.76 ± 0.02 M�. The best fit pa-
rameter values are given by the 50% quantile (the median) and
their uncertainties are based on the 16% and 84% quantile of the
marginalized posterior probability distribution. The stellar pa-
rameters are identical to the values used by Keppler et al. (2018).

3. Observations and data reduction

3.1. Observations

We observed PDS 70 during the SPHERE/SHINE GTO program
on the night of February 24th, 2018. The data were taken in the
IRDIFS-EXT pupil tracking mode using the N_ALC_YJH_S
(185 mas in diameter) apodized-Lyot coronagraph (Martinez
et al. 2009; Carbillet et al. 2011). We used the IRDIS (Dohlen
et al. 2008) dual-band imaging camera (Vigan et al. 2010) with
the K1K2 narrow-band filter pair (�K1 = 2.110 ± 0.102 µm, �K2

= 2.251 ± 0.109 µm). A spectrum covering the spectral range
from Y to H-band (0.96–1.64 µm, R� = 30) was acquired simul-
taneously with the IFS integral field spectrograph (Claudi et al.

straints the allowed distance values. As a result, the best fit distance
value reported here from the MCMC posterior draws is identical to the
value provided by the Gaia collaboration.

2008). We set the integration time for both detectors to 96 s and
acquired a total time on target of almost 2.5 hours. The total field
rotation is 95.7�. During the course of observation the average
coherence time was 7.7 ms and a Strehl ratio of 73% was mea-
sured at 1.6 µm, providing excellent observing conditions.

3.2. Data reduction

The IRDIS data were reduced as described in Keppler et al.
(2018). The basic reduction steps consisted of bad-pixel correc-
tion, flat fielding, sky subtraction, distortion correction (Maire
et al. 2016), and frame registration.
The IFS data were reduced with the SPHERE Data Center
pipeline (Delorme et al. 2017), which uses the Data Reduction
and Handling software (v0.15.0, Pavlov et al. 2008) and addi-
tional IDL routines for the IFS data reduction (Mesa et al. 2015).
The modeling and subtraction of the stellar speckle pattern for
both the IRDIS and IFS data set was performed with an sPCA
(smart Principal Component Analysis) algorithm based on Ab-
sil et al. (2013) using the same setup as described in Keppler
et al. (2018). Figure 1 shows the high-quality IRDIS combined
K1K2 image of PDS 70. The outer disk and the planetary com-
panion inside the gap are clearly visible. In addition, there are
several disk related features present, which are further described
in Appendix A. For this image the data were processed with a
classical ADI reduction technique (Marois et al. 2006) to mini-
mize self-subtraction of the disk. The extraction of astrometric
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Fig. 1. IRDIS combined K1K2 image of PDS 70 using classical ADI
reduction technique showing the planet inside the gap of the disk around
PDS 70. The central part of the image is masked out for better display.
North is up, East is to the left.

and contrast values was performed by injecting negative point
source signals into the raw data (using the unsaturated flux mea-
surements of PDS 70) which were varied in contrast and position
based on a predefined grid created from a first initial estimate of
the planets contrast and position. For every parameter combina-
tion of the inserted negative planet the data were reduced with
the same sPCA setup (maximum of 20 modes, protection angle
of 0.75⇥FWHM) and a �2 value within a segment of 2⇥FWHM
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system properties based on interferometric measurements, high
contrast imaging observations obtained with VLT/SPHERE, and
existing and new RV data. We present the observations and the
related data processing in Section 2. We derive a new age esti-
mate for the system in Section 3. We analyse the companion pho-
tometric properties following an empirical approach (Section 4)
and using atmospheric models (Section 5). The Section 6 sum-
marizes the mass estimates of GJ504b that can infered from the
analysis presented in the previous sections. We exploit in Sec-
tion 7 the companion astrometry, the RV measurements, and the
interferometric radius of GJ 504A to study the system architure.
We discuss our results in Section 8 and summarize our findings
in Section 9.

2. Observations

2.1. SPHERE high contrast observations

We observed GJ 504 on seven di↵erent nights with the SPHERE
instrument mounted on the VLT/UT3 (Table 1) as part of the
guaranteed time observation (GTO) planet search survey SHINE
(Chauvin et al. 2017). All the observations were acquired in
pupil-tracking mode with the 185mas diameter apodized-Lyot
coronograph (Carbillet et al. 2011; Guerri et al. 2011).

The target was observed on May 6, 2015, June 3, 2015,
March 29, 2015, and February 10, 2017 with the IRDIFS mode
of SPHERE. The mode enables operating the IRDIS instrument
(Dohlen et al. 2008) in dual-band imaging mode (DBI; Vigan
et al. 2010) with the H2H3 filters (Table 1), and the IFS inte-
gral field spectrograph (Claudi et al. 2008) in Y-J (0.95-1.35µm,
R� = 54) mode in parallel. The companion lies inside the circu-
lar field of view (FOV) of ⇠5” radius. It is however outside of
the 1.7”⇥1.7” IFS FOV.

We obtained additional observations with the IRDIFS_EXT
mode on June 5, 2015. The mode enables DBI with the K1K2
filters (Table 1) and the simultaneous use of the IFS in the Y-H
mode (0.95-1.64µm, R� = 30). GJ 504 was then re-observed on
June 6, and 7, 2015 with IRDIS and the DBI Y2Y3 and J2J3
filters (Table 1).

We collected additional calibration frames with the wa✏es
pattern created by the deformable mirror for the May and June
2015 epochs. Those frames were used to ensure an accurate reg-
istration of the star position behind the coronagraph. The wa✏e
pattern was maintained during the whole sequences of 2016 and
2017 IRDIFS observations to allow a registration of the individ-
ual frames along the deep imaging sequence. We also collected
non saturated exposures of the star before and after the sequence
of coronographic exposures for astrometric and photometric ex-
traction of point sources.

The IRDIS and IFS datasets were reduced at the SPHERE
Data Center (DC; Delorme et al. 2017b) using the SPHERE Data
Reduction and Handling (DRH) pipeline (Pavlov et al. 2008).
The DRH carried out the basic corrections for bad pixels, dark
current, and flat field. The DC performed an improved wave-
length calibration, a correction of the cross-talk, and removal of
bad pixels for the IFS data (Mesa et al. 2015). It also applied the
anamorphism correction to the IRDIS and IFS data. We regis-
tered the frames fitting a two-dimentional mo↵at function to the
wa✏es.

We temporally binned some of the registered cubes of IRDIS
frames to ensure we could run the ADI algorithms e�ciently
(bining factors of 2, 4, and 8 for the K1K2, J2J3, and Y2Y3 data;
factors of 7 and 2 for the May 2015 and June 2015 H2H3 data).
We also selected the resulting IFS datacubes based on the flux

Fig. 1. High contrast images of the immediate environnement of
GJ 504A obtained with the DBI filters of IRDIS and using the TLOCI
angular di↵erential imaging algorithm. The star center is located at the
lower-left corner of the images. GJ 504b is re-detected (arrow) into the
Y2, Y3, J3, H2, and K1 bands. The companion is tentatively re-detected
in the H3 channel. The H2-H3 images correspond to the May 2016 data.

ratio between and an outer and an inner ring contained within
the adaptive optics (AO) correction radius to ensure keeping the
frames with the best contrasts beyond the 1.7" square FoV. Con-
versely, we selected 80% (H2H3, K1K2, J2J3 datasets) to 60%
(Y2Y3 dataset) of the frames having the less extended halo be-
yond the AO correction radius where GJ 504b lies (between 19
and 26 full-width-at-half-maxima).

The absolute on-sky orientation of the instrument and the
detector pixelscale were calibrated as part of a long-term moni-
toring conducted during the GTO (Maire et al. 2016a,b).

We used the Specal pipeline (Galicher et al., in prep.) to
apply the angular di↵erential imaging (ADI; Marois et al. 2006)
steps on the IRDIS data. We applied the Template Locally Opti-
mized Combination of Images algorithm (TLOCI; Marois et al.
2014) to extract the photometry and astrometry of the compan-
ion and to derive detection limits. The algorithm has been shown
to extract the flux and position of such companions with a high
fidelity (Chauvin et al, in prep). We also used the Principal Com-
ponent Analysis (PCA; Soummer et al. 2012) implemented in
Specal and ANDROMEDA (Cantalloube et al. 2015) algorithms
to confirm our results. We processed the IFS data with a cus-
tom pipeline exploiting the temporal and spectral diversity (Vi-
gan et al. 2015). The pipeline derived detection limits following
the estimation of the flux losses based on the injection of fake
planets with flat spectra. The sensitivity curves account for the
small-number statistics a↵ecting the noise estimates at the inner-
most working angles (Mawet et al. 2014).

The Y3, J3, H2, and K1 filter sample the main emission
peaks of cold companions ("on-channels") while the central
wavelengths of the Y2, J2, H3, and K1 filters are chosen to sam-
ple the molecular absorptions. The companion is therefore re-
detected in the "on" chanels with S/N ranging from 10 to 46
(Figure 1). We also re-detect the object into the Y2 (�Y2 =
16.71±0.16 mag) channel at a lower S/N (of 7). To conclude, we
also tentatively re-detect the object in the H3 band in the May
2016 data, which are the deepest ones obtained on the system
with SPHERE. We considered it as an upper limit in the Sec-
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Table 1. Stellar parameters of PDS 70.

Parameter Unit Value References
Distance pc 113.43±0.52 1
Te↵ K 3972±36 2
Radius R� 1.26±0.15 computed from 2
B mag 13.494±0.146 3
V mag 12.233±0.123 3
g0 mag 12.881±0.136 3
r0 mag 11.696±0.106 3
i0 mag 11.129±0.079 3
J mag 9.553±0.024 4
H mag 8.823±0.040 4
Ks mag 8.542±0.023 4
Age Myr 5.4±1.0 this work
Mass M� 0.76±0.02 this work
AV mag 0.05+0.05

�0.03 this work

References. (1) Gaia Collaboration et al. (2016, 2018); (2) Pecaut &
Mamajek (2016); (3) Henden et al. (2015); (4) Cutri et al. (2003).

fit as well as the independently determined e↵ective temperature
Te↵ and radius are listed in Table 1. We perform a simultaneous
fit of all these observables. The uncertainties are treated as Gaus-
sians and we assume no covariance between them.
We use a Gaussian prior from Gaia for the distance and a Gaus-
sian prior with mean 0.01 mag and sigma 0.07 mag, truncated at
AV=0 mag, for the extinction (Pecaut & Mamajek 2016). Given
AV , we compute the extinction in all the adopted bands by as-
suming a Cardelli et al. (1989) extinction law. We use a Chabrier
(2003) initial mass function (IMF) prior on the mass and a uni-
form prior on the age. The stellar models adopted to compute
the expected observables, given the fit parameters, are from the
MIST project (Paxton et al. 2011, 2013, 2015; Dotter 2016; Choi
et al. 2016). These models were extensively tested against young
cluster data, as well as against pre-main sequence stars in mul-
tiple system, with measured dynamical masses, and compared
to other stellar evolutionary models (see Choi et al. (2016) for
details). The result of the fit constrains the age of PDS 70 to
5.4 ± 1.0 Myr and its mass to 0.76 ± 0.02 M�. The best fit pa-
rameter values are given by the 50% quantile (the median) and
their uncertainties are based on the 16% and 84% quantile of the
marginalized posterior probability distribution. The stellar pa-
rameters are identical to the values used by Keppler et al. (2018).

3. Observations and data reduction

3.1. Observations

We observed PDS 70 during the SPHERE/SHINE GTO program
on the night of February 24th, 2018. The data were taken in the
IRDIFS-EXT pupil tracking mode using the N_ALC_YJH_S
(185 mas in diameter) apodized-Lyot coronagraph (Martinez
et al. 2009; Carbillet et al. 2011). We used the IRDIS (Dohlen
et al. 2008) dual-band imaging camera (Vigan et al. 2010) with
the K1K2 narrow-band filter pair (�K1 = 2.110 ± 0.102 µm, �K2

= 2.251 ± 0.109 µm). A spectrum covering the spectral range
from Y to H-band (0.96–1.64 µm, R� = 30) was acquired simul-
taneously with the IFS integral field spectrograph (Claudi et al.

straints the allowed distance values. As a result, the best fit distance
value reported here from the MCMC posterior draws is identical to the
value provided by the Gaia collaboration.

2008). We set the integration time for both detectors to 96 s and
acquired a total time on target of almost 2.5 hours. The total field
rotation is 95.7�. During the course of observation the average
coherence time was 7.7 ms and a Strehl ratio of 73% was mea-
sured at 1.6 µm, providing excellent observing conditions.

3.2. Data reduction

The IRDIS data were reduced as described in Keppler et al.
(2018). The basic reduction steps consisted of bad-pixel correc-
tion, flat fielding, sky subtraction, distortion correction (Maire
et al. 2016), and frame registration.
The IFS data were reduced with the SPHERE Data Center
pipeline (Delorme et al. 2017), which uses the Data Reduction
and Handling software (v0.15.0, Pavlov et al. 2008) and addi-
tional IDL routines for the IFS data reduction (Mesa et al. 2015).
The modeling and subtraction of the stellar speckle pattern for
both the IRDIS and IFS data set was performed with an sPCA
(smart Principal Component Analysis) algorithm based on Ab-
sil et al. (2013) using the same setup as described in Keppler
et al. (2018). Figure 1 shows the high-quality IRDIS combined
K1K2 image of PDS 70. The outer disk and the planetary com-
panion inside the gap are clearly visible. In addition, there are
several disk related features present, which are further described
in Appendix A. For this image the data were processed with a
classical ADI reduction technique (Marois et al. 2006) to mini-
mize self-subtraction of the disk. The extraction of astrometric
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Fig. 1. IRDIS combined K1K2 image of PDS 70 using classical ADI
reduction technique showing the planet inside the gap of the disk around
PDS 70. The central part of the image is masked out for better display.
North is up, East is to the left.

and contrast values was performed by injecting negative point
source signals into the raw data (using the unsaturated flux mea-
surements of PDS 70) which were varied in contrast and position
based on a predefined grid created from a first initial estimate of
the planets contrast and position. For every parameter combina-
tion of the inserted negative planet the data were reduced with
the same sPCA setup (maximum of 20 modes, protection angle
of 0.75⇥FWHM) and a �2 value within a segment of 2⇥FWHM
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system properties based on interferometric measurements, high
contrast imaging observations obtained with VLT/SPHERE, and
existing and new RV data. We present the observations and the
related data processing in Section 2. We derive a new age esti-
mate for the system in Section 3. We analyse the companion pho-
tometric properties following an empirical approach (Section 4)
and using atmospheric models (Section 5). The Section 6 sum-
marizes the mass estimates of GJ504b that can infered from the
analysis presented in the previous sections. We exploit in Sec-
tion 7 the companion astrometry, the RV measurements, and the
interferometric radius of GJ 504A to study the system architure.
We discuss our results in Section 8 and summarize our findings
in Section 9.

2. Observations

2.1. SPHERE high contrast observations

We observed GJ 504 on seven di↵erent nights with the SPHERE
instrument mounted on the VLT/UT3 (Table 1) as part of the
guaranteed time observation (GTO) planet search survey SHINE
(Chauvin et al. 2017). All the observations were acquired in
pupil-tracking mode with the 185mas diameter apodized-Lyot
coronograph (Carbillet et al. 2011; Guerri et al. 2011).

The target was observed on May 6, 2015, June 3, 2015,
March 29, 2015, and February 10, 2017 with the IRDIFS mode
of SPHERE. The mode enables operating the IRDIS instrument
(Dohlen et al. 2008) in dual-band imaging mode (DBI; Vigan
et al. 2010) with the H2H3 filters (Table 1), and the IFS inte-
gral field spectrograph (Claudi et al. 2008) in Y-J (0.95-1.35µm,
R� = 54) mode in parallel. The companion lies inside the circu-
lar field of view (FOV) of ⇠5” radius. It is however outside of
the 1.7”⇥1.7” IFS FOV.

We obtained additional observations with the IRDIFS_EXT
mode on June 5, 2015. The mode enables DBI with the K1K2
filters (Table 1) and the simultaneous use of the IFS in the Y-H
mode (0.95-1.64µm, R� = 30). GJ 504 was then re-observed on
June 6, and 7, 2015 with IRDIS and the DBI Y2Y3 and J2J3
filters (Table 1).

We collected additional calibration frames with the wa✏es
pattern created by the deformable mirror for the May and June
2015 epochs. Those frames were used to ensure an accurate reg-
istration of the star position behind the coronagraph. The wa✏e
pattern was maintained during the whole sequences of 2016 and
2017 IRDIFS observations to allow a registration of the individ-
ual frames along the deep imaging sequence. We also collected
non saturated exposures of the star before and after the sequence
of coronographic exposures for astrometric and photometric ex-
traction of point sources.

The IRDIS and IFS datasets were reduced at the SPHERE
Data Center (DC; Delorme et al. 2017b) using the SPHERE Data
Reduction and Handling (DRH) pipeline (Pavlov et al. 2008).
The DRH carried out the basic corrections for bad pixels, dark
current, and flat field. The DC performed an improved wave-
length calibration, a correction of the cross-talk, and removal of
bad pixels for the IFS data (Mesa et al. 2015). It also applied the
anamorphism correction to the IRDIS and IFS data. We regis-
tered the frames fitting a two-dimentional mo↵at function to the
wa✏es.

We temporally binned some of the registered cubes of IRDIS
frames to ensure we could run the ADI algorithms e�ciently
(bining factors of 2, 4, and 8 for the K1K2, J2J3, and Y2Y3 data;
factors of 7 and 2 for the May 2015 and June 2015 H2H3 data).
We also selected the resulting IFS datacubes based on the flux

Fig. 1. High contrast images of the immediate environnement of
GJ 504A obtained with the DBI filters of IRDIS and using the TLOCI
angular di↵erential imaging algorithm. The star center is located at the
lower-left corner of the images. GJ 504b is re-detected (arrow) into the
Y2, Y3, J3, H2, and K1 bands. The companion is tentatively re-detected
in the H3 channel. The H2-H3 images correspond to the May 2016 data.

ratio between and an outer and an inner ring contained within
the adaptive optics (AO) correction radius to ensure keeping the
frames with the best contrasts beyond the 1.7" square FoV. Con-
versely, we selected 80% (H2H3, K1K2, J2J3 datasets) to 60%
(Y2Y3 dataset) of the frames having the less extended halo be-
yond the AO correction radius where GJ 504b lies (between 19
and 26 full-width-at-half-maxima).

The absolute on-sky orientation of the instrument and the
detector pixelscale were calibrated as part of a long-term moni-
toring conducted during the GTO (Maire et al. 2016a,b).

We used the Specal pipeline (Galicher et al., in prep.) to
apply the angular di↵erential imaging (ADI; Marois et al. 2006)
steps on the IRDIS data. We applied the Template Locally Opti-
mized Combination of Images algorithm (TLOCI; Marois et al.
2014) to extract the photometry and astrometry of the compan-
ion and to derive detection limits. The algorithm has been shown
to extract the flux and position of such companions with a high
fidelity (Chauvin et al, in prep). We also used the Principal Com-
ponent Analysis (PCA; Soummer et al. 2012) implemented in
Specal and ANDROMEDA (Cantalloube et al. 2015) algorithms
to confirm our results. We processed the IFS data with a cus-
tom pipeline exploiting the temporal and spectral diversity (Vi-
gan et al. 2015). The pipeline derived detection limits following
the estimation of the flux losses based on the injection of fake
planets with flat spectra. The sensitivity curves account for the
small-number statistics a↵ecting the noise estimates at the inner-
most working angles (Mawet et al. 2014).

The Y3, J3, H2, and K1 filter sample the main emission
peaks of cold companions ("on-channels") while the central
wavelengths of the Y2, J2, H3, and K1 filters are chosen to sam-
ple the molecular absorptions. The companion is therefore re-
detected in the "on" chanels with S/N ranging from 10 to 46
(Figure 1). We also re-detect the object into the Y2 (�Y2 =
16.71±0.16 mag) channel at a lower S/N (of 7). To conclude, we
also tentatively re-detect the object in the H3 band in the May
2016 data, which are the deepest ones obtained on the system
with SPHERE. We considered it as an upper limit in the Sec-
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• Provides separation, position angle, orbit, spectrum.

• Need a model to derive the nature of the companion, 

and this model depends on stellar parameters: age, 
and mass in particular.

STARS AND PLANETS: Parameters dependence
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STARS AND PLANETS: Parameters dependence

R. Ligi et al.: Stellar and planetary properties of HD 219134

Table 6. Prior ranges for interior parameters.

Parameter Prior range Distribution

Core radius rcore (0.01–1) rcore+mantle Uniform in r
3
core

Fe/Simantle 0 – Fe/Sistar Uniform
Mg/Simantle Mg/Sistar Gaussian
fmantle 0.–0.2 Uniform
Size of rocky interior rcore+mantle (0.01–1) Rp Uniform in r

3
core+mantle

Pressure imposed by gas envelope Penv 20 mbar–100 bar Uniform in log-scale
Temperature of gas envelope ↵ 0.5–1 Uniform
Mean molecular weight of gas envelope µ 16–50 g mol�1 Uniform

where genv and Tenv are gravity at the bottom of the atmosphere
and mean atmospheric temperature, respectively. The quantity
R
⇤ is the universal gas constant (8.3144598 J mol�1 K�1) and µ

the mean molecular weight. The mass of the atmosphere menv is
directly related to the pressure Penv as

menv = 4⇡Penv
(Rp � denv)2

genv
, (9)

where Rp � denv is the radius at the bottom of the atmosphere.
The atmosphere’s constant temperature is defined as

Tenv =↵Te↵

r
R?

2a
, (10)

where a is the semi-major axis. The factor ↵ accounts for pos-
sible cooling and warming of the atmosphere and can vary
between 0.5 and 1, which is equivalent to the observed range of
albedos among solar system bodies (0.05 for asteroids up to 0.96
for Eris). The upper limit of 1 is verified against the estimated
↵max (see Appendix A in Dorn et al. 2017), which takes possible
greenhouse warming into account.

4.2.2. Inference results

Figure 5 summarises the interior estimates. Both planets have
mantle compositions and core sizes that fit bulk density and the
stellar abundance constraint. The core fraction of both planets
is close to that of Venus and Earth ((rcore/rcore+mantle)� = 0.53),
which validates their denomination as super-Earths. Compared
to planet c, the lower density of 10% of planet b is associated
with a slightly smaller core (by 10%) and higher fmantle (by 45%),
which indicates that a significantly stronger reduction of mantle
density is plausible given the data. The estimates of fmantle for
planet b and c are 0.073+0.06

�0.05 and 0.05+0.06
�0.04, respectively. Factors

of fmantle up to 0.25 can be associated with high melt fractions
(for Earth-sized planets). Similar values can be achieved when
the mantle composition is enriched by very refractory elements
(i.e. Al, Ca).

It should be noted that differences between the interiors are
small, since uncertainties on bulk densities are relatively large.
The data allow for no difference in bulk densities. However, a
significant (more than 5%) difference exists with 70% probabil-
ity. In this work, we used an interior model that allows us to
quantify any possible difference in the rocky interiors of both
planets. We assumed that any volatile layer is limited to a 100 bar
atmosphere (similar to Venus) at maximum. Further arguments
are necessary to evaluate whether a difference between the rocky
interiors, specifically the mantle densities, can exist.

Nonetheless, because Bower et al. (2019) demonstrated that
for Earth-sized planets a fully molten mantle is 25% less dense
than a solidified mantle, this possibility must be considered,
and it is interesting to investigate whether planet b could be
less dense because partially molten. Heating by irradiation from
the host star would not be enough; the black-body equilib-
rium temperature for this planet is 1036 K. Nevertheless, in the
next subsection, we discuss a possible dynamical origin for the
possible difference between HD 219134 b and c.

4.3. Possible origin of a partial mantle melt for HD 219134 b

Large melt fractions may be sustained on planet b by tidal
heating. In the case of synchronous rotation with spin-orbit
alignment, which is likely for close-in planets such as HD 219134
b, tidal dissipation acts only on planets on eccentric orbits around
the star. The power is given by (see e.g. Lainey et al. 2009)

Ė =
21
2

k2

Q

(!Rp)5

G
e

2, (11)

where k2 is the Love number and Q the quality factor of
the planet of radius Rp and spin or orbital frequency !. The
key parameter k2

Q
depends on the internal properties of the

body8. The dissipated energy Ė heats the planet and damps the
eccentricity of the orbit, ultimately leading to its circularisa-
tion and a reduction of the semi-major axis. To maintain tidal
heating, the orbital eccentricity must be excited by the interac-
tion with other secondary objects, as is the case for Jupiter’s
moon Io for instance. In order to investigate if tidal heating on
planet b is sufficient enough, we ran numerical simulations of
the planetary system using the N-body code SyMBA (Duncan
et al. 1998).

To build our initial conditions, we took the e,$, orbital peri-
ods, K, and mid-transit time from Gillon et al. (2017). They
measure a non-zero eccentricity for planets c, f , and d, but
not for planet b, whose eccentricity is fixed to zero to fit the
other orbital parameters. They do not provide data for the out-
ermost two planets g and h, but the long orbital periods of
these planets make them unlikely to affect the inner four plan-
ets, and their orbital parameters suffer larger uncertainty so we
neglect them in our simulations. We find that the eccentricity
of planet b is excited by the other planets. In absence of dissi-
pation, the system is stable for at least 1 Gyr, and eb oscillates

8 For reference, it is of the order of 10�4,�5 for gas giant planets and
about 0.025 for the Earth.
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for Eris). The upper limit of 1 is verified against the estimated
↵max (see Appendix A in Dorn et al. 2017), which takes possible
greenhouse warming into account.

4.2.2. Inference results

Figure 5 summarises the interior estimates. Both planets have
mantle compositions and core sizes that fit bulk density and the
stellar abundance constraint. The core fraction of both planets
is close to that of Venus and Earth ((rcore/rcore+mantle)� = 0.53),
which validates their denomination as super-Earths. Compared
to planet c, the lower density of 10% of planet b is associated
with a slightly smaller core (by 10%) and higher fmantle (by 45%),
which indicates that a significantly stronger reduction of mantle
density is plausible given the data. The estimates of fmantle for
planet b and c are 0.073+0.06

�0.05 and 0.05+0.06
�0.04, respectively. Factors

of fmantle up to 0.25 can be associated with high melt fractions
(for Earth-sized planets). Similar values can be achieved when
the mantle composition is enriched by very refractory elements
(i.e. Al, Ca).

It should be noted that differences between the interiors are
small, since uncertainties on bulk densities are relatively large.
The data allow for no difference in bulk densities. However, a
significant (more than 5%) difference exists with 70% probabil-
ity. In this work, we used an interior model that allows us to
quantify any possible difference in the rocky interiors of both
planets. We assumed that any volatile layer is limited to a 100 bar
atmosphere (similar to Venus) at maximum. Further arguments
are necessary to evaluate whether a difference between the rocky
interiors, specifically the mantle densities, can exist.

Nonetheless, because Bower et al. (2019) demonstrated that
for Earth-sized planets a fully molten mantle is 25% less dense
than a solidified mantle, this possibility must be considered,
and it is interesting to investigate whether planet b could be
less dense because partially molten. Heating by irradiation from
the host star would not be enough; the black-body equilib-
rium temperature for this planet is 1036 K. Nevertheless, in the
next subsection, we discuss a possible dynamical origin for the
possible difference between HD 219134 b and c.

4.3. Possible origin of a partial mantle melt for HD 219134 b

Large melt fractions may be sustained on planet b by tidal
heating. In the case of synchronous rotation with spin-orbit
alignment, which is likely for close-in planets such as HD 219134
b, tidal dissipation acts only on planets on eccentric orbits around
the star. The power is given by (see e.g. Lainey et al. 2009)
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where k2 is the Love number and Q the quality factor of
the planet of radius Rp and spin or orbital frequency !. The
key parameter k2
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depends on the internal properties of the

body8. The dissipated energy Ė heats the planet and damps the
eccentricity of the orbit, ultimately leading to its circularisa-
tion and a reduction of the semi-major axis. To maintain tidal
heating, the orbital eccentricity must be excited by the interac-
tion with other secondary objects, as is the case for Jupiter’s
moon Io for instance. In order to investigate if tidal heating on
planet b is sufficient enough, we ran numerical simulations of
the planetary system using the N-body code SyMBA (Duncan
et al. 1998).

To build our initial conditions, we took the e,$, orbital peri-
ods, K, and mid-transit time from Gillon et al. (2017). They
measure a non-zero eccentricity for planets c, f , and d, but
not for planet b, whose eccentricity is fixed to zero to fit the
other orbital parameters. They do not provide data for the out-
ermost two planets g and h, but the long orbital periods of
these planets make them unlikely to affect the inner four plan-
ets, and their orbital parameters suffer larger uncertainty so we
neglect them in our simulations. We find that the eccentricity
of planet b is excited by the other planets. In absence of dissi-
pation, the system is stable for at least 1 Gyr, and eb oscillates

8 For reference, it is of the order of 10�4,�5 for gas giant planets and
about 0.025 for the Earth.
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Models of planetary interiors 
depend on many stellar 
parameters: radius, mass, 
density, abundances…

The « basic » planetary 
parameters depend on the 
stellar mass, radius, density… 
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Gas: H, He → When?

Ice  → Where?

Silicates 

Metals

Brugger+ 2016

The internal composition of 
exoplanets is inferred from 
planetary interior models:

• Need parameters as inputs 

(stellar and planetary)

• Hint toward formation and 

habitability

• Suffer from degeneracy

STARS AND PLANETS: Internal composition

Valencia et al. 2013 
(Bulk Composition of GJ 1214b and Other 
Sub-Neptune Exoplanets)

11



4 Gijs D. Mulders

Trends with Stellar Metallicity

There is a general consensus that giant planet occurrence rates increase with host
star metallicity, see also the review by Udry and Santos (2007). The giant planet-
metallicity relation is seen in radial velocity surveys of sun-like stars, M dwarfs, and
evolved stars, and has also been identified for transiting planets in the Kepler survey.
However, Sub-Neptunes are found around stars with a wider range of metallicities,
with no clear preference for metal-rich stars. Throughout this chapter, the logarithm
of the iron abundance with respect the solar abundance, [Fe/H], is used to represent
stellar metallicity.

Fig. 2 Giant planet occurrence rate as function of stellar metallicity, from Fischer and Valenti
(2005) figure 5. The red solid line shows a quadratic relation between planet occurrence and stellar
metallicity (b = 2, eq. 1). Figure reproduced from Fischer and Valenti (2005) with permission from
the authors.

Positive Giant Planet-Metallicity Correlation

Giant planets occur more frequently around stars with higher metallicities (See Fig.
2). The first indications of a planet-metallicity correlation were found by Gonzalez
(1997) and Marcy et al. (1997) based on metallicities of a handful of exoplanet hosts
including 51 Peg b. The trend that giant planets are preferentially found around

Fischer & Valenti 2005

Planet Populations as a Function of Stellar Properties 7

Fig. 3 Metallicity of planet host stars as function of planet radius. Points represent spectroscopic
metallicities of Kepler exoplanet hosts from Buchhave et al. (2014). The average host star metal-
licity correlates with planet radius, as indicated for a set of discrete radius bins shown in orange
(Buchhave et al. 2014) and for a continuous planet radius-metallicity relation (Schlaufman 2015)
shown with the dashed purple line. The expected range of planet radii from In Situ planet formation
models by Dawson et al. (2015) are shown in cyan.

fied for giant planets disappears when considering smaller planets (Fig 3, Buchhave
et al. 2014).

Neptunes The first indications that Neptune-mass planets are not preferentially
found around metal rich stars, as opposed to giant planet hosts, were found by
Udry et al. (2006) in a sample including M dwarfs planet hosts, and later con-
firmed by Sousa et al. (2008). The possibility that a higher planet occurrence rate of
Neptune-sized planets around M dwarfs contributed to this correlation was investi-
gated by Ghezzi et al. (2010), who recovered the wide range of stellar metallicities
for Neptune-mass planet hosts in a sample of FGK dwarfs. This trend was con-
firmed by Mayor et al. (2011), who show that planets less massive than 30-40M�
are equally common around metal-poor and metal-rich stars. The same metallicity-
independence was found for M dwarfs hosting Neptune mass and smaller planets
(Rojas-Ayala et al. 2012; Neves et al. 2013).

Planet Populations as a Function of Stellar Properties 9

Fig. 4 Giant planet occurrence as function of stellar mass, from Johnson et al. (2010) figure 4. The
histogram shows the observed planet occurrence rate. The red red line show the predicted planet
occurrence rate based on the metallicity distribution of stars in each stellar mass bin. The blue line
shows the stellar-mass dependence at solar metallicity, compare to the predicted relation from the
planet formation model by Kennedy and Kenyon (2008). Figure reproduced from Johnson et al.
(2010) with permission from the authors.

Giant planets

Giant planets are found less frequently are low-mass M dwarfs than around sun-like
stars and more frequently around evolved stars with higher masses (Fig. 4). How-
ever, the presence of a giant planet-stellar mass correlation is less well established
than the planet-metallicity correlation. The main challenge lies in correcting for the
planet-metallicity correlation, which is stronger ( fgiant µ [Fe/H]2) than the planet-
mass correlation ( fgiant µ M?).

Tentative evidence for a decreased giant planet occurrence around M dwarfs
compared to sun-like stars was found by Laws et al. (2003) and Endl et al. (2006).
The giant planet occurrence rate within 2.5 au increases by a factor of ⇠ 3 from M
stars to sun-like stars (Butler et al. 2006; Cumming et al. 2008). Planet occurrence
rates for a sample of late K dwarfs support the positive correlation with stellar mass
(Gaidos et al. 2013).

Johnson+ 2010
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peratures, the elevated planet occurrence rates around M dwarfs compared to FGK
stars is clearly present.

Fig. 6 Overview of planet occurrence rates as a function of effective temperature in the literature
for planets between 1-4R� and P < 50 days. Occurrence rates were re-scaled assuming uniform
occurrence in log period and log radius for purpose of this comparison. The occurrence rates for
low-mass M dwarfs are systematically higher than those of FGK stars. Two studies (Howard et al.
2012; Mulders et al. 2015c) also show trends within the sample of F,G, and K stars. References –
Dressing and Charbonneau (2015); Mulders et al. (2015c); Morton and Swift (2014); Gaidos et al.
(2016); Howard et al. (2012); Silburt et al. (2015); Fressin et al. (2013); Youdin (2011); Dong and
Zhu (2013); Petigura et al. (2013).

Selection effects Because Kepler is a magnitude-limited survey, more luminous
stars can be detected at larger distances. The observed population of more mas-
sive stars is therefore, on average, more distant from the sun and higher above the
galactic plane, and may probe a stellar population that may be older and lower in
metallicity. Future and ongoing transit surveys may quantify the effect of differ-
ent galactic locations on planet occurrence rates. The differences in the distribution
of stellar metallicities between M dwarfs and FGK stars are small. Howard et al.
(2012) show that, based on galactic stellar models, the expected differences in mean
metallicity between stars of different spectral types probed with Kepler is less than

Planet Populations as a Function of Stellar Properties 11

Fig. 5 Debiased planet radius distribution of exoplanets around M dwarfs (purple) and FGK stars
(cyan), from Mulders et al. (2015c) Figure 5. Planets smaller than 2.8 R� are 3.5 times more
abundant around M stars, while giant planets occurrence is at least a factor 2 higher around FGK
stars.

cussed before. This trend is not a result of selection and detection biases as briefly
discussed below.

Detection biases Occurrence rate calculations take into account planet detection
efficiency as function stellar properties such as stellar size and noise level. At
this point it is worth noting that many occurrence rate studies employing differ-
ent methodologies have been conducted on the Kepler sample of M dwarfs that
generally find good agreement on planet occurrence rates (Dressing and Charbon-
neau 2013; Morton and Swift 2014; Dressing and Charbonneau 2015; Mulders et al.
2015c; Gaidos et al. 2016). Comparison with occurrence rate studies around sun-like
stars can be made – though one has to keep in mind that different treatment of de-
tection efficiency can affect occurrence rate estimates (e.g. Christiansen et al. 2015;
Burke et al. 2015). Figure 6 shows the occurrence of rate of sub-Neptunes (1�4 R�)
at orbital periods less than 50 days as a function of stellar effective temperature as
estimated by different studies. For purposes of this comparison, occurrence rates
were rescaled when only estimates for a different range of planet properties were
available, assuming a uniform occurrence in log planet radius and log orbital pe-
riod. While there is significant scatter in occurrence rates at similar effective tem-

Mulders+ 2015c

Mulders 2018, arXiv:1805.00023v1

From Mulders 2018

From Mulders 2018

STARS AND PLANETS: Populations
Trends are found between stellar parameters and exoplanets occurence/type. 
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EXOPLANETS: Limitations in the detection
Contrast Resolution
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EXOPLANETS: Limitations in the detection
Contrast Resolution

• Need to hide the star

• Problem very close to 

the star 
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EXOPLANETS: Limitations in the detection
Contrast Resolution

1 mas = 2 peaces of 2€ in 
Bretain seen by the 

slidefrom Nice !
• Stellar diameter of the 

order of the millisecond 
of arc (mas)


• Separation from star 
and planet of a few 
mas to a few arcs
13



We’ve seen that:

• Direct and indirect methods do not provide the same observables.

• Need of stellar parameters to derive exoplanets properties.

• Often, need of a model to derive additional parameters, that are important to  

characterize the system (like the stellar age).

• Open questions on the link between stellar parameters and exoplanets population.

What can interferometry do in this context? 

Characterization 
• Interferometry allows an almost direct measurement of stellar radii  
→ transits and other parameters


Detection 
• Closure phases and kernel phase can be used to detect exoplanets  
→ mix between imaging and interferometry

EXOPLANETS: Summary
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• What do we know about exoplanets? 

• Exoplanets and stars: the role of interferometry 

• The Kernel phase approach 
Toward the detection of exoplanets with interferometry 

• Going beyond 
Kernel-nuller, SKA… 

OUTLINE of the LECTURE
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INTERFEROMETERS WORLDWIDE

CHARA SUSI

NPOI

VLTI
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INTERFEROMETRY: Recalls

17

Bsol

Interferometer

Angular resolution 
≈ λ/B

➜ larger resolution 
➜ smaller objects

D

Classical telescope

Angular resolution 
≈ λ/D

➜ larger sensitivity 
➜ fainter objects

17-28/4/2010 2010 VLTI school - Porquerolles 7

B > D

λ/D Inter-fringes λ/B



INTERFEROMETRY: Recalls

I = O ⊗ PSF 

TF(I) = TF(O) x TF(PSF) 

TF(I) = V(B) = |𝜸(0)|

Contrast of fringes  
= Complex visibility (V) 
= FT of the surface brightness 
distribution of the star 

(ven Citter-Zernicke theorem)

In the case of a uniform disk: 

with

angular diameter of the star

⊗I =

Phase Φ

Modulus |V|
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small star

big star

contrast = 1

contrast = 0

INTERFEROMETRY: Recalls

Point source → contrast = 1 
(Young). 


Extended source  
→ several fringe patterns which 
don’t overlap exactly  
→ contrast < 1, depends on 
telescope separation (baseline). 

1.22 λ/B
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INTERFEROMETRY: Recalls

Aspro2
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INTERFEROMETRY: The problem of limb-darkening

A&A 529, A75 (2011)

GDEs were presented, for the first time, as continuous functions
of the stellar masses, age, chemical composition, and mixing-
length parameter. These theoretical values of β1 are supported
by recent observations of double-lined eclipsing binaries and
rapidly rotating stars (Pantazis & Niarchos 1998; Niarchos 2000;
Djurasevic et al. 2003; Che et al., priv. commun.). However,
photometric observations are usually performed in certain wave-
length bands instead of bolometrically, and therefore monochro-
matic (or band) GDCs are to be used in modelling efforts. These
bandpass-dependent coefficients were computed by Claret 2003
from realistic atmosphere models instead of black body spectra.
It is important to point out that all these comments can also be
applied to planetary transits, because they can be considered as
a special case of eclipsing binaries.

In this paper we present new calculations of limb-darkening
coefficients for five laws by adopting 100 µ points instead
of the usually adopted 17 or 15 points. The specific intensi-
ties of the ATLAS (Kurucz, priv. commun.) and PHOENIX
(Hauschildt, priv. commun.) models were used to compute the
limb-darkening coefficients. The calculations cover the pass-
bands of the Kepler, CoRoT and Spitzer space missions as
well as the commonly used uvby (Strömgren), UBVRIJHK
(Johnson-Cousins) and Sloan filter systems. We also perform
the calculations for the bi-parametric approximations by adopt-
ing by adopting the flux conservation method (FCM) to provide
users with an additional tool to estimate the theoretical error
bars.

New values of the gravity-darkening coefficients y(λ) are
also computed using the same grids of stellar atmosphere mod-
els. The calculations were carried out by adopting a more gen-
eral differential equation, which now also takes into account the
contributions of the dependence of the intensities on the local
gravity and, more importantly, the effect of convection. The new
tables presented in this paper supersede our old values of y(λ),
which were computed with a simpler equation.

2. The limb-darkening coefficients for ATLAS
and PHOENIX models

We have computed limb-darkening coefficients for several mod-
els that mainly cover the transmission curves of the Kepler,
CoRoT, and Spitzer space missions although we also provide
LDCs for the traditional passbands. The calculations for the
Spitzer space mission were carried out considering the full ar-
ray average spectral responses for four bands. As usual, we have
used the least-square method (LSM) to fit the following five
limb-darkening laws to the specific intensities of the models:
the linear law
I(µ)
I(1)
= 1 − u(1 − µ), (1)

the quadratic law

I(µ)
I(1)
= 1 − a(1 − µ) − b(1 − µ)2, (2)

the square root law

I(µ)
I(1)
= 1 − c(1 − µ) − d(1 − √µ), (3)

the logarithmic law

I(µ)
I(1)
= 1 − e(1 − µ) − fµ ln(µ), (4)

and a more general law with four terms

I(µ)
I(1)
= 1 −

4∑

k=1

ak(1 − µ k
2 ), (5)

where I(1) is the specific intensity at the centre of the disc, and
u, a, b, c, d, e, f , and ak are the corresponding LDCs. The quan-
tity µ is defined by µ = cos(γ), where γ is the angle between the
line of sight and the emergent intensity. The model atmosphere
intensities were convolved with a response function that takes
into account the filter transmission curves for Kepler, CoRoT,
and Spitzer and the reflection from an aluminium-coated mirror,
as explained in our previous papers on the subject. The LDC cal-
culations were performed for 19 metallicities ranging from 10−5

up to 10+1 times the solar abundance, for gravities 0.0 ≤ log g ≤
5.0, and for effective temperatures 2000 K ≤ Teff ≤ 50 000 K.
Five microturbulent velocities (Vξ = 0, 1, 2, 4, 8 km s−1) were
used.

The limb-darkening law described in Eq. (5) has important
advantages compared to the linear or bi-parametric approxima-
tions: the other laws are useful only for limited effective tem-
perature ranges, while the law in Eq. (5) fits well to the mod-
elled specific intensities for the whole ranges of log g and Teff
for which ATLAS and PHOENIX models are available. As this
4-parameter law reproduces the intensity distributions very well
and conserves flux within very small tolerances, we recommend
the users to adopt it whenever the quality of the light curves does
not allow one to derive empirical values.

As explained in the introduction, the adopted numerical
method to derive the LDCs is still a matter of discussion. To pro-
vide a more extensive set of tools to the observers, we have also
computed LDCs by adopting the FCM that conserves, by defi-
nition, the flux, but the corresponding intensity distributions are
not well described. It would be interesting if observers could test
both possibilities (as well as comparing the LDCs derived from
ATLAS and PHOENIX models). Although the LDCs computed
by adopting the ATLAS and PHOENIX models are similar, at
least for the linear fitting (Claret 1998) such a variety of numeri-
cal methods and atmosphere models may provide a good tool to
evaluate the theoretical errors in the LDC more realistically.

As commented in the introduction, observational data of
limb-darkening that can be compared with theoretical predic-
tions is scarce. An example of these data is presented in Claret
(2008), in which a systematic disagreement between theoretical
predictions and semi-empirical linear LDCs was shown based on
observations of nine double-lined eclipsing binaries. However,
the linear limb-darkening law does not describe the specific
intensities well and as such the paper’s conclusions cannot be
considered to be robust. Also for the transits of the planetary
system HD 209458, systematic disagreements between the the-
oretical and empirical LDCs for the linear and quadratic cases
were found (Claret 2009). Even taking into account uncertainties
in the metallicity, microturbulent velocity, and effective tempera-
ture in the calculation of the theoretical LDCs, the corresponding
theoretical predictions cannot match the empirical data.

Specifically for transits obtained with the CoRoT space mis-
sion, Sing (2010) used his method – which combines LSM and
exclusion of limb intensities – to compare his theoretical predic-
tions with semi-empirical LDCs. To compare the present calcu-
lations with those performed by Sing, we show Sing’s results in
Fig. 1 together with our theoretical results obtained using both
LSM and FCM. For the sake of clarity, we only analyse the lin-
ear case, although we recall that this approach is not the most
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Claret & Bloemen 2011
P. Kervella et al.: The radii and limb darkenings of ↵Cen A & B

Fig. 2. Comparison of di↵erent parametric limb darkening models of the
Sun with the observed limb darkening profile measured by Pierce et al.
(1977) in the H band. The residuals in percentage of the observed in-
tensity profile are shown in the lower panel.

it combines. But both the square root and four-parameter laws
are not significantly more accurate approximations of the profile
of the Sun than the single-parameter power law introduced by
Hestro↵er (1997), at least in the infrared H band that we discuss
here.

The results of the fits of di↵erent parametric LD models, to-
gether with the 3D atmosphere model presented in Sect. 3.1.2,
are listed in Table 3, and the corresponding residuals are shown
in Figs. 5 and 6. A discussion of the residuals of the di↵erent
models is presented in Sect. 3.1.3. The best-fit power law mod-
els adjusted to the PIONIER squared visibilities of ↵Cen A and
B are presented in Figs. 3 and 4, respectively.

3.1.2. Three-dimensional atmosphere model

We interpret our PIONIER observations with the result from
realistic 3D radiative hydrodynamical simulations of convec-
tion. We used the Stagger code (Nordlund & Galsgaard
19955; Beeck et al. 2012) which was previously used to in-
terpret interferometric angular diameter determinations (e.g.
Bigot et al. 2006, 2011). These state-of-the-art simulations pro-
vide extremely realistic modeling of the solar surface (see
e.g. Stein & Nordlund 1998; Nordlund et al. 2009) from first
principles without the need of tuned parameters (e.g., mixing-
length). These simulations also provide in principle reliable limb
darkened intensities. The code solves the full set of conser-
vative hydrodynamical equations coupled to an accurate treat-
ment of the radiative transfer. The equations are solved on
a staggered mesh with a sixth order explicit finite di↵erence
scheme. We used the 3D models for ↵Cen A and B obtained by
Bigot et al. (2008) and Bigot et al. (2006). The domains of simu-
lations are local boxes at the surface (6 ⇥ 6 ⇥ 5.9 Mm for A, and
6⇥ 6⇥ 5.7 Mm for B). They contain the entropy minima and are

5
http://www.astro.ku.dk/~kg/Papers/MHD_code.ps.gz

extended deep enough to have a flat entropy profile at the bottom
(adiabatic regime). The code uses periodic boundary conditions
horizontally and open boundaries vertically. At the bottom of the
simulation, the inflows have constant entropy and pressure. A re-
alistic equation-of-state accounts for ionization, recombination,
and dissociation (Mihalas et al. 1990) and continuous line opac-
ities (Gustafsson et al. 2008). Radiative transfer is solved using
the Feautrier scheme along several vertical and inclined rays.
The wavelength dependence of the radiative transfer is taken
into account using a binning scheme in which the monochro-
matic lines are collected into 12 bins. The stellar parameters that
define our 3D models are: mean Te↵ = 5820 K, log g = 4.32,
[Fe/H] = +0.25 dex for ↵Cen A, and mean Te↵ = 5240 K,
log g = 4.51, [Fe/H] = +0.25 dex for ↵Cen B.

Bigot et al. (2006) presented a first comparison of only two
VLTI/VINCI visibility measurements obtained in the second
lobe of the visibility function of ↵Cen B with the predic-
tion of 3D hydrodynamical simulation. Since the di↵erence be-
tween 3D and 1D is modest for a K dwarf, especially in the
K band, we could only conclude that the 3D approach gave
a marginally better fit than the classical 1D approach. Now
we have a much better coverage of the visibility function with
PIONIER. Our 3D determinations of the angular diameters are
(Table 3) ✓3D[A] = 8.534 ± 0.003 mas (�2

red = 4.85) and
✓3D[B] = 6.037 ± 0.002 mas (�2

red = 4.40). In these error bars
we ignored the contribution of the uncertainty in wavelength
that is a simple scaling factor common to both stars. Calculat-
ing equivalent 1D, LD angular diameters using non-linear four-
parameter LD approximations tabulated by Claret & Bloemen
(2011), we obtain ✓1D[A] = 8.540 ± 0.003 mas (�2

red = 4.98)
and ✓1D[B] = 6.030 ± 0.002 mas (�2

red = 3.93), which is compa-
rable to the 3D LD values. We note that our PIONIER diameter
of ↵ Cen B (✓3D[B] = 6.037 ± 0.002 ± 0.025 mas) is within
1� of the value derived from VINCI observations by Bigot et al.
(2006) (✓3D VINCI[B] = 6.000 ± 0.021 mas).

3.1.3. Quality of the limb darkening models

An indication of the quality of the LD model fit on the PIONIER
visibilities is given by the minimum reduced �2 value (Figs. 5
and 6), but this is not a perfect indicator as we typically have
many more data points in the first lobe of the visibility function
than in the upper lobes. This results in a high weight in the �2,
which does not fully reflect the quality of the LD parameter fit, as
the higher order lobes of the visibility function are the lobes that
constrain these parameters (u,↵, a, b, ...). We therefore discuss
here the properties of the residuals shown in Figs. 5 and 6.

As expected, the uniform disk model is excluded as it largely
overestimates the contrast of the second and higher order lobes
of the visibility functions.

The single-parameter linear, power law and scaled solar
LD models show very similar residuals. The quality of the fit is
very good for the three types of models for ↵Cen A, with essen-
tially symmetric residuals around zero for the second and third
lobes of the visibility function. For ↵Cen B the linear limb dark-
ening model (fitting u as a variable) results in a slightly lower �2

value than the power law and scaled solar models. But we sample
only the first and second lobes of the visibility function for this
star, and we are therefore insensitive to higher order deviations
between the LD model and the observed profile. In other words,
our limited angular resolution of the stellar disk of ↵Cen B does
not allow us to discriminate between the detailed shape of the in-
tensity profile of these three models. The LD angular diameters
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Fig. 9. Comparison of the best-fit power law intensity profiles of
↵Cen A and B (red curves) with the observed solar profile in the H band
(orange curves) measured by Pierce et al. (1977). The horizontal scale
is the same for both diagrams to show the di↵erence in size of the two
stars.

4.2. Linear radii of ↵Cen A and B

The recently determined parallax of the ↵Cen system by
Kervella et al. (2016) of ⇡ = 747.17±0.61 mas allows us to con-
vert the measured LD angular diameters (using the power law
LD) into linear radii. We adopt the IAU convention (Prša et al.
2016) for the nominal solar radius (RN

� = 695 700 km), leading
to the following conversion relation between the linear radius
and the angular diameter:

R[R�] = 9.3009345
✓[mas]

2
d[pc]. (10)

We obtain for ↵Cen A (±�stat ± �syst),

RA = 1.2234 ± 0.0013 ± 0.0051 R� (11)

and for ↵Cen B,

RB = 0.8632 ± 0.0009 ± 0.0036 R�. (12)

The error bars are dominated by the systematic uncertainty on
the e↵ective wavelength of PIONIER. Kervella et al. (2003) de-
termined RA = 1.224 ± 0.003 R�, RB = 0.863 ± 0.005 R�
(Bigot et al. 2006, found RB = 0.863 ± 0.003 R�) from

VLTI/VINCI measurements in the near-infrared K band (� =
2.2 µm), assuming the same parallax as in the present work.
These values are remarkably identical to the present measure-
ments (o↵sets of +0.10� and �0.04�, respectively), indirectly
confirming the quality of our wavelength calibration (Sect. 2.2).

The ratio of the radii of ↵Cen A and B is an interesting dif-
ferential quantity as it is insensitive to the wavelength calibration
of the instrument and the parallax,
RA

RB
= 1.4172 ± 0.0016. (13)

The accuracy of this ratio (0.11%) is limited by the statistical
uncertainties that are very small in our case. This ratio is in per-
fect agreement with the measurement by Kervella et al. (2003)
(RA/RB = 1.418 ± 0.009) and within 1.2� of the prediction
RA/RB = 1.435 ± 0.014 by Thévenin et al. (2002). This quan-
tity is well suited to constrain the models of the ↵Cen pair, as
both stars have the same age and the same initial composition.
Therefore, their evolution can easily be traced in parallel using
numerical models, where the only di↵erence in the input param-
eters are their initial masses.

4.3. Luminosities and effective temperatures

We derive the e↵ective temperatures of ↵Cen A and B consid-
ering the bolometric flux values determined by Boyajian et al.
(2013) and adopted by Heiter et al. (2015): Fbol[A] = (27.16 ±
0.27) ⇥ 10�9 W m�2 and Fbol[B] = (8.98 ± 0.12) ⇥ 10�9 W m�2.
The parallax ⇡ = 747.17 ± 0.61 mas is taken from Kervella et al.
(2016) giving luminosities of

LA = 1.521 ± 0.015 L� (14)
LB = 0.503 ± 0.007 L�. (15)

These values assume a nominal solar luminosity LN
� = 3.828 ⇥

1026 W. A straight application of the Stefan-Boltzmann law gives
e↵ective temperatures of

Te↵[A] = 5795 ± 19 K (16)
Te↵[B] = 5231 ± 21 K (17)

in perfect agreement with Heiter et al. (2015).

5. Conclusions

We presented new high-accuracy interferometric measurements
of the angular diameters and limb darkening parameters of
↵Centauri A and B in the infrared H band. The accuracy on the
angular diameters (0.4%) is presently limited by the wavelength
calibration of the PIONIER instrument, but it will be signifi-
cantly improved when the parallax of the dimensional calibra-
tor HD 123999 will be available from Gaia (Gaia Collaboration
2016). The VLTI/GRAVITY beam combiner (Eisenhauer et al.
2011) will also soon overcome this limitation in the infrared K

band (� = 2.2 µm) thanks to its highly accurate laser-referenced
wavelength calibration (� < 0.1%).

We observe a significant discrepancy of the measured linear
LD parameters u with respect to model predictions from the lit-
erature, which systematically overestimate the limb darkening
of ↵Cen A and B. Setting the value of u from existing tabulated
model atmospheres results in an overestimation of the LD angu-
lar diameter by 0.5% compared to the more realistic power law
profile. Over the complete sample of LD angular diameter val-
ues listed in Table 3 for ↵Cen A and B (considering all para-
metric models), we observe an amplitude of 1% between the
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Fig. 3. Adjustment of a power law limb darkened disk model to the PIONIER squared visibilities of ↵Cen A (solid gray curve). The dashed gray
curve represents the best-fit uniform disk model. The bottom panels show the residuals of the fit in number of times the statistical error bar. The
coverage of the (u, v) plane is shown in the upper right corner.

Fig. 4. Power law limb darkened disk model fit and residuals for ↵Cen B (same caption as Fig. 3).

of both ↵Cen A and B are very close for the power law and
scaled solar LD models, with a maximum di↵erence between
them of less than 0.1%. This agreement is expected as the LD
angular diameter is essentially constrained by the position in spa-
tial frequency of the minima of the visibility function, which are
only mildly a↵ected by the exact shape of intensity profile.

The two-parameter quadratic and square root models pro-
vide a very good fit to the observed visibility distributions
for ↵Cen A. These models cannot be adjusted to star B be-
cause the angular resolution is too limited. The fit residuals are

indistinguishable from each other and from the single parameter
models (linear and power law). We conclude that the additional
parameter of the quadratic and square root models does not pro-
vide a significant advantage compared to single-parameter mod-
els, at the level of angular resolution we achieved on ↵Cen A.

The four-parameter models with fixed coe�cients taken
from Claret & Bloemen (2011) overestimate the LD of both
stars A and B and therefore also overestimate their angular diam-
eters. We cannot fit the four model parameters ai simultaneously
as this would require that we resolve the stars up to at least the
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Fixed parameters Fitted parameters Calculated parameters
HD AV [Fe/H] log(g) Te↵ ✓SED Fbol Fbol

[cm · s2] [K] [mas] (AV = 0)
3651 0.060 0.1 4.4 ± 0.17 5297 ± 27 0.715 ± 0.014 13.409 ± 0.236 13.163 ± 0.169
9826 0.185 0.1 4.2 ± 0.14 6494 ± 39 1.073 ± 0.016 68.200 ± 2.310 58.448 ± 0.493
19994 0.090 0.2 4.2 ± 0.14 6039 ± 26 0.767 ± 0.011 25.798 ± 0.654 24.980 ± 0.291
75732 0.0075 0.3 4.4 ± 0.12 5219 ± 26 0.709 ± 0.012 12.435 ± 0.168 12.399 ± 0.168
167042 0.103 -0.1 3.2 ± 0.10 4774 ± 33 0.958 ± 0.028 15.886 ± 0.551 12.927 ± 0.429
170693 0.052 -0.5 2.1 ± 0.54 4460 ± 24 1.933 ± 0.023 49.180 ± 0.600 49.723 ± 0.102
173416 0.047 -0.2 2.5 ± 0.10 4735 ± 23 0.917 ± 0.013 13.179 ± 0.265 13.733 ± 0.148
185395 0.328 0.0 4.3 ± 0.15 7181 ± 28 0.775 ± 0.010 49.400 ± 0.460 40.372 ± 0.403
190360 0.044 0.2 4.3 ± 0.09 5577 ± 26 0.669 ± 0.011 14.405 ± 0.195 13.987 ± 0.213
217014 0.078 0.2 4.3 ± 0.11 5804 ± 27 0.689 ± 0.011 17.965 ± 0.238 16.939 ± 0.241
221345 0.046 -0.3 2.4 ± 0.29 4692 ± 25 1.359 ± 0.023 27.983 ± 0.447 27.055 ± 0.418
1367 0.588 0.0 3.0 ± 0.10 5488 ± 23 0.725 ± 0.009 15.959 ± 0.432 9.750 ± 0.060
1671 0.473 -0.1 3.7 ± 0.10 7047 ± 27 0.619 ± 0.007 31.473 ± 0.259 21.401 ± 0.185
154633 0.046 -0.1 3.0 ± 0.10 4934 ± 24 0.788 ± 0.010 12.243 ± 0.211 11.937 ± 0.087
161178 0.408 -0.2 2.4 ± 0.25 5158 ± 26 0.885 ± 0.018 19.799 ± 0.343 15.748 ± 0.078
168151 0.129 -0.3 4.1 ± 0.50 6563 ± 38 0.679 ± 0.016 28.519 ± 0.674 25.442 ± 0.625
209369 0.116 -0.2 3.8 ± 0.10 6447 ± 41 0.682 ± 0.017 26.737 ± 0.686 24.166 ± 0.560
218560 0.059 0 1.5 ± 0.10 4631 ± 24 0.929 ± 0.014 13.375 ± 0.138 12.800 ± 0.134

Table 4: Fixed input parameters to determine the bolometric flux. Fbol is expressed in 108 erg · s�1· cm�2, and the error adopted in
the rest of the study on [Fe/H] is 0.1 dex. We adopt a minimum of 0.1 dex for the error in log(g) (see Sect. 3.1).

HD ✓UD ± �✓UD µ� ✓LD ± �✓LD(%) �2
red

3651 0.687 ± 0.007 0.537 0.722 ± 0.007 (0.97) 0.97
9826 1.119 ± 0.026 0.425 1.161 ± 0.027 (2.34) 6.95
19994 0.731 ± 0.010 0.448 0.761 ± 0.011 (1.41) 0.67
75732 0.687 ± 0.011 0.561 0.724 ± 0.012 (1.64) 0.36
167042 0.998 ± 0.013 0.616 1.056 ± 0.014 (1.28) 0.30
170693 1.965 ± 0.009 0.634 2.097 ± 0.009 (0.41) 0.20
173416 0.937 ± 0.033 0.608 0.995 ± 0.034 (3.45) 0.59
185395 0.726 ± 0.007 0.355 0.749 ± 0.008 (1.01) 8.47
190360 0.596 ± 0.006 0.480 0.622 ± 0.007 (1.08) 1.00
217014 0.624 ± 0.013 0.458 0.650 ± 0.014 (2.14) 2.27
221345 1.404 ± 0.029 0.614 1.489 ± 0.032 (2.16) 2.73
1367 0.719 ± 0.013 0.505 0.754 ± 0.014 (1.84) 0.44
1671 0.582 ± 0.006 0.359 0.600 ± 0.006 (0.92) 0.42
154633 0.763 ± 0.011 0.569 0.804 ± 0.012 (1.44) 0.33
161178 0.897 ± 0.040 0.545 0.944 ± 0.043 (4.50) 1.89
168151 0.642 ± 0.014 0.386 0.664 ± 0.015 (2.20) 0.61
209369 0.601 ± 0.017 0.380 0.621 ± 0.018 (2.85) 1.72
218560 0.875 ± 0.020 0.600 0.927 ± 0.022 (2.38) 0.64

Table 5: Angular diameters of our targets (in mas). Errors in %
are given in parenthesis (see Sect. 3.2).

in [Fe/H]. Since we observed around 720 nm, we had to consider
both R and I filters (in the Johnson-Cousin system).

We first computed linear interpolations over the coe�cients
corresponding to [Fe/H] and log(g) surrounding the stellar pa-
rameters for each filter R and I and each temperature surround-
ing the initial photometric temperature (determined from Fbol)
by ±250 K. (We took the closest values to our stars available
on the tables.) Then, we averaged the resulting LD coe�cients
on the filters to have one coe�cient per temperature. Finally, we
computed linear interpolations until the derived ✓LD calculated
with the LD coe�cient converge with the values of Te↵,? and
Fbol. The final interferometric parameters are given in Table 5.
We used the final LD coe�cient to estimate the final ✓LD using
the LITpro software. Then, the final Te↵,? is directly derived
from the LD diameter and Fbol :

Te↵,? =

0
BBBB@

4 ⇥ Fbol

�SB✓2LD

1
CCCCA

0.25

, (4)

where �SB is the Stefan-Boltzmann constant.
The stellar radius is obtained by combining the LD diame-

ter and the distance d (from Hipparcos parallaxes, van Leeuwen
2007) :

R?[R�] =
✓LD[mas] ⇥ d[pc]

9.305
. (5)

To determine the errors on Te↵,? and R?, we consider that the
parameters on the righthand side of each equation are indepen-
dent random variables with Gaussian probability density func-
tions. For any quantity X, the uncertainty on its estimate is noted
�X , and the relative uncertainty �X/X is noted �̃X . Then, the
standard deviation of each parameter that we want to estimate
is given analytically to first order by a classical propagation of
errors, following the formula :

�̃T e↵,? =

q
((1/2) ⇥ �̃✓LD)2 + ((1/4) ⇥ �̃F bol)2

�̃R? =
q
�̃✓2LD + �̃

2
d ,

(6)

where �✓LD, �Fbol, and �d are the errors on the LD diameter,
bolometrix flux, and distance, respectively. Then, we calculate
the stellar luminosity L? by combining the bolometric flux and
the distance :

L? = 4⇡d2Fbol , (7)

and its error
�̃L? =

q
(2 ⇥ �̃d)2 + �̃F

2
bol . (8)

Finally, we calculate the gravitational mass Mgrav,? using log(g)
and R?

Mgrav,? =
R2
? ⇥ 10log(g)

G
(9)

and its error

�̃Mgrav,? =

r
(2 ⇥ �̃R?)2 +

⇣
�log(g) ⇥ ln(10)

⌘2
. (10)

The parameters and their errors are shown in Table 6.

5
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θLD=0.724 ± 0.012 mas 

Interferometric angular diameter Gaia distance

INTERFEROMETRY: Measure of the radius

𝛉

D

𝛉 × D = R★
Ligi+ 2016

22



Ligi et al.: Radii, masses, and ages of 18 bright stars using interferometry

Fixed parameters Fitted parameters Calculated parameters
HD AV [Fe/H] log(g) Te↵ ✓SED Fbol Fbol

[cm · s2] [K] [mas] (AV = 0)
3651 0.060 0.1 4.4 ± 0.17 5297 ± 27 0.715 ± 0.014 13.409 ± 0.236 13.163 ± 0.169
9826 0.185 0.1 4.2 ± 0.14 6494 ± 39 1.073 ± 0.016 68.200 ± 2.310 58.448 ± 0.493
19994 0.090 0.2 4.2 ± 0.14 6039 ± 26 0.767 ± 0.011 25.798 ± 0.654 24.980 ± 0.291
75732 0.0075 0.3 4.4 ± 0.12 5219 ± 26 0.709 ± 0.012 12.435 ± 0.168 12.399 ± 0.168
167042 0.103 -0.1 3.2 ± 0.10 4774 ± 33 0.958 ± 0.028 15.886 ± 0.551 12.927 ± 0.429
170693 0.052 -0.5 2.1 ± 0.54 4460 ± 24 1.933 ± 0.023 49.180 ± 0.600 49.723 ± 0.102
173416 0.047 -0.2 2.5 ± 0.10 4735 ± 23 0.917 ± 0.013 13.179 ± 0.265 13.733 ± 0.148
185395 0.328 0.0 4.3 ± 0.15 7181 ± 28 0.775 ± 0.010 49.400 ± 0.460 40.372 ± 0.403
190360 0.044 0.2 4.3 ± 0.09 5577 ± 26 0.669 ± 0.011 14.405 ± 0.195 13.987 ± 0.213
217014 0.078 0.2 4.3 ± 0.11 5804 ± 27 0.689 ± 0.011 17.965 ± 0.238 16.939 ± 0.241
221345 0.046 -0.3 2.4 ± 0.29 4692 ± 25 1.359 ± 0.023 27.983 ± 0.447 27.055 ± 0.418
1367 0.588 0.0 3.0 ± 0.10 5488 ± 23 0.725 ± 0.009 15.959 ± 0.432 9.750 ± 0.060
1671 0.473 -0.1 3.7 ± 0.10 7047 ± 27 0.619 ± 0.007 31.473 ± 0.259 21.401 ± 0.185
154633 0.046 -0.1 3.0 ± 0.10 4934 ± 24 0.788 ± 0.010 12.243 ± 0.211 11.937 ± 0.087
161178 0.408 -0.2 2.4 ± 0.25 5158 ± 26 0.885 ± 0.018 19.799 ± 0.343 15.748 ± 0.078
168151 0.129 -0.3 4.1 ± 0.50 6563 ± 38 0.679 ± 0.016 28.519 ± 0.674 25.442 ± 0.625
209369 0.116 -0.2 3.8 ± 0.10 6447 ± 41 0.682 ± 0.017 26.737 ± 0.686 24.166 ± 0.560
218560 0.059 0 1.5 ± 0.10 4631 ± 24 0.929 ± 0.014 13.375 ± 0.138 12.800 ± 0.134

Table 4: Fixed input parameters to determine the bolometric flux. Fbol is expressed in 108 erg · s�1· cm�2, and the error adopted in
the rest of the study on [Fe/H] is 0.1 dex. We adopt a minimum of 0.1 dex for the error in log(g) (see Sect. 3.1).

HD ✓UD ± �✓UD µ� ✓LD ± �✓LD(%) �2
red

3651 0.687 ± 0.007 0.537 0.722 ± 0.007 (0.97) 0.97
9826 1.119 ± 0.026 0.425 1.161 ± 0.027 (2.34) 6.95
19994 0.731 ± 0.010 0.448 0.761 ± 0.011 (1.41) 0.67
75732 0.687 ± 0.011 0.561 0.724 ± 0.012 (1.64) 0.36
167042 0.998 ± 0.013 0.616 1.056 ± 0.014 (1.28) 0.30
170693 1.965 ± 0.009 0.634 2.097 ± 0.009 (0.41) 0.20
173416 0.937 ± 0.033 0.608 0.995 ± 0.034 (3.45) 0.59
185395 0.726 ± 0.007 0.355 0.749 ± 0.008 (1.01) 8.47
190360 0.596 ± 0.006 0.480 0.622 ± 0.007 (1.08) 1.00
217014 0.624 ± 0.013 0.458 0.650 ± 0.014 (2.14) 2.27
221345 1.404 ± 0.029 0.614 1.489 ± 0.032 (2.16) 2.73
1367 0.719 ± 0.013 0.505 0.754 ± 0.014 (1.84) 0.44
1671 0.582 ± 0.006 0.359 0.600 ± 0.006 (0.92) 0.42
154633 0.763 ± 0.011 0.569 0.804 ± 0.012 (1.44) 0.33
161178 0.897 ± 0.040 0.545 0.944 ± 0.043 (4.50) 1.89
168151 0.642 ± 0.014 0.386 0.664 ± 0.015 (2.20) 0.61
209369 0.601 ± 0.017 0.380 0.621 ± 0.018 (2.85) 1.72
218560 0.875 ± 0.020 0.600 0.927 ± 0.022 (2.38) 0.64

Table 5: Angular diameters of our targets (in mas). Errors in %
are given in parenthesis (see Sect. 3.2).

in [Fe/H]. Since we observed around 720 nm, we had to consider
both R and I filters (in the Johnson-Cousin system).

We first computed linear interpolations over the coe�cients
corresponding to [Fe/H] and log(g) surrounding the stellar pa-
rameters for each filter R and I and each temperature surround-
ing the initial photometric temperature (determined from Fbol)
by ±250 K. (We took the closest values to our stars available
on the tables.) Then, we averaged the resulting LD coe�cients
on the filters to have one coe�cient per temperature. Finally, we
computed linear interpolations until the derived ✓LD calculated
with the LD coe�cient converge with the values of Te↵,? and
Fbol. The final interferometric parameters are given in Table 5.
We used the final LD coe�cient to estimate the final ✓LD using
the LITpro software. Then, the final Te↵,? is directly derived
from the LD diameter and Fbol :

Te↵,? =

0
BBBB@

4 ⇥ Fbol

�SB✓2LD

1
CCCCA

0.25

, (4)

where �SB is the Stefan-Boltzmann constant.
The stellar radius is obtained by combining the LD diame-

ter and the distance d (from Hipparcos parallaxes, van Leeuwen
2007) :

R?[R�] =
✓LD[mas] ⇥ d[pc]

9.305
. (5)

To determine the errors on Te↵,? and R?, we consider that the
parameters on the righthand side of each equation are indepen-
dent random variables with Gaussian probability density func-
tions. For any quantity X, the uncertainty on its estimate is noted
�X , and the relative uncertainty �X/X is noted �̃X . Then, the
standard deviation of each parameter that we want to estimate
is given analytically to first order by a classical propagation of
errors, following the formula :

�̃T e↵,? =

q
((1/2) ⇥ �̃✓LD)2 + ((1/4) ⇥ �̃F bol)2

�̃R? =
q
�̃✓2LD + �̃

2
d ,

(6)

where �✓LD, �Fbol, and �d are the errors on the LD diameter,
bolometrix flux, and distance, respectively. Then, we calculate
the stellar luminosity L? by combining the bolometric flux and
the distance :

L? = 4⇡d2Fbol , (7)

and its error
�̃L? =

q
(2 ⇥ �̃d)2 + �̃F

2
bol . (8)

Finally, we calculate the gravitational mass Mgrav,? using log(g)
and R?

Mgrav,? =
R2
? ⇥ 10log(g)

G
(9)

and its error

�̃Mgrav,? =

r
(2 ⇥ �̃R?)2 +

⇣
�log(g) ⇥ ln(10)

⌘2
. (10)

The parameters and their errors are shown in Table 6.
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Ligi et al.: Radii, masses, and ages of 18 bright stars using interferometry

Fixed parameters Fitted parameters Calculated parameters
HD AV [Fe/H] log(g) Te↵ ✓SED Fbol Fbol

[cm · s2] [K] [mas] (AV = 0)
3651 0.060 0.1 4.4 ± 0.17 5297 ± 27 0.715 ± 0.014 13.409 ± 0.236 13.163 ± 0.169
9826 0.185 0.1 4.2 ± 0.14 6494 ± 39 1.073 ± 0.016 68.200 ± 2.310 58.448 ± 0.493
19994 0.090 0.2 4.2 ± 0.14 6039 ± 26 0.767 ± 0.011 25.798 ± 0.654 24.980 ± 0.291
75732 0.0075 0.3 4.4 ± 0.12 5219 ± 26 0.709 ± 0.012 12.435 ± 0.168 12.399 ± 0.168
167042 0.103 -0.1 3.2 ± 0.10 4774 ± 33 0.958 ± 0.028 15.886 ± 0.551 12.927 ± 0.429
170693 0.052 -0.5 2.1 ± 0.54 4460 ± 24 1.933 ± 0.023 49.180 ± 0.600 49.723 ± 0.102
173416 0.047 -0.2 2.5 ± 0.10 4735 ± 23 0.917 ± 0.013 13.179 ± 0.265 13.733 ± 0.148
185395 0.328 0.0 4.3 ± 0.15 7181 ± 28 0.775 ± 0.010 49.400 ± 0.460 40.372 ± 0.403
190360 0.044 0.2 4.3 ± 0.09 5577 ± 26 0.669 ± 0.011 14.405 ± 0.195 13.987 ± 0.213
217014 0.078 0.2 4.3 ± 0.11 5804 ± 27 0.689 ± 0.011 17.965 ± 0.238 16.939 ± 0.241
221345 0.046 -0.3 2.4 ± 0.29 4692 ± 25 1.359 ± 0.023 27.983 ± 0.447 27.055 ± 0.418
1367 0.588 0.0 3.0 ± 0.10 5488 ± 23 0.725 ± 0.009 15.959 ± 0.432 9.750 ± 0.060
1671 0.473 -0.1 3.7 ± 0.10 7047 ± 27 0.619 ± 0.007 31.473 ± 0.259 21.401 ± 0.185
154633 0.046 -0.1 3.0 ± 0.10 4934 ± 24 0.788 ± 0.010 12.243 ± 0.211 11.937 ± 0.087
161178 0.408 -0.2 2.4 ± 0.25 5158 ± 26 0.885 ± 0.018 19.799 ± 0.343 15.748 ± 0.078
168151 0.129 -0.3 4.1 ± 0.50 6563 ± 38 0.679 ± 0.016 28.519 ± 0.674 25.442 ± 0.625
209369 0.116 -0.2 3.8 ± 0.10 6447 ± 41 0.682 ± 0.017 26.737 ± 0.686 24.166 ± 0.560
218560 0.059 0 1.5 ± 0.10 4631 ± 24 0.929 ± 0.014 13.375 ± 0.138 12.800 ± 0.134

Table 4: Fixed input parameters to determine the bolometric flux. Fbol is expressed in 108 erg · s�1· cm�2, and the error adopted in
the rest of the study on [Fe/H] is 0.1 dex. We adopt a minimum of 0.1 dex for the error in log(g) (see Sect. 3.1).

HD ✓UD ± �✓UD µ� ✓LD ± �✓LD(%) �2
red

3651 0.687 ± 0.007 0.537 0.722 ± 0.007 (0.97) 0.97
9826 1.119 ± 0.026 0.425 1.161 ± 0.027 (2.34) 6.95
19994 0.731 ± 0.010 0.448 0.761 ± 0.011 (1.41) 0.67
75732 0.687 ± 0.011 0.561 0.724 ± 0.012 (1.64) 0.36
167042 0.998 ± 0.013 0.616 1.056 ± 0.014 (1.28) 0.30
170693 1.965 ± 0.009 0.634 2.097 ± 0.009 (0.41) 0.20
173416 0.937 ± 0.033 0.608 0.995 ± 0.034 (3.45) 0.59
185395 0.726 ± 0.007 0.355 0.749 ± 0.008 (1.01) 8.47
190360 0.596 ± 0.006 0.480 0.622 ± 0.007 (1.08) 1.00
217014 0.624 ± 0.013 0.458 0.650 ± 0.014 (2.14) 2.27
221345 1.404 ± 0.029 0.614 1.489 ± 0.032 (2.16) 2.73
1367 0.719 ± 0.013 0.505 0.754 ± 0.014 (1.84) 0.44
1671 0.582 ± 0.006 0.359 0.600 ± 0.006 (0.92) 0.42
154633 0.763 ± 0.011 0.569 0.804 ± 0.012 (1.44) 0.33
161178 0.897 ± 0.040 0.545 0.944 ± 0.043 (4.50) 1.89
168151 0.642 ± 0.014 0.386 0.664 ± 0.015 (2.20) 0.61
209369 0.601 ± 0.017 0.380 0.621 ± 0.018 (2.85) 1.72
218560 0.875 ± 0.020 0.600 0.927 ± 0.022 (2.38) 0.64

Table 5: Angular diameters of our targets (in mas). Errors in %
are given in parenthesis (see Sect. 3.2).

in [Fe/H]. Since we observed around 720 nm, we had to consider
both R and I filters (in the Johnson-Cousin system).

We first computed linear interpolations over the coe�cients
corresponding to [Fe/H] and log(g) surrounding the stellar pa-
rameters for each filter R and I and each temperature surround-
ing the initial photometric temperature (determined from Fbol)
by ±250 K. (We took the closest values to our stars available
on the tables.) Then, we averaged the resulting LD coe�cients
on the filters to have one coe�cient per temperature. Finally, we
computed linear interpolations until the derived ✓LD calculated
with the LD coe�cient converge with the values of Te↵,? and
Fbol. The final interferometric parameters are given in Table 5.
We used the final LD coe�cient to estimate the final ✓LD using
the LITpro software. Then, the final Te↵,? is directly derived
from the LD diameter and Fbol :

Te↵,? =

0
BBBB@

4 ⇥ Fbol

�SB✓2LD

1
CCCCA

0.25

, (4)

where �SB is the Stefan-Boltzmann constant.
The stellar radius is obtained by combining the LD diame-

ter and the distance d (from Hipparcos parallaxes, van Leeuwen
2007) :

R?[R�] =
✓LD[mas] ⇥ d[pc]

9.305
. (5)

To determine the errors on Te↵,? and R?, we consider that the
parameters on the righthand side of each equation are indepen-
dent random variables with Gaussian probability density func-
tions. For any quantity X, the uncertainty on its estimate is noted
�X , and the relative uncertainty �X/X is noted �̃X . Then, the
standard deviation of each parameter that we want to estimate
is given analytically to first order by a classical propagation of
errors, following the formula :

�̃T e↵,? =

q
((1/2) ⇥ �̃✓LD)2 + ((1/4) ⇥ �̃F bol)2

�̃R? =
q
�̃✓2LD + �̃

2
d ,

(6)

where �✓LD, �Fbol, and �d are the errors on the LD diameter,
bolometrix flux, and distance, respectively. Then, we calculate
the stellar luminosity L? by combining the bolometric flux and
the distance :

L? = 4⇡d2Fbol , (7)

and its error
�̃L? =

q
(2 ⇥ �̃d)2 + �̃F

2
bol . (8)

Finally, we calculate the gravitational mass Mgrav,? using log(g)
and R?

Mgrav,? =
R2
? ⇥ 10log(g)

G
(9)

and its error

�̃Mgrav,? =

r
(2 ⇥ �̃R?)2 +

⇣
�log(g) ⇥ ln(10)

⌘2
. (10)

The parameters and their errors are shown in Table 6.
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INTERFEROMETRY: Density and mass

P/T3 = (π2G/3) ρ★
stellar parameters. In Section 2, we describe our host star target
selection and detail our data analysis, including data processing,
detrending, and Markov chain Monte Carlo (MCMC) approach to
fitting the transit model. In Section 3, we present the results of this
analysis, including the full posterior distributions of the stellar
density and LDCs. We specifically discuss the types of planet–star
systems for which this method succeeds in producing high-
precision constraints on stellar density in Section 3.3.1. We
conclude and highlight this approach’s potential to aid in the
characterization of singly transiting planets discovered by the
upcoming NASA TESS mission in Section 4.

2. Methods

2.1. How to Measure
*
S from a Transit Light Curve

Seager & Mallén-Ornelas (2003) demonstrated that the mean
stellar density ρ* can be measured from a transit light curve
without any direct measurement of the stellar mass M* or
radius R* as a result of Kepler’s third law. Figure 1 offers some
intuition about this procedure in the case of a circular orbit, and
we sketch the analytic derivation of the circular-orbit case here.

We begin with Kepler’s third law,

P a
G M M

a
GM4

, 1
p

2

2

3 3

* *Q
�

�
�

( )
( )

where the right-hand side assumes that M Mp *� . Dividing
and multiplying the right-hand side of this equation by the
stellar volume, R4

3
3
*Q , we obtain
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Therefore, to measure ρ*, we need only know the orbital
period P and normalized semimajor axis a R* of a planet
orbiting the star. (In particular, neither M* nor R* is necessary

to obtain ρ*.) Both P and a R* are directly measurable from
the transit light curve: P is the interval between successive
transits, and a R* can be derived from the transit duration.
In the case of a circular orbit, a R* follows trivially from the
transit duration and P (see Figure 1):

T
R
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2
2

. 4*
Q

�
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Rearrangement of this equation yields the normalized
semimajor axis a R*:

a
R

P
T

. 5
* Q
� ( )

However, in general, the eccentricity e of the transiting planet’s
orbit also influences the transit duration T. The exact solution for T
in the case of an eccentric orbit involves solving a quartic equation
in fcos , where f is the true anomaly (see Kipping 2008, 2010 for
details). However, Kipping (2010) found the following approx-
imate expression for T under the simplifying assumption that the
planet–star separation does not change during the transit:
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where ñc is the separation between the planet and star at mid-
transit in units of stellar radii.
Since e and ρ* both influence the transit duration T, it is

necessary to have a precise constraint on e in order to derive a
precise constraint on ρ* (Kipping 2010). For some planets,
such as planets with observed secondary eclipses, e is directly
measurable (e.g., Knutson et al. 2007a); for others, such as
planets on very short-period orbits that are expected to tidally
circularize quickly or planets in compact multi-planet systems,
dynamical stability constrains e to low values. For each of these
categories of planet—secondary-eclipse planets, tidally circu-
larized planets, and multi-planet systems—we may express the
existing eccentricity constraint as a Bayesian prior on e. In
Sections 2.2.1–2.2.3, we describe how we select a sample of
Kepler objects of interest (KOIs) belonging to each category
for transit modeling.
We note that, in principle, ρ* could also be measured from

the transits of planets with radial velocity–measured eccentri-
cities. However, analyzing such planets requires jointly fitting
the radial velocity curves, including accurate treatment of
stellar activity effects. This is beyond the scope of the present
study, and we defer the analysis of planets with radial velocity–
measured e to later work.
Assuming, then, that we have a strong e prior, all we must do

to measure ρ* from a transit is fit a transit model comprising 10
parameters: the transit epoch t0, the orbital period P, the impact
parameter b, the stellar density ρ*, the ratio of radii R Rp *, the
orbital eccentricity e, the argument of periastron ω, and three
coefficients of a modified nonlinear limb-darkening law
(transformed to allow for efficient sampling as described in
Kipping 2016): , ,r hB B and BR. In other words, we must explore
this 10-dimensional parameter space and find a region that
matches the Kepler transit data.
We use the transit-modeling code BATMAN (Kreidberg 2015)

to compute the light curve of a given set of 10 transit model

Figure 1. The transit duration T is equal to the stellar diameter divided by the
mean orbital velocity, which is equal to a P2Q in the case of a circular orbit.
Rearrangement of the equation in the lower panel yields the normalized
semimajor axis a R*. An analogous calculation is possible for planets on
eccentric orbits (for which orbital velocity varies with phase), provided the
eccentricity is known.
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stellar parameters. In Section 2, we describe our host star target
selection and detail our data analysis, including data processing,
detrending, and Markov chain Monte Carlo (MCMC) approach to
fitting the transit model. In Section 3, we present the results of this
analysis, including the full posterior distributions of the stellar
density and LDCs. We specifically discuss the types of planet–star
systems for which this method succeeds in producing high-
precision constraints on stellar density in Section 3.3.1. We
conclude and highlight this approach’s potential to aid in the
characterization of singly transiting planets discovered by the
upcoming NASA TESS mission in Section 4.

2. Methods

2.1. How to Measure
*
S from a Transit Light Curve

Seager & Mallén-Ornelas (2003) demonstrated that the mean
stellar density ρ* can be measured from a transit light curve
without any direct measurement of the stellar mass M* or
radius R* as a result of Kepler’s third law. Figure 1 offers some
intuition about this procedure in the case of a circular orbit, and
we sketch the analytic derivation of the circular-orbit case here.

We begin with Kepler’s third law,
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Therefore, to measure ρ*, we need only know the orbital
period P and normalized semimajor axis a R* of a planet
orbiting the star. (In particular, neither M* nor R* is necessary

to obtain ρ*.) Both P and a R* are directly measurable from
the transit light curve: P is the interval between successive
transits, and a R* can be derived from the transit duration.
In the case of a circular orbit, a R* follows trivially from the
transit duration and P (see Figure 1):
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However, in general, the eccentricity e of the transiting planet’s
orbit also influences the transit duration T. The exact solution for T
in the case of an eccentric orbit involves solving a quartic equation
in fcos , where f is the true anomaly (see Kipping 2008, 2010 for
details). However, Kipping (2010) found the following approx-
imate expression for T under the simplifying assumption that the
planet–star separation does not change during the transit:
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where ñc is the separation between the planet and star at mid-
transit in units of stellar radii.
Since e and ρ* both influence the transit duration T, it is

necessary to have a precise constraint on e in order to derive a
precise constraint on ρ* (Kipping 2010). For some planets,
such as planets with observed secondary eclipses, e is directly
measurable (e.g., Knutson et al. 2007a); for others, such as
planets on very short-period orbits that are expected to tidally
circularize quickly or planets in compact multi-planet systems,
dynamical stability constrains e to low values. For each of these
categories of planet—secondary-eclipse planets, tidally circu-
larized planets, and multi-planet systems—we may express the
existing eccentricity constraint as a Bayesian prior on e. In
Sections 2.2.1–2.2.3, we describe how we select a sample of
Kepler objects of interest (KOIs) belonging to each category
for transit modeling.
We note that, in principle, ρ* could also be measured from

the transits of planets with radial velocity–measured eccentri-
cities. However, analyzing such planets requires jointly fitting
the radial velocity curves, including accurate treatment of
stellar activity effects. This is beyond the scope of the present
study, and we defer the analysis of planets with radial velocity–
measured e to later work.
Assuming, then, that we have a strong e prior, all we must do

to measure ρ* from a transit is fit a transit model comprising 10
parameters: the transit epoch t0, the orbital period P, the impact
parameter b, the stellar density ρ*, the ratio of radii R Rp *, the
orbital eccentricity e, the argument of periastron ω, and three
coefficients of a modified nonlinear limb-darkening law
(transformed to allow for efficient sampling as described in
Kipping 2016): , ,r hB B and BR. In other words, we must explore
this 10-dimensional parameter space and find a region that
matches the Kepler transit data.
We use the transit-modeling code BATMAN (Kreidberg 2015)

to compute the light curve of a given set of 10 transit model

Figure 1. The transit duration T is equal to the stellar diameter divided by the
mean orbital velocity, which is equal to a P2Q in the case of a circular orbit.
Rearrangement of the equation in the lower panel yields the normalized
semimajor axis a R*. An analogous calculation is possible for planets on
eccentric orbits (for which orbital velocity varies with phase), provided the
eccentricity is known.
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3rd Kepler law

Measure of stellar density ρ★  
(Maxted et al. 2015, Seager & Mallén-Ornelas 2003)

Kepler’s third law, assuming a circular orbit, whereG is the universal gravitational constant andMp the planet mass,

P2 ¼ 4!2a3

GðM# þMpÞ
; ð4Þ

and the stellar mass-radius relation,

R# ¼ kMx
# ; ð5Þ

where k is a constant coefficient for each stellar sequence (main sequence, giants, etc.) and x describes the power law of the
sequence (e.g., x ’ 0:8 for F–Kmain-sequence stars; Cox 2000).

3.2. Analytical Solution

3.2.1. Four Parameters Derivable fromObservables

We ultimately wish to solve for the five unknown parameters M*, R*, a, i, and Rp from the five equations above. It is first
useful to note that four combinations of physical parameters can be found directly from the observables (DF, tT, tF, and P)
using only the first four equations in x 3.1 (the three transit geometry equations and Kepler’s third law with Mp5M#); this
avoids any uncertainty from the stellar mass-radius relation.

The four combinations of parameters are as follows: the planet-star radius ratio, which trivially follows from equation (1),

Rp

R#
¼

ffiffiffiffiffiffiffi
DF

p
; ð6Þ

the impact parameter b, defined as the projected distance between the planet and star centers during midtransit in units of R*
(see Fig. 1), and which can be derived directly from the transit shape equation (2), together with equation (6),

b & a

R#
cos i ¼

"
1'

ffiffiffiffiffiffiffi
DF

p #2 ' sin2 tF!=Pð Þ= sin2 tT!=Pð Þ
$ %"

1þ
ffiffiffiffiffiffiffi
DF

p #2

1' sin2 tF!=Pð Þ= sin2 tT!=Pð Þ
$ %

( )1=2

; ð7Þ

the ratio a/R*, which can be derived directly from the transit duration equation (3),

a

R#
¼

"
1þ

ffiffiffiffiffiffiffi
DF

p #2 ' b2 1' sin2 tT!=Pð Þ
$ %

sin2 tT!=Pð Þ

( )1=2

; ð8Þ

and the stellar density "*, which can be derived from the above equation for a/R* and Kepler’s third law with Mp5M# (eq.
[4]),

"# & M#
R3#

¼

 
4!2

P2G

! "
1þ

ffiffiffiffiffiffiffi
DF

p #2 ' b2 1' sin2 tT!=Pð Þ
$ %

sin2 tT!=Pð Þ

( )3=2

: ð9Þ

The parameters b and a/R* are dimensionless. The density can be written in units of "( by substituting 4!2=G ¼ 365:252=
2153 day2 M(=R3

(.
It is interesting to consider the geometrical and physical origin of these combinations of parameters. The impact parameter

b depends almost entirely on the transit shape (parameterized by tF/tT) and the ratio of planet and star sizes [ DFð Þ1=2]. To a
lesser extent b depends mildly on the period (see x 3.3.2). The term a/R* is the ratio of orbital semimajor axis to planet radius;
to first order it is related to the ratio of transit duration to total period. The term a/R* is also dependent on the impact parame-
ter b and planet-star size ratio because these parameters affect the transit duration. The stellar density, "*, comes fromKepler’s
third law and the transit duration tT; Kepler’s third law describes how much mass is enclosed inside the planet’s orbit, and the
stellar radius is described by the transit duration with a physical scale set by Kepler’s third law. Again, "* is also dependent on
the impact parameter b and the planet-star size ratio because these parameters affect the transit duration.

3.2.2. The Five Physical Parameters

The five physical parametersR*,M*, i, a, andRp can be derived from the above solution forRp/R*, b, a/R*, and "* by using
one additional equation: the stellar mass-radius relation (eq. [5]). To derive M*, consider equation (9) together with the
stellar mass-radius relation in the form "#="( & M#=M( R#=R(ð Þ'3¼ M#=M(ð Þ1'3x1=k3:

M#
M(

¼ k3
"#
"(

& '1= 1'3xð Þ
: ð10Þ

The stellar radius can be derived from the stellar mass by the stellar mass-radius relation, or from the density directly,

R#
R(

¼ k
M#
M(

& 'x

¼ k1=x
"#
"(

& 'x=ð1'3xÞ
; ð11Þ
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3. THE EQUATIONS AND SOLUTION FOR A LIGHT CURVE WITH TWO OR MORE TRANSITS

3.1. The General System of Equations

There are five equations that completely describe the planet transit light curve. The first three equations (eqs. [1]–[3])
describe the geometry of the transit in terms of transit depth, transit shape, and transit duration (see Fig. 1). For a planet
transit light curve that is due to two spheres passing in front of each other, the geometry is relatively straightforward (see
Sackett 1999 for a derivation of the transit duration eq. [3]). Here we parameterize the transit shape by both tT, the total transit
duration (first to fourth contact), and tF, the duration of the transit completely inside ingress and egress (second to third con-
tact). The three geometrical equations that describe the transit light curve depend on four observables: the period P, the transit
depth DF, tF, and tT. See Figure 1 for an illustrative definition of DF, tF, and tT. In addition to the three geometrical equations,
there are two physical equations (eqs. [4] and [5]), Kepler’s third law and the stellar mass-radius relation. It is these physical
equations that break the degeneracy of the mathematical description of two spheres passing in front of each other, by setting a
physical scale. It is this physical scale, together with the geometrical description, that allows the unique solution.

The equations are as follows: the transit depth, DF, with F defined as the total observed flux,

DF ! Fno transit " Ftransit

Fno transit
¼

Rp

R$

! "2

; ð1Þ

the transit shape, described by the ratio of the duration of the ‘‘ flat part ’’ of the transit (tF) to the total transit duration (tT),

sinðtF!=PÞ
sinðtT!=PÞ

¼
#
1" Rp=R$

$ %& '2" a=R$ð Þ cos i½ (2
(1=2

#
1þ Rp=R$

$ %& '2" a=R$ð Þ cos i½ (2
(1=2 ; ð2Þ

the total transit duration,

tT ¼ P

!
arcsin

R$
a

1þ Rp=R$
$ %& '2" a=R$ð Þ cos i½ (2

1" cos2 i

( )1=2
0

@

1

A ; ð3Þ

FΔ

*R

*

t 
t T

F

pR

2 3 41

421 3

bR = a cos i

Fig. 1.—Definition of transit light-curve observables. Two schematic light curves are shown on the bottom (solid and dotted lines), and the corresponding
geometry of the star and planet is shown on the top. Indicated on the solid light curve are the transit depth DF, the total transit duration tT, and the transit
duration between ingress and egress tF (i.e., the ‘‘ flat part ’’ of the transit light curve when the planet is fully superimposed on the parent star). First, second,
third, and fourth contacts are noted for a planet moving from left to right. Also defined areR*,Rp, and impact parameter b corresponding to orbital inclination
i. Different impact parameters b (or different i) will result in different transit shapes, as shown by the transits corresponding to the solid and dotted lines.
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P/T3 = (π2G/3) ρ★
stellar parameters. In Section 2, we describe our host star target
selection and detail our data analysis, including data processing,
detrending, and Markov chain Monte Carlo (MCMC) approach to
fitting the transit model. In Section 3, we present the results of this
analysis, including the full posterior distributions of the stellar
density and LDCs. We specifically discuss the types of planet–star
systems for which this method succeeds in producing high-
precision constraints on stellar density in Section 3.3.1. We
conclude and highlight this approach’s potential to aid in the
characterization of singly transiting planets discovered by the
upcoming NASA TESS mission in Section 4.

2. Methods

2.1. How to Measure
*
S from a Transit Light Curve

Seager & Mallén-Ornelas (2003) demonstrated that the mean
stellar density ρ* can be measured from a transit light curve
without any direct measurement of the stellar mass M* or
radius R* as a result of Kepler’s third law. Figure 1 offers some
intuition about this procedure in the case of a circular orbit, and
we sketch the analytic derivation of the circular-orbit case here.

We begin with Kepler’s third law,
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Therefore, to measure ρ*, we need only know the orbital
period P and normalized semimajor axis a R* of a planet
orbiting the star. (In particular, neither M* nor R* is necessary

to obtain ρ*.) Both P and a R* are directly measurable from
the transit light curve: P is the interval between successive
transits, and a R* can be derived from the transit duration.
In the case of a circular orbit, a R* follows trivially from the
transit duration and P (see Figure 1):
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However, in general, the eccentricity e of the transiting planet’s
orbit also influences the transit duration T. The exact solution for T
in the case of an eccentric orbit involves solving a quartic equation
in fcos , where f is the true anomaly (see Kipping 2008, 2010 for
details). However, Kipping (2010) found the following approx-
imate expression for T under the simplifying assumption that the
planet–star separation does not change during the transit:
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where ñc is the separation between the planet and star at mid-
transit in units of stellar radii.
Since e and ρ* both influence the transit duration T, it is

necessary to have a precise constraint on e in order to derive a
precise constraint on ρ* (Kipping 2010). For some planets,
such as planets with observed secondary eclipses, e is directly
measurable (e.g., Knutson et al. 2007a); for others, such as
planets on very short-period orbits that are expected to tidally
circularize quickly or planets in compact multi-planet systems,
dynamical stability constrains e to low values. For each of these
categories of planet—secondary-eclipse planets, tidally circu-
larized planets, and multi-planet systems—we may express the
existing eccentricity constraint as a Bayesian prior on e. In
Sections 2.2.1–2.2.3, we describe how we select a sample of
Kepler objects of interest (KOIs) belonging to each category
for transit modeling.
We note that, in principle, ρ* could also be measured from

the transits of planets with radial velocity–measured eccentri-
cities. However, analyzing such planets requires jointly fitting
the radial velocity curves, including accurate treatment of
stellar activity effects. This is beyond the scope of the present
study, and we defer the analysis of planets with radial velocity–
measured e to later work.
Assuming, then, that we have a strong e prior, all we must do

to measure ρ* from a transit is fit a transit model comprising 10
parameters: the transit epoch t0, the orbital period P, the impact
parameter b, the stellar density ρ*, the ratio of radii R Rp *, the
orbital eccentricity e, the argument of periastron ω, and three
coefficients of a modified nonlinear limb-darkening law
(transformed to allow for efficient sampling as described in
Kipping 2016): , ,r hB B and BR. In other words, we must explore
this 10-dimensional parameter space and find a region that
matches the Kepler transit data.
We use the transit-modeling code BATMAN (Kreidberg 2015)

to compute the light curve of a given set of 10 transit model

Figure 1. The transit duration T is equal to the stellar diameter divided by the
mean orbital velocity, which is equal to a P2Q in the case of a circular orbit.
Rearrangement of the equation in the lower panel yields the normalized
semimajor axis a R*. An analogous calculation is possible for planets on
eccentric orbits (for which orbital velocity varies with phase), provided the
eccentricity is known.
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stellar parameters. In Section 2, we describe our host star target
selection and detail our data analysis, including data processing,
detrending, and Markov chain Monte Carlo (MCMC) approach to
fitting the transit model. In Section 3, we present the results of this
analysis, including the full posterior distributions of the stellar
density and LDCs. We specifically discuss the types of planet–star
systems for which this method succeeds in producing high-
precision constraints on stellar density in Section 3.3.1. We
conclude and highlight this approach’s potential to aid in the
characterization of singly transiting planets discovered by the
upcoming NASA TESS mission in Section 4.
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without any direct measurement of the stellar mass M* or
radius R* as a result of Kepler’s third law. Figure 1 offers some
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we sketch the analytic derivation of the circular-orbit case here.
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Therefore, to measure ρ*, we need only know the orbital
period P and normalized semimajor axis a R* of a planet
orbiting the star. (In particular, neither M* nor R* is necessary

to obtain ρ*.) Both P and a R* are directly measurable from
the transit light curve: P is the interval between successive
transits, and a R* can be derived from the transit duration.
In the case of a circular orbit, a R* follows trivially from the
transit duration and P (see Figure 1):
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However, in general, the eccentricity e of the transiting planet’s
orbit also influences the transit duration T. The exact solution for T
in the case of an eccentric orbit involves solving a quartic equation
in fcos , where f is the true anomaly (see Kipping 2008, 2010 for
details). However, Kipping (2010) found the following approx-
imate expression for T under the simplifying assumption that the
planet–star separation does not change during the transit:
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where ñc is the separation between the planet and star at mid-
transit in units of stellar radii.
Since e and ρ* both influence the transit duration T, it is

necessary to have a precise constraint on e in order to derive a
precise constraint on ρ* (Kipping 2010). For some planets,
such as planets with observed secondary eclipses, e is directly
measurable (e.g., Knutson et al. 2007a); for others, such as
planets on very short-period orbits that are expected to tidally
circularize quickly or planets in compact multi-planet systems,
dynamical stability constrains e to low values. For each of these
categories of planet—secondary-eclipse planets, tidally circu-
larized planets, and multi-planet systems—we may express the
existing eccentricity constraint as a Bayesian prior on e. In
Sections 2.2.1–2.2.3, we describe how we select a sample of
Kepler objects of interest (KOIs) belonging to each category
for transit modeling.
We note that, in principle, ρ* could also be measured from

the transits of planets with radial velocity–measured eccentri-
cities. However, analyzing such planets requires jointly fitting
the radial velocity curves, including accurate treatment of
stellar activity effects. This is beyond the scope of the present
study, and we defer the analysis of planets with radial velocity–
measured e to later work.
Assuming, then, that we have a strong e prior, all we must do

to measure ρ* from a transit is fit a transit model comprising 10
parameters: the transit epoch t0, the orbital period P, the impact
parameter b, the stellar density ρ*, the ratio of radii R Rp *, the
orbital eccentricity e, the argument of periastron ω, and three
coefficients of a modified nonlinear limb-darkening law
(transformed to allow for efficient sampling as described in
Kipping 2016): , ,r hB B and BR. In other words, we must explore
this 10-dimensional parameter space and find a region that
matches the Kepler transit data.
We use the transit-modeling code BATMAN (Kreidberg 2015)

to compute the light curve of a given set of 10 transit model

Figure 1. The transit duration T is equal to the stellar diameter divided by the
mean orbital velocity, which is equal to a P2Q in the case of a circular orbit.
Rearrangement of the equation in the lower panel yields the normalized
semimajor axis a R*. An analogous calculation is possible for planets on
eccentric orbits (for which orbital velocity varies with phase), provided the
eccentricity is known.
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3rd Kepler law

Measure of stellar density ρ★  
(Maxted et al. 2015, Seager & Mallén-Ornelas 2003)

Interferometry

M★=(4π/3)R★3ρ★Measure of stellar mass

Kepler’s third law, assuming a circular orbit, whereG is the universal gravitational constant andMp the planet mass,

P2 ¼ 4!2a3

GðM# þMpÞ
; ð4Þ

and the stellar mass-radius relation,

R# ¼ kMx
# ; ð5Þ

where k is a constant coefficient for each stellar sequence (main sequence, giants, etc.) and x describes the power law of the
sequence (e.g., x ’ 0:8 for F–Kmain-sequence stars; Cox 2000).

3.2. Analytical Solution

3.2.1. Four Parameters Derivable fromObservables

We ultimately wish to solve for the five unknown parameters M*, R*, a, i, and Rp from the five equations above. It is first
useful to note that four combinations of physical parameters can be found directly from the observables (DF, tT, tF, and P)
using only the first four equations in x 3.1 (the three transit geometry equations and Kepler’s third law with Mp5M#); this
avoids any uncertainty from the stellar mass-radius relation.

The four combinations of parameters are as follows: the planet-star radius ratio, which trivially follows from equation (1),

Rp

R#
¼

ffiffiffiffiffiffiffi
DF

p
; ð6Þ

the impact parameter b, defined as the projected distance between the planet and star centers during midtransit in units of R*
(see Fig. 1), and which can be derived directly from the transit shape equation (2), together with equation (6),

b & a
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the ratio a/R*, which can be derived directly from the transit duration equation (3),

a
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¼

"
1þ
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and the stellar density "*, which can be derived from the above equation for a/R* and Kepler’s third law with Mp5M# (eq.
[4]),

"# & M#
R3#

¼

 
4!2

P2G

! "
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ffiffiffiffiffiffiffi
DF

p #2 ' b2 1' sin2 tT!=Pð Þ
$ %
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( )3=2

: ð9Þ

The parameters b and a/R* are dimensionless. The density can be written in units of "( by substituting 4!2=G ¼ 365:252=
2153 day2 M(=R3

(.
It is interesting to consider the geometrical and physical origin of these combinations of parameters. The impact parameter

b depends almost entirely on the transit shape (parameterized by tF/tT) and the ratio of planet and star sizes [ DFð Þ1=2]. To a
lesser extent b depends mildly on the period (see x 3.3.2). The term a/R* is the ratio of orbital semimajor axis to planet radius;
to first order it is related to the ratio of transit duration to total period. The term a/R* is also dependent on the impact parame-
ter b and planet-star size ratio because these parameters affect the transit duration. The stellar density, "*, comes fromKepler’s
third law and the transit duration tT; Kepler’s third law describes how much mass is enclosed inside the planet’s orbit, and the
stellar radius is described by the transit duration with a physical scale set by Kepler’s third law. Again, "* is also dependent on
the impact parameter b and the planet-star size ratio because these parameters affect the transit duration.

3.2.2. The Five Physical Parameters

The five physical parametersR*,M*, i, a, andRp can be derived from the above solution forRp/R*, b, a/R*, and "* by using
one additional equation: the stellar mass-radius relation (eq. [5]). To derive M*, consider equation (9) together with the
stellar mass-radius relation in the form "#="( & M#=M( R#=R(ð Þ'3¼ M#=M(ð Þ1'3x1=k3:

M#
M(

¼ k3
"#
"(

& '1= 1'3xð Þ
: ð10Þ

The stellar radius can be derived from the stellar mass by the stellar mass-radius relation, or from the density directly,

R#
R(

¼ k
M#
M(

& 'x

¼ k1=x
"#
"(

& 'x=ð1'3xÞ
; ð11Þ
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3. THE EQUATIONS AND SOLUTION FOR A LIGHT CURVE WITH TWO OR MORE TRANSITS

3.1. The General System of Equations

There are five equations that completely describe the planet transit light curve. The first three equations (eqs. [1]–[3])
describe the geometry of the transit in terms of transit depth, transit shape, and transit duration (see Fig. 1). For a planet
transit light curve that is due to two spheres passing in front of each other, the geometry is relatively straightforward (see
Sackett 1999 for a derivation of the transit duration eq. [3]). Here we parameterize the transit shape by both tT, the total transit
duration (first to fourth contact), and tF, the duration of the transit completely inside ingress and egress (second to third con-
tact). The three geometrical equations that describe the transit light curve depend on four observables: the period P, the transit
depth DF, tF, and tT. See Figure 1 for an illustrative definition of DF, tF, and tT. In addition to the three geometrical equations,
there are two physical equations (eqs. [4] and [5]), Kepler’s third law and the stellar mass-radius relation. It is these physical
equations that break the degeneracy of the mathematical description of two spheres passing in front of each other, by setting a
physical scale. It is this physical scale, together with the geometrical description, that allows the unique solution.

The equations are as follows: the transit depth, DF, with F defined as the total observed flux,

DF ! Fno transit " Ftransit

Fno transit
¼

Rp

R$

! "2

; ð1Þ

the transit shape, described by the ratio of the duration of the ‘‘ flat part ’’ of the transit (tF) to the total transit duration (tT),

sinðtF!=PÞ
sinðtT!=PÞ

¼
#
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the total transit duration,

tT ¼ P

!
arcsin
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Fig. 1.—Definition of transit light-curve observables. Two schematic light curves are shown on the bottom (solid and dotted lines), and the corresponding
geometry of the star and planet is shown on the top. Indicated on the solid light curve are the transit depth DF, the total transit duration tT, and the transit
duration between ingress and egress tF (i.e., the ‘‘ flat part ’’ of the transit light curve when the planet is fully superimposed on the parent star). First, second,
third, and fourth contacts are noted for a planet moving from left to right. Also defined areR*,Rp, and impact parameter b corresponding to orbital inclination
i. Different impact parameters b (or different i) will result in different transit shapes, as shown by the transits corresponding to the solid and dotted lines.
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Table 1. Properties of the star 55Cnc and of its transiting
exoplanet 55Cnc e.

Coordinates

RA (J2000) 08h52min35.81093s

DEC (J2000) +28�19’50.9511”

Parallax [mas] 81.03 ± 0.75

Distance [pc] 12.34 ± 0.11

Stellar parameters

Ligi+(2016) This work (corr.)

M? [M�] 0.960 ± 0.067 0.954 ± 0.063
0.85

R? [R�] 0.96 ± 0.02 0.958 ± 0.018

⇢? [⇢�] 1.084 ± 0.038

L? [L�] 0.589 ± 0.014 0.591± 0.013
0.23

Te↵ [K] 5165 ± 46 5174 ± 46

Planetary parameters

Ligi+(2016) This work (corr.)

Mp [M�] 8.631 ± 0.495 8.703 ± 0.482
0.30

Rp [R�] 2.031+0.091

�0.088
2.023 ± 0.088

⇢p [⇢�] 1.03± 0.14 1.06± 0.13

3.1. Likelihood and joint PDF

From the PDF of the mass and radius of the star,
we deduce that of the planet analytically. For any Mp,
M?, one can define the associated semi amplitude of the
radial velocity signal K, following a classical formula re-

sulting from Kepler’s law: K(Mp,M?) =
Mp

M
2/3
?

�
2⇡G
P

�1/3

(where P is the orbital period, and we have assumed
that the eccentricity is zero3). Similarly, for a pair Rp,
R?, the corresponding transit depth is TD(Rp, R?) =
(Rp/R?)2. Therefore, the probability density function
associated to any fixed planetary mass and radius is :

fp(Mp, Rp)/
ZZ

exp

 
�1

2

✓
K(Mp,M?)�Ke

�K

◆2
!

⇥ exp

 
�1

2

✓
TD(Mp,M?)� TDe

�TD

◆2
!

⇥LMR?(M?, R?) dM? dR?

where the observed transit depth associated to 55Cnc e
is TDe±�TD = (3.72±0.30)10�4 (Dragomir et al. 2014),
and the amplitude of the signal in radial velocity is Ke±
�K = 6.30± 0.21 m/s (Endl et al. 2012).

3
The eccentricity of 55Cnc e is 0.028 in exoplanet.eu, which

makes the assumption e ⇡ 0 reasonable.

Figure 3. Mass and radius data samples for O, OC, and
the OH that mostly di↵er in terms of the correlation between
mass and radius. In comparison, two idealized mass-radius
relationships for pure MgSiO3 and Earth-like interiors are
plotted. MgSiO3 represents the least dense end-member of
purely rocky interiors. Therefore, purely rocky interiors can-
not be exluded in cases of O and OC, whereas in case of the
hypothetical high correlation (OH), the interior must be rich
in volatiles. See text for details.

This expression has been integrated numerically ; we
find :

Mp=8.703± 0.482 M� (10)

Rp=2.023± 0.088 R� (11)

with a correlation of c = 0.30.

The cloud of red dots labelled OC in Fig. 3 shows a
Monte-Carlo realisation of this PDF. The correlation is
visible, as the cloud is elongated in a direction paral-
lel to isodensity lines. An Earth-like composition is al-
most excluded, while a pure rocky interior appears pos-
sible. The blue dots in Fig. 3 correspond to the case
where LMR?(M?, R?) would be replaced in the expres-
sion of fp(Mp, Rp) by a PDF of M?, R? that would ne-
glect their correlation (the one shown as short dashed
lines in Fig. 2). In this case, an Earth-like composition
could be excluded with less confidence.
It is particularly interesting to consider the correlation

in order to estimate the density of the planet. From
our joint PDF, we find ⇢p = 5846 ± 740 kg.m�3 =
1.06 ± 0.13⇢� 4. A standard propagation of errors as-

4
A careful reader may notice that 8.703/2.0233 = 1.051, not

1.06. Because < R 3
p > 6=< Rp >3

, the expected value of ⇢p is not

given by < Mp > / < Rp >3
.

The correlation between Rp and Mp avoid a 
density not in agreement with Rp and Mp. 

The twisted ellipse decreases the number of 
possible densities. 
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super-Earth, as explained in Section 1. It is therefore an
excellent case to test the power of our method.

3.1. Likelihood and Joint PDF

From the PDF of the mass and radius of the star, we deduce
that of the planet analytically. For any Mp, Må, one can define
the associated semi-amplitude of the radial velocity signal K,
following a classical formula resulting from Kepler’s law:
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we have assumed that the eccentricity is zero9). Similarly, for a
pair Rp, Rå, the corresponding transit depth is
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where the observed transit depth associated to 55 Cnc e is
TD 3.72 0.30 10e TD

4To � o �( ) (Dragomir et al. 2014),
and the amplitude of the signal in radial velocity is
K 6.30 0.21e KTo � o m s−1 (Endl et al. 2012).

This expression has been integrated numerically; we find:

M M8.703 0.482 10p � o � ( )
R R2.023 0.088 11p � o � ( )

with a correlation of c= 0.30.

The cloud of red dots labeled OC in Figure 3 shows a Monte
Carlo realization of this PDF. The correlation is visible, as the
cloud is elongated in a direction parallel to isodensity lines. An
Earth-like composition is almost excluded, while a pure rocky
interior appears possible. The blue dots in Figure 3 correspond
to the case where M R,MR$ � � �( ) would be replaced in the
expression of f M R,p p p( ) by a PDF of Må, Rå that would
neglect their correlation (shown as short dashed lines in
Figure 2). In this case, an Earth-like composition could be
excluded with less confidence.
It is particularly interesting to consider the correlation in

order to estimate the density of the planet. From our joint PDF,
we find 5846 740 kg m 1.06 0.13p

3S S� o � o�
�.

10 A stan-
dard propagation of errors assuming Mp and Rp indepenent
would give 5797 819 kgpS � o m−3. We get a 10% smaller
uncertainty on the density of 55 Cnc e taking the correlation
into account. The limiting factor here is the uncertainty on TDe,
which is mainly responsible for the correlation between mass
and radius to be much smaller for the planet (0.30) than for the
host star (0.86). Indeed, the 8% uncertainty on TDe translates
into 4% in the radius ratio, while the stellar radius is
determined to within 2%. More precise observations of the
transit would be very useful in this particular case and would
allow us to increase significantly the gain on the density
precision. On the other hand, the 3% uncertainty on Ke is
smaller than that on Må (and even on M 2 3

� ) so, to gain
precision in the planetary mass, one should aim at gaining
precision on the stellar mass. In the particular case of 55 Cnc,
the best way to do so would be to better constrain its density by
obtaining a finer light curve.
In the next subsection, we use this joint PDF to characterize

the interior of 55 Cnc e, including a test scenario where TDe
and Ke would be known with negligible uncertainty, which is
shown in Figure 3 as the pale dots labeled OH; in this case, one
recovers the 0.85 correlation associated with the distribution of
the stellar mass and radius.

3.2. Structure and Composition

3.2.1. Method

The estimates of planetary mass and radius are subsequently
used to characterize the interior of 55 Cnc e. To do so, we use
the generalized Bayesian inference analysis of Dorn et al.
(2017b) that employs a Markov chain Monte Carlo (MCMC)
method. This method allows us to rigorously quantify the
degeneracy of the following interior parameters for a general
planet interior:

1. core: core size (rcore),
2. mantle: mantle composition (mass ratios Fe Simantle,

Mg Simantle) and size of rocky interior (rcore mantle� ),
3. gas: intrinsic luminosity (L int), gas mass (mgas), and

metallicity (Zgas).

In this study, the planetary interior is assumed to be composed of
a pure iron core, a silicate mantle comprising the oxides
Na2O–CaO–FeO–MgO–Al2O3–SiO2, and a gas layer of H, He,
C, and O. Unlike Dorn et al. (2017a), we have assumed no
additional water layer. For the highly irradiated planet 55 Cnc e,
any water layer would be in a vapour or super-critical state.

Figure 3.Mass and radius data samples for O, OC, and the OH that mostly differ
in terms of the correlation between mass and radius. In comparison, two
idealized mass–radius relationships for pure MgSiO3 and Earth-like interiors
are plotted. MgSiO3 represents the least dense end-member of purely rocky
interiors. Therefore, purely rocky interiors cannot be exluded in cases of O and
OC, whereas in the case of the hypothetical high correlation (OH), the interior
must be rich in volatiles. See the text for details.

9 The eccentricity of 55 Cnc e is 0.028 in exoplanet.eu, which makes the
assumption e 0x reasonable.

10 A careful reader may notice that 8.703 2.023 1.0513 � , not 1.06. Because
R Rp p

3 3� § v � § , the expected value of pS is not given by M Rp p
3� § � § .
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super-Earth, as explained in Section 1. It is therefore an
excellent case to test the power of our method.

3.1. Likelihood and Joint PDF

From the PDF of the mass and radius of the star, we deduce
that of the planet analytically. For any Mp, Må, one can define
the associated semi-amplitude of the radial velocity signal K,
following a classical formula resulting from Kepler’s law:

K M M,p
M
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� Q( )( ) (where P is the orbital period, and
we have assumed that the eccentricity is zero9). Similarly, for a
pair Rp, Rå, the corresponding transit depth is
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� ��( ) ( ) . Therefore, the PDF associated to
any fixed planetary mass and radius is
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where the observed transit depth associated to 55 Cnc e is
TD 3.72 0.30 10e TD

4To � o �( ) (Dragomir et al. 2014),
and the amplitude of the signal in radial velocity is
K 6.30 0.21e KTo � o m s−1 (Endl et al. 2012).

This expression has been integrated numerically; we find:

M M8.703 0.482 10p � o � ( )
R R2.023 0.088 11p � o � ( )

with a correlation of c= 0.30.

The cloud of red dots labeled OC in Figure 3 shows a Monte
Carlo realization of this PDF. The correlation is visible, as the
cloud is elongated in a direction parallel to isodensity lines. An
Earth-like composition is almost excluded, while a pure rocky
interior appears possible. The blue dots in Figure 3 correspond
to the case where M R,MR$ � � �( ) would be replaced in the
expression of f M R,p p p( ) by a PDF of Må, Rå that would
neglect their correlation (shown as short dashed lines in
Figure 2). In this case, an Earth-like composition could be
excluded with less confidence.
It is particularly interesting to consider the correlation in

order to estimate the density of the planet. From our joint PDF,
we find 5846 740 kg m 1.06 0.13p

3S S� o � o�
�.

10 A stan-
dard propagation of errors assuming Mp and Rp indepenent
would give 5797 819 kgpS � o m−3. We get a 10% smaller
uncertainty on the density of 55 Cnc e taking the correlation
into account. The limiting factor here is the uncertainty on TDe,
which is mainly responsible for the correlation between mass
and radius to be much smaller for the planet (0.30) than for the
host star (0.86). Indeed, the 8% uncertainty on TDe translates
into 4% in the radius ratio, while the stellar radius is
determined to within 2%. More precise observations of the
transit would be very useful in this particular case and would
allow us to increase significantly the gain on the density
precision. On the other hand, the 3% uncertainty on Ke is
smaller than that on Må (and even on M 2 3

� ) so, to gain
precision in the planetary mass, one should aim at gaining
precision on the stellar mass. In the particular case of 55 Cnc,
the best way to do so would be to better constrain its density by
obtaining a finer light curve.
In the next subsection, we use this joint PDF to characterize

the interior of 55 Cnc e, including a test scenario where TDe
and Ke would be known with negligible uncertainty, which is
shown in Figure 3 as the pale dots labeled OH; in this case, one
recovers the 0.85 correlation associated with the distribution of
the stellar mass and radius.

3.2. Structure and Composition

3.2.1. Method

The estimates of planetary mass and radius are subsequently
used to characterize the interior of 55 Cnc e. To do so, we use
the generalized Bayesian inference analysis of Dorn et al.
(2017b) that employs a Markov chain Monte Carlo (MCMC)
method. This method allows us to rigorously quantify the
degeneracy of the following interior parameters for a general
planet interior:

1. core: core size (rcore),
2. mantle: mantle composition (mass ratios Fe Simantle,

Mg Simantle) and size of rocky interior (rcore mantle� ),
3. gas: intrinsic luminosity (L int), gas mass (mgas), and

metallicity (Zgas).

In this study, the planetary interior is assumed to be composed of
a pure iron core, a silicate mantle comprising the oxides
Na2O–CaO–FeO–MgO–Al2O3–SiO2, and a gas layer of H, He,
C, and O. Unlike Dorn et al. (2017a), we have assumed no
additional water layer. For the highly irradiated planet 55 Cnc e,
any water layer would be in a vapour or super-critical state.

Figure 3.Mass and radius data samples for O, OC, and the OH that mostly differ
in terms of the correlation between mass and radius. In comparison, two
idealized mass–radius relationships for pure MgSiO3 and Earth-like interiors
are plotted. MgSiO3 represents the least dense end-member of purely rocky
interiors. Therefore, purely rocky interiors cannot be exluded in cases of O and
OC, whereas in the case of the hypothetical high correlation (OH), the interior
must be rich in volatiles. See the text for details.

9 The eccentricity of 55 Cnc e is 0.028 in exoplanet.eu, which makes the
assumption e 0x reasonable.

10 A careful reader may notice that 8.703 2.023 1.0513 � , not 1.06. Because
R Rp p

3 3� § v � § , the expected value of pS is not given by M Rp p
3� § � § .

5

The Astrophysical Journal, 860:122 (12pp), 2018 June 20 Crida et al.

25



INTERFEROMETRY: Density and mass

6 Crida et al.

Table 1. Properties of the star 55Cnc and of its transiting
exoplanet 55Cnc e.

Coordinates

RA (J2000) 08h52min35.81093s

DEC (J2000) +28�19’50.9511”

Parallax [mas] 81.03 ± 0.75

Distance [pc] 12.34 ± 0.11

Stellar parameters

Ligi+(2016) This work (corr.)

M? [M�] 0.960 ± 0.067 0.954 ± 0.063
0.85

R? [R�] 0.96 ± 0.02 0.958 ± 0.018

⇢? [⇢�] 1.084 ± 0.038

L? [L�] 0.589 ± 0.014 0.591± 0.013
0.23

Te↵ [K] 5165 ± 46 5174 ± 46

Planetary parameters

Ligi+(2016) This work (corr.)

Mp [M�] 8.631 ± 0.495 8.703 ± 0.482
0.30

Rp [R�] 2.031+0.091

�0.088
2.023 ± 0.088

⇢p [⇢�] 1.03± 0.14 1.06± 0.13

3.1. Likelihood and joint PDF

From the PDF of the mass and radius of the star,
we deduce that of the planet analytically. For any Mp,
M?, one can define the associated semi amplitude of the
radial velocity signal K, following a classical formula re-

sulting from Kepler’s law: K(Mp,M?) =
Mp

M
2/3
?

�
2⇡G
P

�1/3

(where P is the orbital period, and we have assumed
that the eccentricity is zero3). Similarly, for a pair Rp,
R?, the corresponding transit depth is TD(Rp, R?) =
(Rp/R?)2. Therefore, the probability density function
associated to any fixed planetary mass and radius is :

fp(Mp, Rp)/
ZZ

exp
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2

✓
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◆2
!

⇥ exp
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✓
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where the observed transit depth associated to 55Cnc e
is TDe±�TD = (3.72±0.30)10�4 (Dragomir et al. 2014),
and the amplitude of the signal in radial velocity is Ke±
�K = 6.30± 0.21 m/s (Endl et al. 2012).

3
The eccentricity of 55Cnc e is 0.028 in exoplanet.eu, which

makes the assumption e ⇡ 0 reasonable.

Figure 3. Mass and radius data samples for O, OC, and
the OH that mostly di↵er in terms of the correlation between
mass and radius. In comparison, two idealized mass-radius
relationships for pure MgSiO3 and Earth-like interiors are
plotted. MgSiO3 represents the least dense end-member of
purely rocky interiors. Therefore, purely rocky interiors can-
not be exluded in cases of O and OC, whereas in case of the
hypothetical high correlation (OH), the interior must be rich
in volatiles. See text for details.

This expression has been integrated numerically ; we
find :

Mp=8.703± 0.482 M� (10)

Rp=2.023± 0.088 R� (11)

with a correlation of c = 0.30.

The cloud of red dots labelled OC in Fig. 3 shows a
Monte-Carlo realisation of this PDF. The correlation is
visible, as the cloud is elongated in a direction paral-
lel to isodensity lines. An Earth-like composition is al-
most excluded, while a pure rocky interior appears pos-
sible. The blue dots in Fig. 3 correspond to the case
where LMR?(M?, R?) would be replaced in the expres-
sion of fp(Mp, Rp) by a PDF of M?, R? that would ne-
glect their correlation (the one shown as short dashed
lines in Fig. 2). In this case, an Earth-like composition
could be excluded with less confidence.
It is particularly interesting to consider the correlation

in order to estimate the density of the planet. From
our joint PDF, we find ⇢p = 5846 ± 740 kg.m�3 =
1.06 ± 0.13⇢� 4. A standard propagation of errors as-

4
A careful reader may notice that 8.703/2.0233 = 1.051, not

1.06. Because < R 3
p > 6=< Rp >3

, the expected value of ⇢p is not

given by < Mp > / < Rp >3
.

The correlation between Rp and Mp avoid a 
density not in agreement with Rp and Mp. 

The twisted ellipse decreases the number of 
possible densities. 

Crida+ 2018b
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Probability Distribution Function of Mp and Rp

Crida+ 2018a

No correlation
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super-Earth, as explained in Section 1. It is therefore an
excellent case to test the power of our method.

3.1. Likelihood and Joint PDF

From the PDF of the mass and radius of the star, we deduce
that of the planet analytically. For any Mp, Må, one can define
the associated semi-amplitude of the radial velocity signal K,
following a classical formula resulting from Kepler’s law:

K M M,p
M
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2 1 3p
2 3�
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� Q( )( ) (where P is the orbital period, and
we have assumed that the eccentricity is zero9). Similarly, for a
pair Rp, Rå, the corresponding transit depth is

R R R RTD ,p p
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� ��( ) ( ) . Therefore, the PDF associated to
any fixed planetary mass and radius is
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where the observed transit depth associated to 55 Cnc e is
TD 3.72 0.30 10e TD

4To � o �( ) (Dragomir et al. 2014),
and the amplitude of the signal in radial velocity is
K 6.30 0.21e KTo � o m s−1 (Endl et al. 2012).

This expression has been integrated numerically; we find:

M M8.703 0.482 10p � o � ( )
R R2.023 0.088 11p � o � ( )

with a correlation of c= 0.30.

The cloud of red dots labeled OC in Figure 3 shows a Monte
Carlo realization of this PDF. The correlation is visible, as the
cloud is elongated in a direction parallel to isodensity lines. An
Earth-like composition is almost excluded, while a pure rocky
interior appears possible. The blue dots in Figure 3 correspond
to the case where M R,MR$ � � �( ) would be replaced in the
expression of f M R,p p p( ) by a PDF of Må, Rå that would
neglect their correlation (shown as short dashed lines in
Figure 2). In this case, an Earth-like composition could be
excluded with less confidence.
It is particularly interesting to consider the correlation in

order to estimate the density of the planet. From our joint PDF,
we find 5846 740 kg m 1.06 0.13p

3S S� o � o�
�.

10 A stan-
dard propagation of errors assuming Mp and Rp indepenent
would give 5797 819 kgpS � o m−3. We get a 10% smaller
uncertainty on the density of 55 Cnc e taking the correlation
into account. The limiting factor here is the uncertainty on TDe,
which is mainly responsible for the correlation between mass
and radius to be much smaller for the planet (0.30) than for the
host star (0.86). Indeed, the 8% uncertainty on TDe translates
into 4% in the radius ratio, while the stellar radius is
determined to within 2%. More precise observations of the
transit would be very useful in this particular case and would
allow us to increase significantly the gain on the density
precision. On the other hand, the 3% uncertainty on Ke is
smaller than that on Må (and even on M 2 3

� ) so, to gain
precision in the planetary mass, one should aim at gaining
precision on the stellar mass. In the particular case of 55 Cnc,
the best way to do so would be to better constrain its density by
obtaining a finer light curve.
In the next subsection, we use this joint PDF to characterize

the interior of 55 Cnc e, including a test scenario where TDe
and Ke would be known with negligible uncertainty, which is
shown in Figure 3 as the pale dots labeled OH; in this case, one
recovers the 0.85 correlation associated with the distribution of
the stellar mass and radius.

3.2. Structure and Composition

3.2.1. Method

The estimates of planetary mass and radius are subsequently
used to characterize the interior of 55 Cnc e. To do so, we use
the generalized Bayesian inference analysis of Dorn et al.
(2017b) that employs a Markov chain Monte Carlo (MCMC)
method. This method allows us to rigorously quantify the
degeneracy of the following interior parameters for a general
planet interior:

1. core: core size (rcore),
2. mantle: mantle composition (mass ratios Fe Simantle,

Mg Simantle) and size of rocky interior (rcore mantle� ),
3. gas: intrinsic luminosity (L int), gas mass (mgas), and

metallicity (Zgas).

In this study, the planetary interior is assumed to be composed of
a pure iron core, a silicate mantle comprising the oxides
Na2O–CaO–FeO–MgO–Al2O3–SiO2, and a gas layer of H, He,
C, and O. Unlike Dorn et al. (2017a), we have assumed no
additional water layer. For the highly irradiated planet 55 Cnc e,
any water layer would be in a vapour or super-critical state.

Figure 3.Mass and radius data samples for O, OC, and the OH that mostly differ
in terms of the correlation between mass and radius. In comparison, two
idealized mass–radius relationships for pure MgSiO3 and Earth-like interiors
are plotted. MgSiO3 represents the least dense end-member of purely rocky
interiors. Therefore, purely rocky interiors cannot be exluded in cases of O and
OC, whereas in the case of the hypothetical high correlation (OH), the interior
must be rich in volatiles. See the text for details.

9 The eccentricity of 55 Cnc e is 0.028 in exoplanet.eu, which makes the
assumption e 0x reasonable.

10 A careful reader may notice that 8.703 2.023 1.0513 � , not 1.06. Because
R Rp p

3 3� § v � § , the expected value of pS is not given by M Rp p
3� § � § .
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super-Earth, as explained in Section 1. It is therefore an
excellent case to test the power of our method.

3.1. Likelihood and Joint PDF

From the PDF of the mass and radius of the star, we deduce
that of the planet analytically. For any Mp, Må, one can define
the associated semi-amplitude of the radial velocity signal K,
following a classical formula resulting from Kepler’s law:
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� Q( )( ) (where P is the orbital period, and
we have assumed that the eccentricity is zero9). Similarly, for a
pair Rp, Rå, the corresponding transit depth is
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� ��( ) ( ) . Therefore, the PDF associated to
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where the observed transit depth associated to 55 Cnc e is
TD 3.72 0.30 10e TD

4To � o �( ) (Dragomir et al. 2014),
and the amplitude of the signal in radial velocity is
K 6.30 0.21e KTo � o m s−1 (Endl et al. 2012).

This expression has been integrated numerically; we find:

M M8.703 0.482 10p � o � ( )
R R2.023 0.088 11p � o � ( )

with a correlation of c= 0.30.

The cloud of red dots labeled OC in Figure 3 shows a Monte
Carlo realization of this PDF. The correlation is visible, as the
cloud is elongated in a direction parallel to isodensity lines. An
Earth-like composition is almost excluded, while a pure rocky
interior appears possible. The blue dots in Figure 3 correspond
to the case where M R,MR$ � � �( ) would be replaced in the
expression of f M R,p p p( ) by a PDF of Må, Rå that would
neglect their correlation (shown as short dashed lines in
Figure 2). In this case, an Earth-like composition could be
excluded with less confidence.
It is particularly interesting to consider the correlation in

order to estimate the density of the planet. From our joint PDF,
we find 5846 740 kg m 1.06 0.13p

3S S� o � o�
�.

10 A stan-
dard propagation of errors assuming Mp and Rp indepenent
would give 5797 819 kgpS � o m−3. We get a 10% smaller
uncertainty on the density of 55 Cnc e taking the correlation
into account. The limiting factor here is the uncertainty on TDe,
which is mainly responsible for the correlation between mass
and radius to be much smaller for the planet (0.30) than for the
host star (0.86). Indeed, the 8% uncertainty on TDe translates
into 4% in the radius ratio, while the stellar radius is
determined to within 2%. More precise observations of the
transit would be very useful in this particular case and would
allow us to increase significantly the gain on the density
precision. On the other hand, the 3% uncertainty on Ke is
smaller than that on Må (and even on M 2 3

� ) so, to gain
precision in the planetary mass, one should aim at gaining
precision on the stellar mass. In the particular case of 55 Cnc,
the best way to do so would be to better constrain its density by
obtaining a finer light curve.
In the next subsection, we use this joint PDF to characterize

the interior of 55 Cnc e, including a test scenario where TDe
and Ke would be known with negligible uncertainty, which is
shown in Figure 3 as the pale dots labeled OH; in this case, one
recovers the 0.85 correlation associated with the distribution of
the stellar mass and radius.

3.2. Structure and Composition

3.2.1. Method

The estimates of planetary mass and radius are subsequently
used to characterize the interior of 55 Cnc e. To do so, we use
the generalized Bayesian inference analysis of Dorn et al.
(2017b) that employs a Markov chain Monte Carlo (MCMC)
method. This method allows us to rigorously quantify the
degeneracy of the following interior parameters for a general
planet interior:

1. core: core size (rcore),
2. mantle: mantle composition (mass ratios Fe Simantle,

Mg Simantle) and size of rocky interior (rcore mantle� ),
3. gas: intrinsic luminosity (L int), gas mass (mgas), and

metallicity (Zgas).

In this study, the planetary interior is assumed to be composed of
a pure iron core, a silicate mantle comprising the oxides
Na2O–CaO–FeO–MgO–Al2O3–SiO2, and a gas layer of H, He,
C, and O. Unlike Dorn et al. (2017a), we have assumed no
additional water layer. For the highly irradiated planet 55 Cnc e,
any water layer would be in a vapour or super-critical state.

Figure 3.Mass and radius data samples for O, OC, and the OH that mostly differ
in terms of the correlation between mass and radius. In comparison, two
idealized mass–radius relationships for pure MgSiO3 and Earth-like interiors
are plotted. MgSiO3 represents the least dense end-member of purely rocky
interiors. Therefore, purely rocky interiors cannot be exluded in cases of O and
OC, whereas in the case of the hypothetical high correlation (OH), the interior
must be rich in volatiles. See the text for details.

9 The eccentricity of 55 Cnc e is 0.028 in exoplanet.eu, which makes the
assumption e 0x reasonable.

10 A careful reader may notice that 8.703 2.023 1.0513 � , not 1.06. Because
R Rp p

3 3� § v � § , the expected value of pS is not given by M Rp p
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Table 3. Summarized Properties of the HD 97658 System

Property Value Source

Measured Stellar Properties
Parallax [mas] 46.412±0.022 Gaia Collaboration et al. (2018); van Leeuwen (2007b)
Distance [pc] 21.55± 0.011 Gaia Collaboration et al. (2018)
[Fe/H] [dex] -0.23±0.03 Howard et al. (2011)
✓UD-R [mas] 0.296± 0.004 §3.1 Interferometry
✓LD [mas] 0.314± 0.004 §3.1 Interferometry
R? [R�] 0.728± 0.008 §3.1 Interferometry/Parallax
T e↵[K] 5211± 32 §3.2 Interferometry/SED
FBol [erg s�1 cm�2] 2.42± 0.01⇥ 10�8 §3.2 SED Templates
L? [L�] 0.351± 0.001 §3.2 FBol/Distance
Linear Limb Darkening µR 0.629+0.0137

�0.0143 §3.1 Parviainen & Aigrain (2015); Husser et al. (2013)

Planetary Properties
Transit Depth [ppm] 712±38 §4 Exofast

Period [days] 9.48971157± 0.00000077 §4 Exofast

T0 [BJD] 2458904.9366± 0.0008 §4 Exofast

Rp/R? 0.02668±0.0007 §4 Exofast

Inclination [deg] 89.05+0.41
�0.24 §4 Exofast

Impact Parameter 0.39+0.11
�.018 §4 Exofast

Eccentricity 0.054+0.039
�0.034 §4 Exofast

Mass [M�] 7.52±0.86 §4 Exofast

a/R? 24.16± 0.69 §4 Exofast

Rp [R�] 2.12±0.061 §4
⇢p [g cm�3] 3.681± 0.51 §4
TEq[K] 749± 12 §4

Stellar and Planetary Properties from Transit Observables
⇢? [g cm�3] 3.11± 0.27 §4
M? [M�] 0.85± 0.08 §4
log(g) [cgs] 4.64±0.04 §4
Corr(R?,M?) 0.41 §4
⇢p [g cm�3] 4.835± 0.70 §4
Rp [R�] 2.11±0.059 §4
Mass [M�] 8.25±1.01 §4
Corr(Rp, Mp) 0.09 §4

report substantially di↵erent composition and properties of HD 97658 b , but we can393

provide greater certainty in the previous results.394

Follow-up observations of HD 97658 with JWST will allow a more precise and accu-395

rate measurement of the transit depth. This is a particularly interesting measurement396

to pin down as current best measurements of the transit depth are accurate to only397

⇠ %5, which complicates more accurate analysis of the planet. These follow up ob-398

servations would provide further exciting insight into this nearby super-Earth planet.399

INTERFEROMETRY: Density and mass

HD97658 (Ellis et al., in rev.)Y. Lebreton and M.J. Goupil: “À la carte” stellar age-dating and weighing with asteroseismology
radius at the basis of the convective envelope is Rzc ∼ 0.80 R!.
These quantities can be quite different in other models, which
are nevertheless seismically equivalent. In particular, the Y0-M
degeneracy has a major impact on the core mass. For instance,
changing Y0 from 0.26 to 0.32 changesM! from 1.28 to 1.18M",
Mcc from 0.006 to 0.023 M!, and Rcc from 0.035 to ∼ 0.053 R!.
The depth of the convective envelope is unaffected.

Models optimized with rather high, currently accepted or
predicted values of core overshooting (sets I and J) show quite
high values of χ2R,seism, indicating that overshooting is proba-
bly ruled out for this star. We investigated this point in depth
by performing an optimization where we also adjusted the over-
shooting parameter (models A6-ov and A7-ov, in the appendix).
We found that quite low overshooting is indeed preferred, with
αov in the range 0.0 − 0.04. In principle, seismology has the
potential to distinguish between different values of overshoot-
ing even for small cores through the signature left in the os-
cillation spectrum by the convective core (see the recent works
by Silva Aguirre et al. 2013; Brandão et al. 2013, and references
therein). Such diagnostics are beyond the scope of this paper.
However, we made some additional tests that indicate that in
the case of HD 52265, the seismic data are probably not precise
enough to allow us to infer the size of the mixed core precisely
or accurately.

4.6. Seismic properties

In Fig. 7, we show how the stellar models succeed -or not- in
matching observed oscillation frequencies and frequency sep-
arations. Since a thorough examination of seismic properties
of all the models is beyond the scope of this paper, we se-
lected some models. The top left panel shows the échelle di-
agram corresponding to the model of case A7, optimized on
the basis of the individual frequencies. When surface effects
are corrected for, the model succeeds rather well in reproduc-
ing the échelle diagram for a value of the adjustable parame-
ter bSE = 4.2 (Eq. 12) compatible with the solar value obtained
by Deheuvels & Michel (2011) with quasi-similar input physics
(bSE," = 4.25). On the other hand, in the high-frequency range,
un-corrected models do not match observations. In this respect,
models A6 (frequencies not corrected, not plotted) and A7 (with
uncorrected frequencies) give similar results. Furthermore, the
top right panel shows that model A7 reproduces the observed in-
dividual large frequency separations ∆ν%(n) quite well. The bot-
tom left panel shows the comparison of the observed and model
frequency separation ratios rr01/10(n). Model A7 reproduces the
mean slope of the variation of the ratios rather well, but not the
oscillatory behaviour. As shown by Lebreton & Goupil (2012),
this behaviour in HD 52265 is reproduced in models that include
convective penetration below the convective envelope, like the
model of set K, which is similar to set A but with ξPC = 1.3. The
figure also shows the effect of the Y0-M degeneracy on the dia-
gram. The larger the helium abundance, the higher the rr01/10(n)
ratios. However, with the present accuracy on the data, it is hard
to distinguish the models with different (Y0, M) values. Finally,
we plotted a model of set I that takes into account a moderate
amount of core overshooting (αov = 0.15). As already pointed
out in Section 4.5, the overshooting amount cannot be very large
since even a moderate amount of overshooting is ruled out by the
present data. The bottom right panel shows the fit of the r02(n)
ratios. In this case, regarding the precision on the data, it is diffi-
cult to distinguish the models.

Fig. 8. Age estimates for HD 52265. Columns CaII, LX, Li and
gyrochronology give empirical estimates based on the R′HK in-
dex (circle), the lower limit from X-luminosity (upwards tri-
angle), the upper limit from lithium surface abundance (down-
wards triangle) and, the gyrochronology (diamonds). The col-
umn HRD inversion shows estimates based on inversion of
isochrones with circles for Padova isochrones and diamonds
for BaSTI isochrones, full symbols for Bayesian methods, and
empty symbol for χ2-minimisation, see text. The column seis-
mic shows the seismic determination for à la carte models of
case 6 (Table 3 and Fig. 4)

5. Ages from other methods

We estimate below the age of HD 52265, on the basis of other
age-dating methods (empirical or H-R diagram inversion). We
compare the resulting ages with the age inferred from à la carte
stellar modelling.

5.1. Empirical ages

5.1.1. Activity

The chromospheric activity and age of solar-type dwarfs ap-
pear to be anti-correlated. Empirical relations allow us to rely
the CaII H & K emission index R′HK = LHK/Lbol to age (see
e.g. Mamajek & Hillenbrand 2008, for a recent calibration). For
HD 52265, values of logR′HK listed in the literature are in the
range [−5.02,−4.59]. These low values indicate very low chro-
mospheric activity. Using the Mamajek & Hillenbrand R′HK-age
relation, we derived an age of 4.0 ± 3.0 Gyr. The ages can also
be roughly estimated from the Mamajek & Hillenbrand relation
between the fractional X-ray emission R′X = LX/Lbol and age.
For HD 52265, Kashyap et al. (2008) derived an upper limit,
LX < 28.28, which provides a lower age limit of 2.5 Gyr. Clearly,
such empirical calibrations are too coarse to provide a reliable
age of evolved stars with low chromospheric activity. Indeed, as
recommended recently by Pace (2013), the use of chromospheric
activity as a stellar clock should be limited to stars younger than
about 1.5 Gyr.
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Problematics for direct imaging:

• Detection close to the star but stars are 

bright compared to planets  
→ Detection around young stars, because 
young planets are hotter thus brighter


• Perturbations: diffraction-limited 
images, piston, calibration errors…

A. Vigan et al.: The SPHERE infrared survey for exoplanets (SHINE). III.

Fig. 1. Depth of search of the SHINE survey for the 150 stars in the
sample. The plot gives the numbers of stars around which the survey
is sensitive for sub-stellar companions as a function of mass and semi-
major axis. The mass conversion of the detection limits is based on the
nominal stellar ages and on the BEX-COND-hot evolutionary models
(Marleau et al. 2019a). The colored circles represent the detected sub-
stellar companions in the sample, with the color indicating the spectral
type of the primary star (BA, FGK, or M). The size of the symbol is
proportional to the weight of the detection in the statistical analysis (see
Sect. 2.4 and Table 1 for details).

2.6. Survey sensitivity

In order to constrain the statistical properties of our observed
sample, we first transpose the observed detection limits into the
same parameter space as the models, i.e., from projected sepa-
ration to semi-major axis, so as to determine the completeness
of the survey in terms in semi-major axis a and secondary mass
M2. For each star, we define a grid of semi-major axis and mass
values uniformly distributed in log space, with 500 values rang-
ing from 0.1 to 10 000 au in a, and 200 values between 0.1 to
100 MJup in M2. For each cell in the grid, we generate 104 com-
panions with arguments of periastron and orbital phases drawn
from uniform distributions, taking into account the orbital ve-
locities along the orbit (i.e., considering the fact that an eccen-
tric companion spends more time near apastron). We use a uni-
form distribution in inclination in order to simulate random ori-
entations of orbits in space. For the eccentricity distribution, we
consider the recent results derived by Bowler et al. (2020) for
directly-imaged exoplanets and brown dwarf companions. We
adopt a Beta function with parameters [↵ = 0.95, � = 1.30],
which corresponds to the best fit to the full sample of wide sub-
stellar companions studied in Bowler et al. (2020).

For each simulated companion, we then compute the corre-
sponding projected separation from the drawn orbital elements
and the semi-major axis a of that grid point. We finally deter-
mine whether the companion is detectable in our observations or
not by checking if the mass value M2 of that cell lies above the
contrast curve of the considered star at the obtained projected
separation, and that this projected separation value lies within
the field of view for that star. The fraction of detectable compan-
ion in each grid cell provides the fractional completeness as a

Fig. 2. Comparison of the sensitivities of the NaCo-LP (Vigan et al.
2017; red dashed line) and SHINE (this work; black plain line) surveys,
based on the average probability of detecting a companion as a func-
tion of its mass and semi-major axis. The analysis is based on detection
limits converted using the COND-2003 evolutionary tracks for the both
surveys. The contours for the NaCo-LP are not labeled but are the same
ones as for SHINE. The range of semi-major axes spanning the H2O and
CO snow lines for the stars in the sample are over-plotted (see Sect. 2.6
for details).

function of mass and semi-major axis for each star in our sam-
ple. Summing up all derived completeness maps and dividing by
the number of targets, we obtain the overall 2-dimensional com-
pleteness of the survey. This task is repeated using the mass lim-
its obtained with the various evolutionary models described in
Sect. 2.5, and considering the nominal, minimum and maximum
ages of the stellar primaries, providing a separate completeness
map for each specific analysis to be performed.

Using the completeness maps for each of the targets in the
sample, we can compute the depth of search of the complete
survey, which provides the number of stars around which the
survey is sensitive for a given sub-stellar companion mass and
semi-major axis. This metric is interesting to estimate the statis-
tical strength of the results presented later. The depth of search
for the 150 stars of our sample is presented in Fig. 1, based on
the nominal stellar ages and the BEX-COND-hot models (see
Sect. 2.5). The core of the sensitivity (>100 stars) goes down to
7–9 au for objects >10 MJup. At lower masses, the minimum is
reached at ⇠100 au for a mass of ⇠3 MJup. Sensitivity to 1 MJup
planets is only reached around ⇠30 stars at separations of 100–
200 au.

From the completeness maps it is also possible to look a
the average sensitivity of the survey, i.e. the average probabil-
ity of detecting an object of given mass and semi-major axis.
This metric enables a direct comparison of the SHINE survey
to surveys performed using the previous generations of instru-
ments. In Fig. 2 we compare the sensitivity of SHINE with that
of the NaCo-LP (Chauvin et al. 2015; Vigan et al. 2017), both
computed using detection limits converted into mass using the
COND-2003 evolutionary tracks (Bara↵e et al. 2003). While the
two surveys have not strictly identical samples, they both target
a large pool of relatively young nearby stars, so the probability
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stellar companions in the sample, with the color indicating the spectral
type of the primary star (BA, FGK, or M). The size of the symbol is
proportional to the weight of the detection in the statistical analysis (see
Sect. 2.4 and Table 1 for details).
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In order to constrain the statistical properties of our observed
sample, we first transpose the observed detection limits into the
same parameter space as the models, i.e., from projected sepa-
ration to semi-major axis, so as to determine the completeness
of the survey in terms in semi-major axis a and secondary mass
M2. For each star, we define a grid of semi-major axis and mass
values uniformly distributed in log space, with 500 values rang-
ing from 0.1 to 10 000 au in a, and 200 values between 0.1 to
100 MJup in M2. For each cell in the grid, we generate 104 com-
panions with arguments of periastron and orbital phases drawn
from uniform distributions, taking into account the orbital ve-
locities along the orbit (i.e., considering the fact that an eccen-
tric companion spends more time near apastron). We use a uni-
form distribution in inclination in order to simulate random ori-
entations of orbits in space. For the eccentricity distribution, we
consider the recent results derived by Bowler et al. (2020) for
directly-imaged exoplanets and brown dwarf companions. We
adopt a Beta function with parameters [↵ = 0.95, � = 1.30],
which corresponds to the best fit to the full sample of wide sub-
stellar companions studied in Bowler et al. (2020).

For each simulated companion, we then compute the corre-
sponding projected separation from the drawn orbital elements
and the semi-major axis a of that grid point. We finally deter-
mine whether the companion is detectable in our observations or
not by checking if the mass value M2 of that cell lies above the
contrast curve of the considered star at the obtained projected
separation, and that this projected separation value lies within
the field of view for that star. The fraction of detectable compan-
ion in each grid cell provides the fractional completeness as a

Fig. 2. Comparison of the sensitivities of the NaCo-LP (Vigan et al.
2017; red dashed line) and SHINE (this work; black plain line) surveys,
based on the average probability of detecting a companion as a func-
tion of its mass and semi-major axis. The analysis is based on detection
limits converted using the COND-2003 evolutionary tracks for the both
surveys. The contours for the NaCo-LP are not labeled but are the same
ones as for SHINE. The range of semi-major axes spanning the H2O and
CO snow lines for the stars in the sample are over-plotted (see Sect. 2.6
for details).

function of mass and semi-major axis for each star in our sam-
ple. Summing up all derived completeness maps and dividing by
the number of targets, we obtain the overall 2-dimensional com-
pleteness of the survey. This task is repeated using the mass lim-
its obtained with the various evolutionary models described in
Sect. 2.5, and considering the nominal, minimum and maximum
ages of the stellar primaries, providing a separate completeness
map for each specific analysis to be performed.

Using the completeness maps for each of the targets in the
sample, we can compute the depth of search of the complete
survey, which provides the number of stars around which the
survey is sensitive for a given sub-stellar companion mass and
semi-major axis. This metric is interesting to estimate the statis-
tical strength of the results presented later. The depth of search
for the 150 stars of our sample is presented in Fig. 1, based on
the nominal stellar ages and the BEX-COND-hot models (see
Sect. 2.5). The core of the sensitivity (>100 stars) goes down to
7–9 au for objects >10 MJup. At lower masses, the minimum is
reached at ⇠100 au for a mass of ⇠3 MJup. Sensitivity to 1 MJup
planets is only reached around ⇠30 stars at separations of 100–
200 au.

From the completeness maps it is also possible to look a
the average sensitivity of the survey, i.e. the average probabil-
ity of detecting an object of given mass and semi-major axis.
This metric enables a direct comparison of the SHINE survey
to surveys performed using the previous generations of instru-
ments. In Fig. 2 we compare the sensitivity of SHINE with that
of the NaCo-LP (Chauvin et al. 2015; Vigan et al. 2017), both
computed using detection limits converted into mass using the
COND-2003 evolutionary tracks (Bara↵e et al. 2003). While the
two surveys have not strictly identical samples, they both target
a large pool of relatively young nearby stars, so the probability
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Fig. 9: Contrast curves obtained for the full sample for irdifs ext (Left) and irdifs (right) modes observations. The solid line gives
the median value of the contrast. The dash line gives the mean value of the contrast. Red color is for IRDIS data reduced in PCA
ADI, Blue color is for IRDIS data reduced in TLOCI ADI, and green color is for IFS with PCA ASDI reduction

used to identify 44% of the candidates with H23 photometry
as likely contaminants for which a re-observation was not war-
ranted. Consequently, we decided to prioritize the observations
of candidates falling right on the sequence of late-M to mid-L
dwarfs and for which the locus spans a narrow range of bluer
colors in the same luminosity range. This allowed for identifying
HIP 64892B and HIP 65426B as promising candidates before
they could be confirmed as co-moving objects. We could also
identify blindly known companions (e.g., HIP 78530B, ⌘ Tel B,
PZ Tel B, AB Pic b, CD-35 2722B, HIP 73990B) as promising
candidates.

Most of the remaining ambiguous candidates were observed
at a second epoch to determine whether they are co-moving com-
panions. Two crowded fields were observed with the J23 filter
set. As shown in Bonnefoy et al. (2018b), the locus of contam-
inants falls at a distinct location from the substellar objects in
these CMDs and allowed to classify most of these candidates
as contaminants. The locus in the K1K2 diagrams is more dis-
persed and the error bars on the photometry tend to be wider
owing to the higher thermal background at these wavelengths.
Therefore, detections in K1K2 requires follow-up observations
to clarify the nature of the detections.

The final status of the candidates is given in Table 1.
The companions with a confirmed common-proper motion are
flagged as ’C’. The contaminants either discriminated using the
CMD or the comon-proper motion test are flagged as ’B’. Am-
biguous cases are flagged as ’A’. We report in addition several
false positives (’FP’) in that table which correspond to the iden-
tification of candidates with unreliable astrometry and/or pho-

tometry and for which our standard classification scheme could
not be applied.

6. Disks detected in SHINE

While not specifically optimized for this purpose, our obser-
vations allowed detection of circumstellar disks, thanks to the
exquisite sensitivity and large FoV of IRDIS, around eleven of
SHINE targets, out of which two were new detections. By con-
struction of our survey, they are debris disk - in fact, we did not
consider stars with gas-rich disks to reduce the concern related to
the impact of disks in planet detection. Table 2 collects the main
data for the disks we detected; a gallery of their appearance from
the IFS data is presented in Figure 16. Detailed analysis of each
one of these disks is subject of specific studies, most of them
already published (see Table 2).

Not surprisingly, stars with detected debris disks are typ-
ically young; the median age is 24 Myr (data from Paper I)
and there is only one target with an age older than 50 Myr
(HIP682=HD377). This result is similar to that obtained by the
survey by (Esposito et al. 2020). We notice that most of the de-
tected disks are seen at high inclination i, with a median value of
i = 82 degree. The only disk that has a low inclination in our sur-
vey (TWA 7) was detected only in polarimetry (Olofsson et al.
2018). The strong dependence on inclination is because of the
combination of a deeper optical depth ()debris disks being opti-
cally thin), of higher e�ciency of forward scattering, and of the
use of angular di↵erential imaging to reach deeper contrast (see
Milli et al. 2012; Sissa et al. 2018). This selection e↵ect would be
less severe using polarimetric observations, as often done when
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Figure 3. Result of the RDI analysis of the IFS data from 2015 June and 2016 April. We clearly see an inhomogeneous bright ring at ∼180 mas, and possibly
another inner ring, although its position close to the star makes it less trustable. North is up and east is left.

Figure 4. Left: IFS image in the J band with 50 PCA modes subtracted. Middle: IRDIS PDI polarized intensity image in the J band, which shows a bright
irregular ring. Right: Result of a cADI simulation using the polarized intensity image as input (see text for details). The circular grid at the centre represents the
centre star covered by coronagraphic mask in the PDI data. The corresponding position in the IFS data is also represented in the IFS J band image, although
these data were obtained without a coronagraph (empty circle). Tick marks placed every 10◦ of PA are plotted outside the area of interest. North is up and east
is left.

north-west and south-west directions. The ring appears more clearly
in the 2016 April image, possibly due to the better quality of the
data and a larger rotation field. The inner ring at 100 mas is quite
bright with a brighter region in the north-west direction in the 2015
image. However, it is not detected in each reduction (in particular,
it is hardly seen in the RDI data without a coronagraph), and its
appearance depends on the scale used (see Section 5). It appears
much less bright in the 2016 April image, although we still detect a
signal.

4 A N IN H O M O G E N E O U S R I N G AT 1 8 0 M A S

4.1 Simulation of classical ADI reduction with polarimetric
differential imaging data

To understand the nature of the detected structures, it is important to
know if the scattered light is polarized. Indeed, planets are usually
considered not to emit polarized light, unlike protoplanetary discs
(see however, Stolker et al. 2017, who suggest that a very small
amount of polarization is possible in some cases). Polarized light
due to reflection from hot Jupiter planets could also be detected in
the optical (UBV bands). However, the signal produced would be

low (Berdyugina et al. 2008, 2011), which might be impossible to
detect when the planet is embedded in a disc that produces polarized
scattered light.

To investigate the nature of the blobs at ∼180 mas, we use IRDIS
polarimetric differential imaging (PDI) data that were acquired on
2015 May 2 with the ALC_YJ_S apodized-pupil Lyot coronagraph
(145 mas in diameter) in the J band and reduced following de Boer
et al. (2016). A full analysis and modelling of the PDI data will be
presented in a forthcoming paper (Pohl et al., accepted).

The left-hand and middle panels of Fig. 4 compare the IFS
J-band data and the IRDIS PDI data of the very central region
around the star (±300 mas). The ring at 180 mas in the IRDIS
polarized intensity image is detected at extremely high significance
and a small coronagraphic mask allows us to confirm unambigu-
ously the existence of the cavity inside the ring. The polarized
intensity image also clearly shows a variation of the ring brightness
as a function of PA, with an increase of the brightness at PAs of
∼20◦, ∼90◦, ∼180◦ and to a lesser extent at ∼310◦. The brightness
of the structure has been measured by Pohl et al. (accepted; Fig. 3),
and higher signals at these same PAs are clearly visible. Interest-
ingly, these regions of increased brightness seem to correspond to
PAs where the IFS J-band image shows extended bright structures
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Table 1. Stellar parameters of PDS 70.

Parameter Unit Value References
Distance pc 113.43±0.52 1
Te↵ K 3972±36 2
Radius R� 1.26±0.15 computed from 2
B mag 13.494±0.146 3
V mag 12.233±0.123 3
g0 mag 12.881±0.136 3
r0 mag 11.696±0.106 3
i0 mag 11.129±0.079 3
J mag 9.553±0.024 4
H mag 8.823±0.040 4
Ks mag 8.542±0.023 4
Age Myr 5.4±1.0 this work
Mass M� 0.76±0.02 this work
AV mag 0.05+0.05

�0.03 this work

References. (1) Gaia Collaboration et al. (2016, 2018); (2) Pecaut &
Mamajek (2016); (3) Henden et al. (2015); (4) Cutri et al. (2003).

fit as well as the independently determined e↵ective temperature
Te↵ and radius are listed in Table 1. We perform a simultaneous
fit of all these observables. The uncertainties are treated as Gaus-
sians and we assume no covariance between them.
We use a Gaussian prior from Gaia for the distance and a Gaus-
sian prior with mean 0.01 mag and sigma 0.07 mag, truncated at
AV=0 mag, for the extinction (Pecaut & Mamajek 2016). Given
AV , we compute the extinction in all the adopted bands by as-
suming a Cardelli et al. (1989) extinction law. We use a Chabrier
(2003) initial mass function (IMF) prior on the mass and a uni-
form prior on the age. The stellar models adopted to compute
the expected observables, given the fit parameters, are from the
MIST project (Paxton et al. 2011, 2013, 2015; Dotter 2016; Choi
et al. 2016). These models were extensively tested against young
cluster data, as well as against pre-main sequence stars in mul-
tiple system, with measured dynamical masses, and compared
to other stellar evolutionary models (see Choi et al. (2016) for
details). The result of the fit constrains the age of PDS 70 to
5.4 ± 1.0 Myr and its mass to 0.76 ± 0.02 M�. The best fit pa-
rameter values are given by the 50% quantile (the median) and
their uncertainties are based on the 16% and 84% quantile of the
marginalized posterior probability distribution. The stellar pa-
rameters are identical to the values used by Keppler et al. (2018).

3. Observations and data reduction

3.1. Observations

We observed PDS 70 during the SPHERE/SHINE GTO program
on the night of February 24th, 2018. The data were taken in the
IRDIFS-EXT pupil tracking mode using the N_ALC_YJH_S
(185 mas in diameter) apodized-Lyot coronagraph (Martinez
et al. 2009; Carbillet et al. 2011). We used the IRDIS (Dohlen
et al. 2008) dual-band imaging camera (Vigan et al. 2010) with
the K1K2 narrow-band filter pair (�K1 = 2.110 ± 0.102 µm, �K2

= 2.251 ± 0.109 µm). A spectrum covering the spectral range
from Y to H-band (0.96–1.64 µm, R� = 30) was acquired simul-
taneously with the IFS integral field spectrograph (Claudi et al.

straints the allowed distance values. As a result, the best fit distance
value reported here from the MCMC posterior draws is identical to the
value provided by the Gaia collaboration.

2008). We set the integration time for both detectors to 96 s and
acquired a total time on target of almost 2.5 hours. The total field
rotation is 95.7�. During the course of observation the average
coherence time was 7.7 ms and a Strehl ratio of 73% was mea-
sured at 1.6 µm, providing excellent observing conditions.

3.2. Data reduction

The IRDIS data were reduced as described in Keppler et al.
(2018). The basic reduction steps consisted of bad-pixel correc-
tion, flat fielding, sky subtraction, distortion correction (Maire
et al. 2016), and frame registration.
The IFS data were reduced with the SPHERE Data Center
pipeline (Delorme et al. 2017), which uses the Data Reduction
and Handling software (v0.15.0, Pavlov et al. 2008) and addi-
tional IDL routines for the IFS data reduction (Mesa et al. 2015).
The modeling and subtraction of the stellar speckle pattern for
both the IRDIS and IFS data set was performed with an sPCA
(smart Principal Component Analysis) algorithm based on Ab-
sil et al. (2013) using the same setup as described in Keppler
et al. (2018). Figure 1 shows the high-quality IRDIS combined
K1K2 image of PDS 70. The outer disk and the planetary com-
panion inside the gap are clearly visible. In addition, there are
several disk related features present, which are further described
in Appendix A. For this image the data were processed with a
classical ADI reduction technique (Marois et al. 2006) to mini-
mize self-subtraction of the disk. The extraction of astrometric
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Fig. 1. IRDIS combined K1K2 image of PDS 70 using classical ADI
reduction technique showing the planet inside the gap of the disk around
PDS 70. The central part of the image is masked out for better display.
North is up, East is to the left.

and contrast values was performed by injecting negative point
source signals into the raw data (using the unsaturated flux mea-
surements of PDS 70) which were varied in contrast and position
based on a predefined grid created from a first initial estimate of
the planets contrast and position. For every parameter combina-
tion of the inserted negative planet the data were reduced with
the same sPCA setup (maximum of 20 modes, protection angle
of 0.75⇥FWHM) and a �2 value within a segment of 2⇥FWHM
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Fig. 2: The PSF-subtracted images from each dataset and epoch. For the 2016 dataset, the IRDIS H2, H3 and SDI (H2-H3) reductions
are shown, while we show only the 2015 IRDIS SDI (K1-K2) reduction. We also show a weighted combination of the IFS SDI
images for each epoch. Each IFS wavelength channel was weighted by the average flux predicted by the best fitting Morley et al.
(2012) and Tremblin et al. (2015) models. The strong detection of the companion in H2 and the lack of a H3 counterpart indicates
the presence of strong methane absorption. All images have the same scale and orientation, and were generated by removing 20
PCA modes.

Table 3: The measured astrometry and photometry of HD 4113C from the SPHERE observations.

Instrument Filter Date ⇢ (arcsec) ✓ (deg) Contrast (mag) SNR (peak)
IRDIS H2 2016-07-20 0.535 ± 0.003 41.3 ± 0.4 13.35 ± 0.10 12
IRDIS H3 2016-07-20 >14.8
IRDIS H2-H3 2016-07-20 0.533 ± 0.003 42.0 ± 0.4 13.5 ± 0.2 16

IFS YJ 2016-07-20 0.528 ± 0.005 41.1 ± 0.4 7.6
IFS YH 2015-10-08 0.513 ± 0.006 41.2 ± 0.6 6.2

background object due to the 125 mas yr�1 proper motion of
HD 4113, demonstrating that it is indeed co-moving.

The detection limits obtained from the IRDIS data are shown
in Fig. 3. Our IFS reduction produces contrast limits similar to
those reported in Moutou et al. (2017).

4.3. Companion Properties

To allow a consistent comparison with other objects and to es-
timate the mass of HD 4113C, we converted the H2 flux to an
absolute magnitude using the distance of HD 4113 from Table 1.

In addition to the H2 measurement, we used the IFS spec-
trum to calculate a synthetic J band magnitude for HD 4113C
using a top-hat function between 1.125� 1.365 µm. For both the
J and H2 filters, we used the calibrated spectrum of Vega from
Bohlin (2007) to calculate the flux corresponding to zero mag-
nitude. The resulting absolute photometric magnitudes are listed
in Table 4.

The measured absolute photometry can then be compared
with substellar evolutionary models. We used the COND
(Bara↵e et al. 2003) substellar isochrones to predict the com-
panion photometry as a function of age, temperature and mass
in each band. We then interpolated this grid to estimate the pa-
rameters of HD 4113C.

The measured H2 magnitude MH2 = 16.6 ± 0.1 corresponds
to a mass of 36 ± 5MJ. The isochrones predict a temperature of
690±20 K and an H3 contrast of 14.9 mag, which is close to our
lower limit of 14.8 mag. The J band magnitude MJ = 18.5 ± 0.2
leads to estimates of 29 ± 5MJ and 580 ± 20 K. However, few
benchmark T dwarfs with measured mass, temperature and lumi-
nosity are available with age estimates similar to HD 4113 and
so we caution that these values are in a relatively unconstrained
region of the COND grid and may be unreliable.

In order to estimate the spectral type of HD 4113C, we used
the SpeX Prism library of near-IR spectra of brown dwarfs (Bur-
gasser 2014) using the splat python package (Burgasser et al.
2016). Each spectrum was flux calibrated to the distance of
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20 repousser les limites de la diffraction pour l’astronomie à haute résolution
angulaire

terférogramme tel que celui montré dans le panel central de la figure
12.

Dans le cas non-redondant, le traitement de cet interférogramme
est simple : une transformée de Fourier de l’image révèle que l’infor-
mation échantillonnée par le masque est directement accessible (voir
la figure 14). Avec la pupille redondante, l’information est plus diffi-
cile à interpréter : les bases interférométriques virtuelles étant majo-
ritairement redondantes, à une coordonnée (u,v) on peut associer la
contribution de centaines de bases virtuelles.

PUPILLE PSF MTF

Figure 14: Comparaison par étape de
l’imagerie classique “pleine ouvertu-
re” (rangée du haut) et de l’image-
rie avec masque interférométrique non-
redondant (rangée du bas). De gauche à
droite, sont systématiquement présen-
tés : (à gauche) la pupille utilisée, (au
centre) un exemple d’image produite
par cette pupille et (à droite), une vue
3D de la MTF (fonction de transfert
en modulation, équivalente à un mo-
dule de visibilité dans le contexte de
l’interférométrie). A l’examen de cette
MTF, on remarque, dans le cas “pleine
ouverture” qu’au delà d’une certaine
fréquence spatiale (dépendant des pro-
priétés du miroir d’optique adaptative
utilisé pour les observations), cette MTF
présente des structures inattendues, en-
tièrement attribuables aux résidus de
correction adaptative. Dans le cas non-
redondant, cette MTF est en comparai-
son, particulièrement propre. C’est cette
propriété des masques non-redondants
qui en fait l’intérêt principal.

Cette situation ne serait pas problématique en l’absence des per-
turbations instrumentales ou atmosphériques mentionnées plus haut,
et qui sont responsables d’une confusion de la phase échantillonnée
par chaque base virtuelle. Les amplitudes complexes échantillonnées
par une base virtuelle redondante s’additionnent de façon cohérente :
à chacune des bases mises en évidence en jaune sur le panel droit
de la figure 13 est associé un phaseur, c’est à dire un vecteur dans
le plan complexe dont le module est 5 le module de visibilité de la 5. en l’absence de scintillation seulement

source astrophysique |g0| et une phase aléatoire F affectée par les
effets instrumentaux.

Dans le mode de recombinaison Fizeau, les contributions de
toutes les bases virtuelles identiques sont regroupées : la visibilité
complexe associée, enregistrée aux coordonnées (u,v) est le résultat
de la somme des phaseurs associés à chaque base virtuelle contri-
buant à ce point (u,v). La figure 15 illustre ce cas de figure pour une
base quatre fois redondante. C’est l’exemple classique du problème
de marche aléatoire : on voit que non seulement, la phase de cette
somme de phaseurs est aléatoire mais aussi que l’amplitude le de-
vient également.

La destruction de l’information de cohérence potentielle-
ment collectable par un télescope observant de façon classique 6 est 6. c’est à dire, non masquée

« Clean » visibility.

Many residuals due to 
the correction of AO.

F. Martinache HDR
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Figure 11: Trois ouvertures (ou des té-
lescopes distincts comme en interféro-
métrie longue base) recombinées inter-
férométriquement faisant toutes l’expé-
rience de piston atmosphérique.

plexe, comprenant notamment les phases : F(1 � 2), F(2 � 3) et
F(3� 1). Chacune de ces phases est bien affectée par le problème qui
vient d’être mentionné : chaque phase mesurée peut s’écrire comme
la somme de la phase de la source astrophysique FO(i � j) (l’infor-
mation à laquelle on souhaite avoir accès) et de la phase instrumen-
tale Djij le long de la base correspondante (i, j). C’est le retard de
l’onde électromagnétique prélevée par les deux ouvertures i et j qui
compose ce “piston” atmosphérique : Djij = jj � ji. On obtient le
système d’équations suivant :

F(1 � 2) = FO(1 � 2) + (j1 � j2)

F(2 � 3) = FO(2 � 3) + (j2 � j3)

F(3 � 1) = FO(3 � 1) + (j3 � j1).

Ces trois phases instrumentales ne sont pas indépendantes
les unes des autres. Il suffit d’additionner ces trois équations pour
s’apercevoir que les termes contribuant au piston s’annulent un à
un : il est donc possible à partir de trois phases “polluées” par des
effets instrumentaux de construire une nouvelle quantité observable,
appelée clôture de phase 3 qui est indépendante de ces effets instru- 3. R. C. Jennison. A phase sensitive in-

terferometer technique for the measure-
ment of the Fourier transforms of spa-
tial brightness distributions of small an-
gular extent. MNRAS, 118:276–+, 1958

mentaux.

C’est cette quantité observable qui donne tout son intérêt à
l’interférométrie à masque non-redondant : la possibilité de s’affran-
chir des effets atmosphériques ou de chemin optique non corrigés

Closure phase

62 repousser les limites de la diffraction pour l’astronomie à haute résolution
angulaire

que les lignes de base (A-B), (B-C) et (C-A) soient non redondantes,
comme représenté dans la figure 49.

Figure 49: A gauche : représentation
schématique d’un interféromètre à trois
sous-ouvertures A,B et C formant un
triangle non-redondant. A droite : re-
présentation du plan de Fourier couvert
par ce système : trois mesures de phase
pour les lignes de base (A-B), (A-C) et
(B-C) sont possibles.

Les équations décrivant la phase qui peut être mesurée dans l’es-
pace de Fourier pour ces trois bases interférométriques s’écrivent de
la façon suivante :

F(A � B) = FO(A � B) + (jA � jB)

F(A � C) = FO(A � C) + (jA � jC)

F(B � C) = FO(B � C) + (jB � jC).

où F(X�Y) représente la phase mesurée pour la base (X-Y), FO(X�
Y) la phase attendue de la source pointée et la différence (jX � jY),
le piston instrumental affectant cette même base. Ce système d’équa-
tions peut être réécrit de façon plus compacte sous forme matricielle,
si l’on introduit les vecteurs à trois composantes F, FO et j, ainsi
qu’une matrice A tels que :

F = FO + A · j (24)

A =

2

64
1 �1 0
1 0 �1
0 1 �1

3

75 (25)

La matrice A est appelée matrice de transfert de phase.
Elle décrit comment la phase instrumentale j se propage dans le
plan de Fourier pour polluer la mesure des phases intrinsèques à
l’objet que l’on souhaite caractériser. La relation de clôture classique,
qui combine les lignes du système d’équations de façon à créer une
relation ne contenant aucun terme dépendant de j, peut être repen-
sée comme l’application d’un opérateur linéaire K, s’appliquant par
la gauche, de telle sorte que K · A = 0. La solution évidente ici :
K = [ 1 �1 1 ], appliquée par la gauche à l’équation 24, vérifie :

K · F = K · FO , (26)

ce qui est une reformulation algébrique de la propriété désirée de la
clôture de phase : le produit K · F ne dépend plus que des proprié-
tés de l’objet (FO). Une fois ce modèle et cette réécriture compris, on
peut passer au scénario suivant, utilisant lui aussi trois ouvertures
A, B et C mais cette fois ci placées en ligne, de telle sorte que les
bases (A-B) et (B-C) soient de la même longueur, comme représenté

Measured Expected Piston

F. Martinache HDR, Martinache+ 2020
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que les lignes de base (A-B), (B-C) et (C-A) soient non redondantes,
comme représenté dans la figure 49.

Figure 49: A gauche : représentation
schématique d’un interféromètre à trois
sous-ouvertures A,B et C formant un
triangle non-redondant. A droite : re-
présentation du plan de Fourier couvert
par ce système : trois mesures de phase
pour les lignes de base (A-B), (A-C) et
(B-C) sont possibles.

Les équations décrivant la phase qui peut être mesurée dans l’es-
pace de Fourier pour ces trois bases interférométriques s’écrivent de
la façon suivante :

F(A � B) = FO(A � B) + (jA � jB)

F(A � C) = FO(A � C) + (jA � jC)

F(B � C) = FO(B � C) + (jB � jC).

où F(X�Y) représente la phase mesurée pour la base (X-Y), FO(X�
Y) la phase attendue de la source pointée et la différence (jX � jY),
le piston instrumental affectant cette même base. Ce système d’équa-
tions peut être réécrit de façon plus compacte sous forme matricielle,
si l’on introduit les vecteurs à trois composantes F, FO et j, ainsi
qu’une matrice A tels que :

F = FO + A · j (24)

A =

2

64
1 �1 0
1 0 �1
0 1 �1

3

75 (25)

La matrice A est appelée matrice de transfert de phase.
Elle décrit comment la phase instrumentale j se propage dans le
plan de Fourier pour polluer la mesure des phases intrinsèques à
l’objet que l’on souhaite caractériser. La relation de clôture classique,
qui combine les lignes du système d’équations de façon à créer une
relation ne contenant aucun terme dépendant de j, peut être repen-
sée comme l’application d’un opérateur linéaire K, s’appliquant par
la gauche, de telle sorte que K · A = 0. La solution évidente ici :
K = [ 1 �1 1 ], appliquée par la gauche à l’équation 24, vérifie :

K · F = K · FO , (26)

ce qui est une reformulation algébrique de la propriété désirée de la
clôture de phase : le produit K · F ne dépend plus que des proprié-
tés de l’objet (FO). Une fois ce modèle et cette réécriture compris, on
peut passer au scénario suivant, utilisant lui aussi trois ouvertures
A, B et C mais cette fois ci placées en ligne, de telle sorte que les
bases (A-B) et (B-C) soient de la même longueur, comme représenté
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R Redundancy matrix 
(number of subapertures        
contributing to the phase of 
one baseline)

A Baseline mapping matrix 
(subapertures + baselines)
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dans la figure 50. Un tel système est redondant : les bases (A-B) et (B-
C) donnent accès à la même information FO(B � C) sur la source.
Chaque mesure est par contre polluée par son terme de phase ins-
trumentale respectif (DjA�B et DjB�C). Dans un mode de recom-
binaison interférométrique de type Fizeau (qui est le seul considéré
ici), ces informations vont se trouver mélangées au même point de
l’espace de Fourier, ce qui se traduit par un système d’équations dif-
férent du cas précédent 63 : 63. On introduit la notation DjXY =

jX � jY qui permet de réduire la lon-
gueur des équations.

F(A � C) = FO(A � C) + DjAC (27)

F(B � C) = Arg
⇣

ei(F0(B�C)+DjAB) + ei(F0(B�C)+DjBC)
⌘

. (28)

Figure 50: A gauche : représentation
schématique d’un interfèromètre à trois
sous-ouvertures A, B et C formant un
système redondant en ligne. A droite :
représentation schématique du plan de
Fourier couvert par ce système. Cette
configuration redondante ne donne ac-
cès qu’à deux éléments d’information
de phase sur l’objet. L’équation de la
phase pour la base (B-C) doit être mo-
difiée pour prendre en compte cette re-
dondance.Dans sa forme de base, l’équation de phase 28 est problématique.

Les deux termes exponentiels complexes, peuvent, tout à fait, selon
les valeurs des pistons instrumentaux s’ajouter de façon constructive
ou desctructive, ce qui se traduit par une mesure de la phase pou-
vant prendre des valeurs complètemet aléatoires (voir la figure 48).
C’est précisément ce qui a justifié l’utilisation d’un masque impo-
sant la condition de stricte non-redondance. Cependant, en présence
d’optique adaptative, cette équation peut être linéarisée. Les termes
instrumentaux supposés être suffisamment petits (Dj << 1) pour
permettre d’écrire le nouveau système 64 : 64. Avec la phase instrumentale linéari-

sée, des simplifications s’opèrent, telle
qu’ici où les deux termes DjAB et
DjBC s’additionnent pour ne laisser
que DjAC (théorème de Chasles).F(A � C) = FO(A � C) + DjAC (29)

F(B � C) ⇡ FO(B � C) +
1
2

DjAC. (30)

Comme dans le scénario précédent, ce système d’équation peut
être réécrit sous forme matricielle, requérant l’introduction d’une
nouvelle matrice (diagonale) R appelée matrice de redondance, telle
que :

F = FO + R
�1 · A · j (31)

avec cette fois :

A =

"
1 0 �1
1 0 �1

#
R =

"
1 0
1 2

#
(32)

On peut définir une nouvelle relation de clôture, matérialisée par
un nouvel opérateur K s’appliquant par la gauche tel que K · R

�1 ·
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dans la figure 50. Un tel système est redondant : les bases (A-B) et (B-
C) donnent accès à la même information FO(B � C) sur la source.
Chaque mesure est par contre polluée par son terme de phase ins-
trumentale respectif (DjA�B et DjB�C). Dans un mode de recom-
binaison interférométrique de type Fizeau (qui est le seul considéré
ici), ces informations vont se trouver mélangées au même point de
l’espace de Fourier, ce qui se traduit par un système d’équations dif-
férent du cas précédent 63 : 63. On introduit la notation DjXY =

jX � jY qui permet de réduire la lon-
gueur des équations.

F(A � C) = FO(A � C) + DjAC (27)

F(B � C) = Arg
⇣

ei(F0(B�C)+DjAB) + ei(F0(B�C)+DjBC)
⌘

. (28)

Figure 50: A gauche : représentation
schématique d’un interfèromètre à trois
sous-ouvertures A, B et C formant un
système redondant en ligne. A droite :
représentation schématique du plan de
Fourier couvert par ce système. Cette
configuration redondante ne donne ac-
cès qu’à deux éléments d’information
de phase sur l’objet. L’équation de la
phase pour la base (B-C) doit être mo-
difiée pour prendre en compte cette re-
dondance.Dans sa forme de base, l’équation de phase 28 est problématique.

Les deux termes exponentiels complexes, peuvent, tout à fait, selon
les valeurs des pistons instrumentaux s’ajouter de façon constructive
ou desctructive, ce qui se traduit par une mesure de la phase pou-
vant prendre des valeurs complètemet aléatoires (voir la figure 48).
C’est précisément ce qui a justifié l’utilisation d’un masque impo-
sant la condition de stricte non-redondance. Cependant, en présence
d’optique adaptative, cette équation peut être linéarisée. Les termes
instrumentaux supposés être suffisamment petits (Dj << 1) pour
permettre d’écrire le nouveau système 64 : 64. Avec la phase instrumentale linéari-

sée, des simplifications s’opèrent, telle
qu’ici où les deux termes DjAB et
DjBC s’additionnent pour ne laisser
que DjAC (théorème de Chasles).F(A � C) = FO(A � C) + DjAC (29)

F(B � C) ⇡ FO(B � C) +
1
2

DjAC. (30)

Comme dans le scénario précédent, ce système d’équation peut
être réécrit sous forme matricielle, requérant l’introduction d’une
nouvelle matrice (diagonale) R appelée matrice de redondance, telle
que :

F = FO + R
�1 · A · j (31)

avec cette fois :

A =

"
1 0 �1
1 0 �1

#
R =

"
1 0
1 2

#
(32)

On peut définir une nouvelle relation de clôture, matérialisée par
un nouvel opérateur K s’appliquant par la gauche tel que K · R

�1 ·
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A = 0. La solution : K = [ 1 �2 ] vérifie cette équation. C’est une
forme généralisée de clôture de phase (généralisée car elle fait in-
tervenir la redondance), que j’ai choisi d’appeler noyau de phase, ou
kernel, car le vecteur contenu dans cet opérateur fait partie du noyau
de la matrice de transfert de phase A.

Pour cet exemple spécifique, le passage par une écriture matri-
cielle est une complication discutable et le véritable potentiel de ce
formalisme devient plus évident lorsqu’on l’utilise pour traiter le cas
d’ouvertures plus riches, comme va le montrer le dernier des scéna-
rios élémentaires, représenté dans la figure 51, n’impliquant qu’une
ouverture de plus que les cas précédents.

Figure 51: A gauche : représenta-
tion schématique d’un interfèromètre
à quatre sous-ouvertures A, B, C et
D ; formant un système redondant en
forme de losange. A droite : le plan de
Fourier couvert par ce système. Cette
configuration redondante donne accès
à quatre lignes de bases distinctes, dont
deux redondantes d’ordre 2.

Avec les matrices de transfert de phase A et de redondance R en
place, la même équation 31 s’applique. Le contenu des matrices doit
être mis à jour. Il faut choisir une convention pour l’ordre dans lequel
on écrit les équations correspondant aux différentes bases dans le
plan de Fourier : ma convention est de parcourir le plan de Fourier
de la gauche vers la droite d’abord, et de haut en bas ensuite, ce
qui donne la séquence suivante : (D-B), (A-B), (D-A) et (A-C). Il faut
de la même façon, choisir un ordre pour les sous-ouvertures : pour
aider à la lecture, je choisis ici de prendre les ouvertures dans l’ordre
alphabétique. Avec ces conventions, les matrices s’écrivent :

A =

2

6664

0 �1 0 �1
1 �1 �1 1

�1 �1 1 1
1 0 �1 0

3

7775
R =

2

6664

1 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1

3

7775
(33)

Cette fois ci, deux noyaux ou relations de clôture généralisée sont
possibles : on peut ainsi vérifier que K · R

�1 · A = 0 lorsque :

K =

"
1 �2 0 1
1 0 �2 �1

#
. (34)

Recherche automatisée des kernels

Tout l’art de l’approche proposée repose dans la bonne te-
nue d’un modèle qui permet de savoir quelles combinaisons d’ou-
vertures contribuent aux termes de pistons Djk

i pour la composante
de Fourier d’indice k : cette connaissance est contenue dans la ma-
trice de transfert de phase A. Au delà des exemples élémentaires

Kernel-phase K
Projection of the Fourier phase into a subspace 
theoretically untouched by residual aberrations. 

F. Martinache HDR, Martinache+ 2020
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Figure 11: Trois ouvertures (ou des té-
lescopes distincts comme en interféro-
métrie longue base) recombinées inter-
férométriquement faisant toutes l’expé-
rience de piston atmosphérique.

plexe, comprenant notamment les phases : F(1 � 2), F(2 � 3) et
F(3� 1). Chacune de ces phases est bien affectée par le problème qui
vient d’être mentionné : chaque phase mesurée peut s’écrire comme
la somme de la phase de la source astrophysique FO(i � j) (l’infor-
mation à laquelle on souhaite avoir accès) et de la phase instrumen-
tale Djij le long de la base correspondante (i, j). C’est le retard de
l’onde électromagnétique prélevée par les deux ouvertures i et j qui
compose ce “piston” atmosphérique : Djij = jj � ji. On obtient le
système d’équations suivant :

F(1 � 2) = FO(1 � 2) + (j1 � j2)

F(2 � 3) = FO(2 � 3) + (j2 � j3)

F(3 � 1) = FO(3 � 1) + (j3 � j1).

Ces trois phases instrumentales ne sont pas indépendantes
les unes des autres. Il suffit d’additionner ces trois équations pour
s’apercevoir que les termes contribuant au piston s’annulent un à
un : il est donc possible à partir de trois phases “polluées” par des
effets instrumentaux de construire une nouvelle quantité observable,
appelée clôture de phase 3 qui est indépendante de ces effets instru- 3. R. C. Jennison. A phase sensitive in-

terferometer technique for the measure-
ment of the Fourier transforms of spa-
tial brightness distributions of small an-
gular extent. MNRAS, 118:276–+, 1958

mentaux.

C’est cette quantité observable qui donne tout son intérêt à
l’interférométrie à masque non-redondant : la possibilité de s’affran-
chir des effets atmosphériques ou de chemin optique non corrigés

Phase transfert matrix

R-1.A 

(description of the propagation 
of pupil phase aberration into 
the Fourier plane)
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que les lignes de base (A-B), (B-C) et (C-A) soient non redondantes,
comme représenté dans la figure 49.

Figure 49: A gauche : représentation
schématique d’un interféromètre à trois
sous-ouvertures A,B et C formant un
triangle non-redondant. A droite : re-
présentation du plan de Fourier couvert
par ce système : trois mesures de phase
pour les lignes de base (A-B), (A-C) et
(B-C) sont possibles.

Les équations décrivant la phase qui peut être mesurée dans l’es-
pace de Fourier pour ces trois bases interférométriques s’écrivent de
la façon suivante :

F(A � B) = FO(A � B) + (jA � jB)

F(A � C) = FO(A � C) + (jA � jC)

F(B � C) = FO(B � C) + (jB � jC).

où F(X�Y) représente la phase mesurée pour la base (X-Y), FO(X�
Y) la phase attendue de la source pointée et la différence (jX � jY),
le piston instrumental affectant cette même base. Ce système d’équa-
tions peut être réécrit de façon plus compacte sous forme matricielle,
si l’on introduit les vecteurs à trois composantes F, FO et j, ainsi
qu’une matrice A tels que :

F = FO + A · j (24)

A =

2

64
1 �1 0
1 0 �1
0 1 �1

3

75 (25)

La matrice A est appelée matrice de transfert de phase.
Elle décrit comment la phase instrumentale j se propage dans le
plan de Fourier pour polluer la mesure des phases intrinsèques à
l’objet que l’on souhaite caractériser. La relation de clôture classique,
qui combine les lignes du système d’équations de façon à créer une
relation ne contenant aucun terme dépendant de j, peut être repen-
sée comme l’application d’un opérateur linéaire K, s’appliquant par
la gauche, de telle sorte que K · A = 0. La solution évidente ici :
K = [ 1 �1 1 ], appliquée par la gauche à l’équation 24, vérifie :

K · F = K · FO , (26)

ce qui est une reformulation algébrique de la propriété désirée de la
clôture de phase : le produit K · F ne dépend plus que des proprié-
tés de l’objet (FO). Une fois ce modèle et cette réécriture compris, on
peut passer au scénario suivant, utilisant lui aussi trois ouvertures
A, B et C mais cette fois ci placées en ligne, de telle sorte que les
bases (A-B) et (B-C) soient de la même longueur, comme représenté
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dans la figure 50. Un tel système est redondant : les bases (A-B) et (B-
C) donnent accès à la même information FO(B � C) sur la source.
Chaque mesure est par contre polluée par son terme de phase ins-
trumentale respectif (DjA�B et DjB�C). Dans un mode de recom-
binaison interférométrique de type Fizeau (qui est le seul considéré
ici), ces informations vont se trouver mélangées au même point de
l’espace de Fourier, ce qui se traduit par un système d’équations dif-
férent du cas précédent 63 : 63. On introduit la notation DjXY =

jX � jY qui permet de réduire la lon-
gueur des équations.

F(A � C) = FO(A � C) + DjAC (27)

F(B � C) = Arg
⇣

ei(F0(B�C)+DjAB) + ei(F0(B�C)+DjBC)
⌘

. (28)

Figure 50: A gauche : représentation
schématique d’un interfèromètre à trois
sous-ouvertures A, B et C formant un
système redondant en ligne. A droite :
représentation schématique du plan de
Fourier couvert par ce système. Cette
configuration redondante ne donne ac-
cès qu’à deux éléments d’information
de phase sur l’objet. L’équation de la
phase pour la base (B-C) doit être mo-
difiée pour prendre en compte cette re-
dondance.Dans sa forme de base, l’équation de phase 28 est problématique.

Les deux termes exponentiels complexes, peuvent, tout à fait, selon
les valeurs des pistons instrumentaux s’ajouter de façon constructive
ou desctructive, ce qui se traduit par une mesure de la phase pou-
vant prendre des valeurs complètemet aléatoires (voir la figure 48).
C’est précisément ce qui a justifié l’utilisation d’un masque impo-
sant la condition de stricte non-redondance. Cependant, en présence
d’optique adaptative, cette équation peut être linéarisée. Les termes
instrumentaux supposés être suffisamment petits (Dj << 1) pour
permettre d’écrire le nouveau système 64 : 64. Avec la phase instrumentale linéari-

sée, des simplifications s’opèrent, telle
qu’ici où les deux termes DjAB et
DjBC s’additionnent pour ne laisser
que DjAC (théorème de Chasles).F(A � C) = FO(A � C) + DjAC (29)

F(B � C) ⇡ FO(B � C) +
1
2

DjAC. (30)

Comme dans le scénario précédent, ce système d’équation peut
être réécrit sous forme matricielle, requérant l’introduction d’une
nouvelle matrice (diagonale) R appelée matrice de redondance, telle
que :

F = FO + R
�1 · A · j (31)

avec cette fois :

A =

"
1 0 �1
1 0 �1

#
R =

"
1 0
1 2

#
(32)

On peut définir une nouvelle relation de clôture, matérialisée par
un nouvel opérateur K s’appliquant par la gauche tel que K · R

�1 ·

62 repousser les limites de la diffraction pour l’astronomie à haute résolution
angulaire

que les lignes de base (A-B), (B-C) et (C-A) soient non redondantes,
comme représenté dans la figure 49.

Figure 49: A gauche : représentation
schématique d’un interféromètre à trois
sous-ouvertures A,B et C formant un
triangle non-redondant. A droite : re-
présentation du plan de Fourier couvert
par ce système : trois mesures de phase
pour les lignes de base (A-B), (A-C) et
(B-C) sont possibles.

Les équations décrivant la phase qui peut être mesurée dans l’es-
pace de Fourier pour ces trois bases interférométriques s’écrivent de
la façon suivante :

F(A � B) = FO(A � B) + (jA � jB)

F(A � C) = FO(A � C) + (jA � jC)

F(B � C) = FO(B � C) + (jB � jC).

où F(X�Y) représente la phase mesurée pour la base (X-Y), FO(X�
Y) la phase attendue de la source pointée et la différence (jX � jY),
le piston instrumental affectant cette même base. Ce système d’équa-
tions peut être réécrit de façon plus compacte sous forme matricielle,
si l’on introduit les vecteurs à trois composantes F, FO et j, ainsi
qu’une matrice A tels que :

F = FO + A · j (24)

A =

2

64
1 �1 0
1 0 �1
0 1 �1

3

75 (25)

La matrice A est appelée matrice de transfert de phase.
Elle décrit comment la phase instrumentale j se propage dans le
plan de Fourier pour polluer la mesure des phases intrinsèques à
l’objet que l’on souhaite caractériser. La relation de clôture classique,
qui combine les lignes du système d’équations de façon à créer une
relation ne contenant aucun terme dépendant de j, peut être repen-
sée comme l’application d’un opérateur linéaire K, s’appliquant par
la gauche, de telle sorte que K · A = 0. La solution évidente ici :
K = [ 1 �1 1 ], appliquée par la gauche à l’équation 24, vérifie :

K · F = K · FO , (26)

ce qui est une reformulation algébrique de la propriété désirée de la
clôture de phase : le produit K · F ne dépend plus que des proprié-
tés de l’objet (FO). Une fois ce modèle et cette réécriture compris, on
peut passer au scénario suivant, utilisant lui aussi trois ouvertures
A, B et C mais cette fois ci placées en ligne, de telle sorte que les
bases (A-B) et (B-C) soient de la même longueur, comme représenté

64 repousser les limites de la diffraction pour l’astronomie à haute résolution
angulaire

A = 0. La solution : K = [ 1 �2 ] vérifie cette équation. C’est une
forme généralisée de clôture de phase (généralisée car elle fait in-
tervenir la redondance), que j’ai choisi d’appeler noyau de phase, ou
kernel, car le vecteur contenu dans cet opérateur fait partie du noyau
de la matrice de transfert de phase A.

Pour cet exemple spécifique, le passage par une écriture matri-
cielle est une complication discutable et le véritable potentiel de ce
formalisme devient plus évident lorsqu’on l’utilise pour traiter le cas
d’ouvertures plus riches, comme va le montrer le dernier des scéna-
rios élémentaires, représenté dans la figure 51, n’impliquant qu’une
ouverture de plus que les cas précédents.

Figure 51: A gauche : représenta-
tion schématique d’un interfèromètre
à quatre sous-ouvertures A, B, C et
D ; formant un système redondant en
forme de losange. A droite : le plan de
Fourier couvert par ce système. Cette
configuration redondante donne accès
à quatre lignes de bases distinctes, dont
deux redondantes d’ordre 2.

Avec les matrices de transfert de phase A et de redondance R en
place, la même équation 31 s’applique. Le contenu des matrices doit
être mis à jour. Il faut choisir une convention pour l’ordre dans lequel
on écrit les équations correspondant aux différentes bases dans le
plan de Fourier : ma convention est de parcourir le plan de Fourier
de la gauche vers la droite d’abord, et de haut en bas ensuite, ce
qui donne la séquence suivante : (D-B), (A-B), (D-A) et (A-C). Il faut
de la même façon, choisir un ordre pour les sous-ouvertures : pour
aider à la lecture, je choisis ici de prendre les ouvertures dans l’ordre
alphabétique. Avec ces conventions, les matrices s’écrivent :

A =

2

6664

0 �1 0 �1
1 �1 �1 1

�1 �1 1 1
1 0 �1 0

3

7775
R =

2

6664

1 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1

3

7775
(33)

Cette fois ci, deux noyaux ou relations de clôture généralisée sont
possibles : on peut ainsi vérifier que K · R

�1 · A = 0 lorsque :

K =

"
1 �2 0 1
1 0 �2 �1

#
. (34)

Recherche automatisée des kernels

Tout l’art de l’approche proposée repose dans la bonne te-
nue d’un modèle qui permet de savoir quelles combinaisons d’ou-
vertures contribuent aux termes de pistons Djk

i pour la composante
de Fourier d’indice k : cette connaissance est contenue dans la ma-
trice de transfert de phase A. Au delà des exemples élémentaires

Redundancy

Redundancy:  
repeated baseline 
(distance+orientation)

Non redundancy

HDR F. Martinache

THE KERNEL PHASE PRINCIPLE
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les noyaux de phase 63

dans la figure 50. Un tel système est redondant : les bases (A-B) et (B-
C) donnent accès à la même information FO(B � C) sur la source.
Chaque mesure est par contre polluée par son terme de phase ins-
trumentale respectif (DjA�B et DjB�C). Dans un mode de recom-
binaison interférométrique de type Fizeau (qui est le seul considéré
ici), ces informations vont se trouver mélangées au même point de
l’espace de Fourier, ce qui se traduit par un système d’équations dif-
férent du cas précédent 63 : 63. On introduit la notation DjXY =

jX � jY qui permet de réduire la lon-
gueur des équations.

F(A � C) = FO(A � C) + DjAC (27)

F(B � C) = Arg
⇣

ei(F0(B�C)+DjAB) + ei(F0(B�C)+DjBC)
⌘

. (28)

Figure 50: A gauche : représentation
schématique d’un interfèromètre à trois
sous-ouvertures A, B et C formant un
système redondant en ligne. A droite :
représentation schématique du plan de
Fourier couvert par ce système. Cette
configuration redondante ne donne ac-
cès qu’à deux éléments d’information
de phase sur l’objet. L’équation de la
phase pour la base (B-C) doit être mo-
difiée pour prendre en compte cette re-
dondance.Dans sa forme de base, l’équation de phase 28 est problématique.

Les deux termes exponentiels complexes, peuvent, tout à fait, selon
les valeurs des pistons instrumentaux s’ajouter de façon constructive
ou desctructive, ce qui se traduit par une mesure de la phase pou-
vant prendre des valeurs complètemet aléatoires (voir la figure 48).
C’est précisément ce qui a justifié l’utilisation d’un masque impo-
sant la condition de stricte non-redondance. Cependant, en présence
d’optique adaptative, cette équation peut être linéarisée. Les termes
instrumentaux supposés être suffisamment petits (Dj << 1) pour
permettre d’écrire le nouveau système 64 : 64. Avec la phase instrumentale linéari-

sée, des simplifications s’opèrent, telle
qu’ici où les deux termes DjAB et
DjBC s’additionnent pour ne laisser
que DjAC (théorème de Chasles).F(A � C) = FO(A � C) + DjAC (29)

F(B � C) ⇡ FO(B � C) +
1
2

DjAC. (30)

Comme dans le scénario précédent, ce système d’équation peut
être réécrit sous forme matricielle, requérant l’introduction d’une
nouvelle matrice (diagonale) R appelée matrice de redondance, telle
que :

F = FO + R
�1 · A · j (31)

avec cette fois :

A =

"
1 0 �1
1 0 �1

#
R =

"
1 0
1 2

#
(32)

On peut définir une nouvelle relation de clôture, matérialisée par
un nouvel opérateur K s’appliquant par la gauche tel que K · R

�1 ·

62 repousser les limites de la diffraction pour l’astronomie à haute résolution
angulaire

que les lignes de base (A-B), (B-C) et (C-A) soient non redondantes,
comme représenté dans la figure 49.

Figure 49: A gauche : représentation
schématique d’un interféromètre à trois
sous-ouvertures A,B et C formant un
triangle non-redondant. A droite : re-
présentation du plan de Fourier couvert
par ce système : trois mesures de phase
pour les lignes de base (A-B), (A-C) et
(B-C) sont possibles.

Les équations décrivant la phase qui peut être mesurée dans l’es-
pace de Fourier pour ces trois bases interférométriques s’écrivent de
la façon suivante :

F(A � B) = FO(A � B) + (jA � jB)

F(A � C) = FO(A � C) + (jA � jC)

F(B � C) = FO(B � C) + (jB � jC).

où F(X�Y) représente la phase mesurée pour la base (X-Y), FO(X�
Y) la phase attendue de la source pointée et la différence (jX � jY),
le piston instrumental affectant cette même base. Ce système d’équa-
tions peut être réécrit de façon plus compacte sous forme matricielle,
si l’on introduit les vecteurs à trois composantes F, FO et j, ainsi
qu’une matrice A tels que :

F = FO + A · j (24)

A =

2

64
1 �1 0
1 0 �1
0 1 �1

3

75 (25)

La matrice A est appelée matrice de transfert de phase.
Elle décrit comment la phase instrumentale j se propage dans le
plan de Fourier pour polluer la mesure des phases intrinsèques à
l’objet que l’on souhaite caractériser. La relation de clôture classique,
qui combine les lignes du système d’équations de façon à créer une
relation ne contenant aucun terme dépendant de j, peut être repen-
sée comme l’application d’un opérateur linéaire K, s’appliquant par
la gauche, de telle sorte que K · A = 0. La solution évidente ici :
K = [ 1 �1 1 ], appliquée par la gauche à l’équation 24, vérifie :

K · F = K · FO , (26)

ce qui est une reformulation algébrique de la propriété désirée de la
clôture de phase : le produit K · F ne dépend plus que des proprié-
tés de l’objet (FO). Une fois ce modèle et cette réécriture compris, on
peut passer au scénario suivant, utilisant lui aussi trois ouvertures
A, B et C mais cette fois ci placées en ligne, de telle sorte que les
bases (A-B) et (B-C) soient de la même longueur, comme représenté

64 repousser les limites de la diffraction pour l’astronomie à haute résolution
angulaire

A = 0. La solution : K = [ 1 �2 ] vérifie cette équation. C’est une
forme généralisée de clôture de phase (généralisée car elle fait in-
tervenir la redondance), que j’ai choisi d’appeler noyau de phase, ou
kernel, car le vecteur contenu dans cet opérateur fait partie du noyau
de la matrice de transfert de phase A.

Pour cet exemple spécifique, le passage par une écriture matri-
cielle est une complication discutable et le véritable potentiel de ce
formalisme devient plus évident lorsqu’on l’utilise pour traiter le cas
d’ouvertures plus riches, comme va le montrer le dernier des scéna-
rios élémentaires, représenté dans la figure 51, n’impliquant qu’une
ouverture de plus que les cas précédents.

Figure 51: A gauche : représenta-
tion schématique d’un interfèromètre
à quatre sous-ouvertures A, B, C et
D ; formant un système redondant en
forme de losange. A droite : le plan de
Fourier couvert par ce système. Cette
configuration redondante donne accès
à quatre lignes de bases distinctes, dont
deux redondantes d’ordre 2.

Avec les matrices de transfert de phase A et de redondance R en
place, la même équation 31 s’applique. Le contenu des matrices doit
être mis à jour. Il faut choisir une convention pour l’ordre dans lequel
on écrit les équations correspondant aux différentes bases dans le
plan de Fourier : ma convention est de parcourir le plan de Fourier
de la gauche vers la droite d’abord, et de haut en bas ensuite, ce
qui donne la séquence suivante : (D-B), (A-B), (D-A) et (A-C). Il faut
de la même façon, choisir un ordre pour les sous-ouvertures : pour
aider à la lecture, je choisis ici de prendre les ouvertures dans l’ordre
alphabétique. Avec ces conventions, les matrices s’écrivent :

A =

2

6664

0 �1 0 �1
1 �1 �1 1

�1 �1 1 1
1 0 �1 0

3

7775
R =

2

6664

1 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1

3

7775
(33)

Cette fois ci, deux noyaux ou relations de clôture généralisée sont
possibles : on peut ainsi vérifier que K · R

�1 · A = 0 lorsque :

K =

"
1 �2 0 1
1 0 �2 �1

#
. (34)

Recherche automatisée des kernels

Tout l’art de l’approche proposée repose dans la bonne te-
nue d’un modèle qui permet de savoir quelles combinaisons d’ou-
vertures contribuent aux termes de pistons Djk

i pour la composante
de Fourier d’indice k : cette connaissance est contenue dans la ma-
trice de transfert de phase A. Au delà des exemples élémentaires

Redundancy

Redundancy:  
repeated baseline 
(distance+orientation)

Non redundancy

HDR F. Martinache

THE KERNEL PHASE PRINCIPLE

http://frantzmartinache.eu/static/index.html

Examples of masks

34



` 

     
SPHERE User Manual 

PAGE : 15 / 116 
 

 

 
 
Figure 3: Layout of the SPHERE 7-hole aperture mask design projected on the 8m primary mirror. 
Each pair of holes (baseline) produces a set of interference fringes. The three images on the right are 
how the holes are located with respect to the full pupil of the telescope as seen by the 3 instruments. 
In the case of IRDIS, the mask has been mounted with a 90º offset and one of the holes is tangent 
with the telescope spider. 
 

Science case examples 
Besides imaging of exoplanets and companions around stars, there are other science opportunities 
opened by SPHERE. 
1) The close environment around bright stars 
Good/median AO performance is obtained for stars up to R = 11 mag (~9.3 for ZIMPOL with the 
BS_GREY)  and much poorer performance but with relatively stable AO loops for stars as faint as R 
= 13. For fainter stars, AO loops will open quite often (see Section 6). The field of views (FOVs) are 
1.73’’x1.73” for IFS,  3.5’’x3.5” for ZIMPOL  and 11’’x11” for IRDIS, respectively. 
2) Circumstellar emission much fainter than the stellar halo 
The suppression of the stellar PSF is for SPHERE much improved compared to previous instruments 
(e.g., NACO). This is in particular true at small separation angles from the star between 1 and 20 λ/D. 
Beside the high image quality and PSF stability of the instrument, there are dedicated data reduction 
techniques based on differential imaging to enhance the contrast of circumstellar emission further 
(ADI, PDI, SDI). 
3) High angular resolution observations will support studies of stellar ejecta, binaries at small 
separations, stellar proper motions, solar system objects, etc. 
 

IRDIS IFS ZIMPOL

H3 YJ N_R

DESIGN

THE KERNEL PHASE: Example of NRM
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SPHERE data

HD142527

THE KERNEL PHASE: Example of NRM
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HD142527 and its companion at 73 mas (11.4 au), Claudi+ 2019

R. Claudi et al.: SPHERE dynamical and spectroscopic characterization of HD 142527B

Fig. 1. Non-coronagraphic IRDIFS_EXT and SAM images of the HD 142527 system. Upper panel: images acquired on June 13, 2016. Left panel:
PCA post-processing IFS image (averaged over all channels). The red cross marks the position of the central star. In this image the companion
of HD 142527 is clearly visible. Right panel: central part of the PCA post-processing IRDIS image of HD 142527. Central panel: composition of
the three RDI post-processing IFS images (from left to right: May 2015, March 2016, and June 2016). The orbital motion of B is clearly detected.
Bottom panel: reconstructed images produced from the SAM data using the MiRA algorithm. The images show that we observe significant
orbital motion for the companion HD 142527B between the SAM epochs, and that the point-source model used to calculate its position is a good
approximation to the observed structure

used to evaluate the S/N is fully described in Zurlo et al. 2014),
but it is only marginally resolved in the IRDIS frames because
of the very small angular separation of the companion and the
less favorable pixel scale of IRDIS. Therefore, we did not use
the IRDIS non-coronagraphic data for the astrometric and pho-
tometric characterization of HD 142527B. The central panel of
the same figure shows a composition of three post-processing
IFS images of the HD 142527 system taken at di↵erent epochs
(May 2015, March 2016, and June 2016). The companion is
also clearly visible in the SAM data with an S/N greater than

60 with IRDIS and greater than 40 with IFS. The S/N in the
SAM observations was calculated by comparison of the best-
fit flux ratio with the detection limits.We used the MiRA image
reconstruction algorithm (Thiébaut 2008) to produce the images
in the bottom panel of Fig. 1. MiRA uses an inverse-problem
approach to reconstruct an image from the limited informa-
tion provided by the closure phases and power spectrum. The
images confirm that the data are consistent with a binary com-
panion and show its orbital motion between the IFS and SAM
datasets.

A96, page 5 of 15

IFS

SAM  
(reconstruction with MiRA)

THE KERNEL PHASE: Example of SPHERE data

Ligi+, in prep.
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Contrast limits

THE KERNEL PHASE: Example of SPHERE data

15th first kernels

Ligi+, in prep.
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F. Martinache et al.: Kernel-phase: aperture modeling prescriptions

Fig. 5. Comparison of the self-calibrating performance of the kernel-phase analysis of a single image for three discrete models of the same
aperture. Each of the three panels features, side by side, a 2D representation of the discrete aperture model used and a plot of the kernels extracted
from the image of a point source (the calibration error) in the presence of either coma (the orange curve) or a three-cycle sinusoidal aberration
(the red curve) and how they compare to the signal of a 100:1 contrast binary (the blue curve). Top panels: reference binary model of the SCExAO
pupil, with a 42 cm pitch; middle panel: denser model with a 21 cm pitch that more accurately matches the fine structures of the telescope;
third panel: model that uses the original 42 cm pitch grid, but it includes the transmission function.

A72, page 5 of 12

Martinache+ 2020

PHARO

THE KERNEL PHASE: Example of PHARO data

Denser aperture model

Transmission model 

→ Reduction of the 
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• The Kernel phase approach 
Toward the detection of exoplanets with interferometry 

• Going beyond 
Kernel-nuller, SKA… 
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F. Martinache and M. J. Ireland: Kernel-nulling interferometry

a phase reference so that phase or piston values are quoted
relative to this sub-aperture. The remaining degrees of freedom
form a three-parameter (correlated) piston vector p that trans-
lates into the chromatic phase ' = 2⇡p/�. Assuming that the
source is unresolved by the interferometer, a first order Taylor
expansion of piston dependance of the input electric field simply
writes as:

Ek = exp (� j'k) ⇡ 1 � j'k. (3)

Plugging these electric field as inputs to the nulling matrix
N, one can write the equations for the three nulled intensities,
valid to second order in input phase:

x = 1
4
⇥
2
66666664

('1 � '2 � '3)2

(�'1 + '2 � '3)2

(�'1 � '2 + '3)2

3
77777775 . (4)

Further expansion shows that the piston induced leak of the
nuller is a function of six parameters: three second order terms
('k)2 and three crossed-terms 'k ⇥ 'l. With only the three rela-
tions summarized by Eq. (4), the problem is underconstrained
and does not permit the building of a set of kernels. To build
kernels from the output of a combiner, one needs to further
break down each nuller output into two non-symmetric out-
puts that will help discriminate variations in the two parts of
the complex visibilities, when properly mixed. This split-and-
mix operation can be represented by the following complex
linear operator S that enables the proper sensing of the nuller
output:

S = 1p
4
⇥

2
6666666666666666666664

1 ei✓ 0
�e�i✓ 1 0

1 0 ei✓

�e�i✓ 0 1
0 1 ei✓

0 �e�i✓ 1

3
7777777777777777777775

, (5)

where ✓ is a pre-defined phase o↵set and 1/
p

4 (= 0.5) a factor
that accounts for the total flux preservation when splitting each
nulled output into four. A detector placed downstream of this
final function records a now six-component intensity vector x
recording the square modulus associated to each output.

A practical implementation of a nuller has to deal with not
only residual starlight and phase-noise, but also fluctuating back-
grounds and detector noise. This means that a temporal modu-
lation function is also required in addition to the nulling func-
tion. Figure 1 shows a schematic representation of a possible
interface between the two functions. By modulating the phase
shifters, the 6 nulled outputs can be rapidly permuted, enabling
the final signal to be obtained from synchronously demodulated
outputs. In addition, for faint targets, the starlight may not clearly
be detectable above a variable thermal background, meaning that
even the star light channel may need to be modulated, in order
to apply the correct normalisation to the planet light outputs.
In any case, maintaining long-term amplitude balance between
the inputs requires either modulation or independent photomet-
ric channels.

The concept described in the rest of the paper will ignore
these background fluctuations considerations and the modulation
that would otherwise be required to account for it: the nulling
and sensing functions can therefore be combined into a single
six-by-four operator M that takes the four input complex ampli-
tudes incoming from the four telescopes and produces six nulled
output complex amplitudes:

Fig. 1. Schematic representation of the proposed two-stage nuller archi-
tecture. The first 4 ⇥ 4 coupler stage implements the nulling function
described by the matrix N introduced in Sect. 2.1. The second 3 ⇥ 6
coupler implements the sensing function described by the matrix S. In
between the two stages, modulated phase shifters are inserted so as to
eliminate background fluctuations.

M = 1
4
⇥

2
6666666666666666666664

1 + ei✓ 1 � ei✓ �1 + ei✓ �1 � ei✓

1 � e�i✓ �1 � e�i✓ 1 + e�i✓ �1 + e�i✓

1 + ei✓ 1 � ei✓ �1 � ei✓ �1 + ei✓

1 � e�i✓ �1 � e�i✓ �1 + e�i✓ 1 + e�i✓

1 + ei✓ �1 � ei✓ 1 � ei✓ �1 + ei✓

1 � e�i✓ �1 + e�i✓ �1 � e�i✓ 1 + e�i✓

3
7777777777777777777775

. (6)

A detector placed downstream of the combiner now records
a six-component intensity vector x = ||M · E||2. To compare the
properties of this modified nuller design to those of the classical
one, Fig. 2 presents a series of transmission curves of the two
nullers for an in-line non-redundant array of coordinates listed
in Table 1, and observing in the L-band (� = 3.6 µm), as a func-
tion of source position o↵set relative to the null. The phase shift-
ing parameter of the mixing function will from now on be set
to ✓ = ⇡/2, as this specific value allows to write all matrices
explicitly.

On-axis, the proposed architecture still behaves like a nuller
with zero transmission when operating in perfect conditions.
Besides the expected multiplication of outputs going from the
classical to the modified nuller design, a major di↵erence lies
in the symmetry properties of the outputs: whereas the classi-
cal nuller features response curves that are symmetric relative
to the on-axis reference, the modified nuller outputs are anti-
symmetric and therefore allow to discriminate a positive from a
negative o↵set position, and give a stronger constraint on the
position of a companion around a bright star, from a single
observation.

2.2. Kernel-nulling

The motivation for the proposed architecture is the ability to
build from the six outputs of the combined for each acquisition, a
sub-set of observable quantities that exhibit some further robust-
ness against residual piston errors. In a classical (ie. non-nulling)
combiner, the four input beam interferometer gives access to up
to six distinct baselines that can produce up to three-closure
phases (Monnier 2000), so one expects a satisfactoy nuller
architecture should produce three kernels on a non-redundant
array.

With one of the four sub-apertures chosen as zero-reference
for the phase, the aperture phase of a coherent point-like source
reduces to a three-component vector '. When everything is in
phase (' = 0), the system sits on the null, where the first order
derivative terms of both phase and amplitude are all zeros (see
the bottom panel of Fig. 2). Piston-induced leaked intensity �x
by the nuller will therefore be dominated by second order terms,
whose impact can be estimated by measuring the local curvature.
With three degrees of freedom, six second order terms need to
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https://www.youtube.com/watch?v=vn6280hGTL8

The Kernel nuller
Idea first introduced by Bracewell (1978).


Bright output

Dark output

Where we look at the 
signal of the planet

Rotation of the 
interferometer with the 
star at the center

• Star constantly nulled

• Modulation of the signal 

where the planet is 
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A&A 619, A87 (2018)

Fig. 4. Transmission map for the three nulled outputs for a VLTI 4-UT aperture geometry over a ±15 mas field of view. A five pointed star marks
the location of the center of the field, where the rejection by the nuller is optimal. The three maps share the same colorbar, with a transmission that
ranges from zero on the null to close to 100% (4 FT) for a few places in the field whose positions are dictated by the geometry of the interferometric
array.

Fig. 5. Transmission map for the six outputs of the modified nuller design for a VLTI 4-UT aperture geometry over a ±15 mas field of view. A
five pointed star marks the location of the center of the field, where the rejection by the nuller is optimal. All maps share the same colorbar, with
a transmission that range from zero on the null to 50% of the total flux collected by the four apertures (2 FT). Compared to the maps provided in
Fig. 4, the amplitude of the colorscale was reduced by a factor of 2.

3.3. Phase error robustness

We use the result of a series of simulated nulling observations
that demonstrate the interest of the modified architecture and
its kernel. As reminded by the di↵erent transmission maps used
in the previous section, the detectability of an o↵-axis structure
by the nuller is not uniform over the field of view. To ease our
description, we arbitrarily place a companion with a contrast
c = 10�2 at the coordinates (+1.8, +4.8) mas in the system used
so far, where the sensitivity of the nuller N is near optimal for

the VLTI 4-UT (at zenith) configuration, as can be guessed by
looking at the global throughput map shown in Fig. 6.

Figure 8 present the results of these simulations (a total of
104 acquisitions per simulation), in the presence of 50 nm resid-
ual piston excursions. Each sub-figure features the histograms
of outputs at the di↵erent stages of the concept. The null-depth
bin values quoted in these figures are in units consistent with the
transmission maps shown in Figs. 4 and 5: the null-depth bin
for a given output is proportional to the contrast of the compan-
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The Kernel nuller
Idea first introduced by Bracewell (1978).

Application to the case of the VLTI: 4 telescopes

Kernel « cleaned » 
from perturbations

Same properties 
as closure phases
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SKA in South Africa SKA in Australia

(artist impression, www.skatelescope.org) 

THE SKA FOR EXOPLANETS

SKA (Square Kilometer Array): Radio wavelengths interferometer array


« Cradle of life » section 
• Detect radio-emission from earth-analogous high-power radars (Siemion+ 2014)

• Magnetic field of exoplanets (aurorae)

• Search for pre-biotic molecules and amino acids

• Grain growth (cm-sized) particules in proto-planetary disks (Hoare+ 2014)
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Thank you!
Roxanne Ligi 
June 15, 2021 
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