Practice session I Interferometry basics with RSPRO

Corrections

2 Our first model : the uniform disk

It is now time to play with a first model. The one already loaded in the *Example1.asprox* file is a uniform disk. It is the grounding of almost all interferometric-data analysis, and it is very often used, not only to perform stellar diameters fits, but also first-order interpretations of any extended objects.

Question : What is the visibility function of a uniform disk?

Question : Give the expression of the first value for which the visibility becomes zero?

This corresponds to the interferometer spatial (or angular) resolution, i.e. the smallest object that can be fully resolved.

Question : Give the same expression with the stellar diameter and wavelength expressed in mas and $\mu {\rm m},$ respectively.

Now look at the **OIFits viewer** tab. Plot the visibility amplitude and phase (VISAMP and VISPHI) as a function of the baseline length (i.e. RADIUS in the software). To do so click on the three dot (...) button at the bottom-right corner, and then select the good X and Y Axes. Roughly measure on the plot the smallest baseline for which the visibility becomes zero and assume that the observations were made in the B band (i.e., at λ =0.46 μ m).

Question : What is our object diameter in mas?

Imagine that you obtained a single visibility measurement (i.e. for a single baseline) and assume that the studied object looks like a uniform disk.

$\label{eq:Question:In which case} (s) \ can \ you \ determine \ an \ unambiguous \ diameter?$

Now look at the phase. It is always equal to 0° or 180° . The jump between these two values happens when the visibility amplitude is equal to zero.

Question : Explain this phase signal.

Question : Finally, note the baseline length corresponding to the first zero of visibility and the amplitude of the second-lobe of the visibility function?

2 Our first model : the uniform disk

It is now time to play with a first model. The one already loaded in the *Example1.asprox* file is a uniform disk. It is the grounding of almost all interferometric-data analysis, and it is very often used, not only to perform stellar diameters fits, but also first-order interpretations of any extended objects.

Question : What is the visibility function of a uniform disk?

Question : Give the expression of the first value for which the visibility becomes zero?

This corresponds to the interferometer spatial (or angular) resolution, i.e. the smallest object that can be fully resolved.

Question : Give the same expression with the stellar diameter and wavelength expressed in mas and $\mu {\rm m},$ respectively.

Now look at the **OIFits viewer** tab. Plot the visibility amplitude and phase (VISAMP and VISPHI) as a function of the baseline length (i.e. RADIUS in the software). To do so click on the three dot (...) button at the bottom-right corner, and then select the good X and Y Axes. Roughly measure on the plot the smallest baseline for which the visibility becomes zero and assume that the observations were made in the B band (i.e., at λ =0.46 μ m).

Question : What is our object diameter in mas?

Imagine that you obtained a single visibility measurement (i.e. for a single baseline) and assume that the studied object looks like a uniform disk.

Question : In which case(s) can you determine an unambiguous diameter?

Now look at the phase. It is always equal to 0° or 180° . The jump between these two values happens when the visibility amplitude is equal to zero.

Question : Explain this phase signal.

Question : Finally, note the baseline length corresponding to the first zero of visibility and the amplitude of the second-lobe of the visibility function?

 $V(\rho) = 2 \frac{J_{1(\pi\rho\theta)}}{\pi\rho\theta}$

 $\rho = B/\lambda$ is the spatial frequency (cycles/rad) θ is the star angular diameter (rad) J_1 is the first order Bessel function.

2 Our first model : the uniform disk

It is now time to play with a first model. The one already loaded in the *Example1.asprox* file is a uniform disk. It is the grounding of almost all interferometric-data analysis, and it is very often used, not only to perform stellar diameters fits, but also first-order interpretations of any extended objects.

Question : What is the visibility function of a uniform disk?

Question : Give the expression of the first value for which the visibility becomes zero?

This corresponds to the interferometer spatial (or angular) resolution, i.e. the smallest object that can be fully resolved.

Question : Give the same expression with the stellar diameter and wavelength expressed in mas and $\mu {\rm m},$ respectively.

Now look at the **OIFits viewer** tab. Plot the visibility amplitude and phase (VISAMP and VISPHI) as a function of the baseline length (i.e. RADIUS in the software). To do so click on the three dot (...) button at the bottom-right corner, and then select the good X and Y Axes. Roughly measure on the plot the smallest baseline for which the visibility becomes zero and assume that the observations were made in the B band (i.e., at λ =0.46 μ m).

Question : What is our object diameter in mas?

Imagine that you obtained a single visibility measurement (i.e. for a single baseline) and assume that the studied object looks like a uniform disk.

Question : In which case(s) can you determine an unambiguous diameter?

Now look at the phase. It is always equal to 0° or 180° . The jump between these two values happens when the visibility amplitude is equal to zero.

Question : Explain this phase signal.

Question : Finally, note the baseline length corresponding to the first zero of visibility and the amplitude of the second-lobe of the visibility function?

 $V(\rho) = \frac{2 \frac{J_{1}(\pi \rho \theta)}{\pi \rho \theta}}{2 \frac{J_{1}(\pi \rho \theta)}{\pi \rho \theta}}$

 $\rho = B/\lambda$ is the spatial frequency (cycles/rad) θ is the star angular diameter (rad) J_1 is the first order Bessel function.

 $\theta = 1.22 \lambda B$

2 Our first model : the uniform disk

It is now time to play with a first model. The one already loaded in the *Example1.asprox* file is a uniform disk. It is the grounding of almost all interferometric-data analysis, and it is very often used, not only to perform stellar diameters fits, but also first-order interpretations of any extended objects.

Question : What is the visibility function of a uniform disk?

Question : Give the expression of the first value for which the visibility becomes zero?

This corresponds to the interferometer spatial (or angular) resolution, i.e. the smallest object that can be fully resolved.

Question : Give the same expression with the stellar diameter and wavelength expressed in mas and $\mu {\rm m},$ respectively.

Now look at the **OIFits viewer** tab. Plot the visibility amplitude and phase (VISAMP and VISPHI) as a function of the baseline length (i.e. RADIUS in the software). To do so click on the three dot (...) button at the bottom-right corner, and then select the good X and Y Axes. Roughly measure on the plot the smallest baseline for which the visibility becomes zero and assume that the observations were made in the B band (i.e., at λ =0.46 μ m).

Question : What is our object diameter in mas?

Imagine that you obtained a single visibility measurement (i.e. for a single baseline) and assume that the studied object looks like a uniform disk.

Question : In which case(s) can you determine an unambiguous diameter?

Now look at the phase. It is always equal to 0° or 180° . The jump between these two values happens when the visibility amplitude is equal to zero.

Question : Explain this phase signal.

Question : Finally, note the baseline length corresponding to the first zero of visibility and the amplitude of the second-lobe of the visibility function?

 $V(\rho) = \frac{2 \frac{J_{1}(\pi \rho \theta)}{\pi \rho \theta}}{2 \frac{J_{1}(\pi \rho \theta)}{\pi \rho \theta}}$

 $\rho = B/\lambda$ is the spatial frequency (cycles/rad) θ is the star angular diameter (rad) J_1 is the first order Bessel function.

 $\theta = 1.22 \lambda \mid B$

2 Our first model : the uniform disk

It is now time to play with a first model. The one already loaded in the *Example1.asprox* file is a uniform disk. It is the grounding of almost all interferometric-data analysis, and it is very often used, not only to perform stellar diameters fits, but also first-order interpretations of any extended objects.

Question : What is the visibility function of a uniform disk?

Question : Give the expression of the first value for which the visibility becomes zero?

This corresponds to the interferometer spatial (or angular) resolution, i.e. the smallest object that can be fully resolved.

Question : Give the same expression with the stellar diameter and wavelength expressed in mas and μ m, respectively.

Now look at the **OIFits viewer** tab. Plot the visibility amplitude and phase (VISAMP and VISPHI) as a function of the baseline length (i.e. RADIUS in the software). To do so click on the three dot (...) button at the bottom-right corner, and then select the good X and Y Axes. Roughly measure on the plot the smallest baseline for which the visibility becomes zero and assume that the observations were made in the B band (i.e., at λ =0.46 μ m).

Question : What is our object diameter in mas?

Imagine that you obtained a single visibility measurement (i.e. for a single baseline) and assume that the studied object looks like a uniform disk.

Question : In which case(s) can you determine an unambiguous diameter?

Now look at the phase. It is always equal to 0° or 180° . The jump between these two values happens when the visibility amplitude is equal to zero.

Question : Explain this phase signal.

Question : Finally, note the baseline length corresponding to the first zero of visibility and the amplitude of the second-lobe of the visibility function?

 $V(\rho) = \frac{2 \frac{J_{1}(\pi \rho \theta)}{\pi \rho \theta}}{2 \frac{J_{1}(\pi \rho \theta)}{\pi \rho \theta}}$

 $\rho = B/\lambda$ is the spatial frequency (cycles/rad) θ is the star angular diameter (rad) J_1 is the first order Bessel function.

 $\theta = 1.22 \lambda \mid B$

💋 Aspro2 - Example1.asprox [c1]

OlFits done.

2 Our first model : the uniform disk

It is now time to play with a first model. The one already loaded in the *Example1.asprox* file is a uniform disk. It is the grounding of almost all interferometric-data analysis, and it is very often used, not only to perform stellar diameters fits, but also first-order interpretations of any extended objects.

Question : What is the visibility function of a uniform disk?

Question : Give the expression of the first value for which the visibility becomes zero?

This corresponds to the interferometer spatial (or angular) resolution, i.e. the smallest object that can be fully resolved.

Question : Give the same expression with the stellar diameter and wavelength expressed in mas and μ m, respectively.

Now look at the **OIFits viewer** tab. Plot the visibility amplitude and phase (VISAMP and VISPHI) as a function of the baseline length (i.e. RADIUS in the software). To do so click on the three dot (...) button at the bottom-right corner, and then select the good X and Y Axes. Roughly measure on the plot the smallest baseline for which the visibility becomes zero and assume that the observations were made in the B band (i.e., at λ =0.46 μ m).

Question : What is our object diameter in mas?

Imagine that you obtained a single visibility measurement (i.e. for a single baseline) and assume that the studied object looks like a uniform disk.

Question : In which case(s) can you determine an unambiguous diameter?

Now look at the phase. It is always equal to 0° or 180° . The jump between these two values happens when the visibility amplitude is equal to zero.

Question : Explain this phase signal.

Question : Finally, note the baseline length corresponding to the first zero of visibility and the amplitude of the second-lobe of the visibility function?

 $V(\rho) = 2 \frac{J_{1(\pi \rho \theta)}}{\pi \rho \theta}$

 $\rho = B/\lambda$ is the spatial frequency (cycles/rad) θ is the star angular diameter (rad) J_1 is the first order Bessel function.

 $\theta = 1.22 \lambda \setminus B$

 $\theta = 4 \text{ mas}$

File Editerret of the state of

Practice session I: Interferometry basics with ASPRO

argets	s	p noip							Main settings					Configuratio	n(s)				Constrair	its	Tentia
		bad							Interferomete	er DEMO			-	S0 S1	S2 S3 S4 S5	S6 S7 S8 S9	S10 S11 S12	S13 S14 S15		Night restriction	on 🗆
	♦ 00:0	0:00.000 89:	00:00.000)			Edito	r	Instrumer	DEMO_SPATIAL			-	S0 S7					l Min. Eleva	ate 2010/09/21 tion 30 Win	
							8	Sky											Status	Informa	tion
																			Juius.		uon
Notebo	ook Ma	observal	bility UV	coverage	OIFits view	er															
plot	data																				
								DE	EMO - DEMO [0.460) μm - 0.460 μm] - 9	50-S1-S2-S3-S4-S5	-\$6-\$7-\$8-\$9	-S10-S11-S	S12-S13-S14	-\$15-\$16						
	1.1									Day: 2010-09-2	21 - Source: 00:00:	00.000 89.00.0	0.000								
	1.0 • • • 0.9 • • • • • •	· · · · · ·	^ <u>^</u>	.																	
ISAMP	0.7			^																	
>	0.4					* * * *	A _														
	0.1 0.13:						^	· · · · ·	38.995				* * * * *	· · · · · · · · · · · · · · · · · · ·	· · · · ·			.	* * * * * *	Made by OIFritsExplorer/JMMC
-	180							· · · ·	• • • • • • • • •							•	• • • • •	• • • • •	· · · · ·		
1	150																				
1	100																				
eg)	50																				
p) II	0							•			• •										_
SPH	50																				
2	-50																				
-1	100																				
-1	150																				
-2	200								38.995												Made by OIFitsExplorer/JMMC
	0	5	10)	15	20	25	30	35 4	0 45	50 RADIUS (55 m)	60	65	70	75	80	85	90	95	100 105
j bido s	ArrName:	DEMO InsName	: DEMO_SPA	TIAL_0.46-1c	ch Date: 20	010-09-21	Baseline: S4-S	8 Config: 80-	\$1-\$2-\$3-\$4-\$5-\$6-\$7-	88-89-810-811-812-81	3-814-815-816 Targe	t: 00:00:00.000	89:00:00.00	00							
illue 1	Table: OI	_VIS#3 Row:	61 Col:	eq: 04.77 MA 0 File: As	spro2_00_00_0	00_000_89_00	_00_000_DEMO_D	eeg nour ang MO_SPATIAL_0.4	6-1ch_30-31-32-33-34-	S5-S6-S7-S8-S9-S10-S	11-512-513-514-515-51	6_2010-09-21.fi	ts								
nfos:																					
😂 🗛	D F Sho	w VISAMP, VIS	PHI vs RAD	IUS														Color	by effective w	av 💌 🗌 Skip	o Flagged 📃 Draw lines 🛛
Axis	RADIUS															-	log 🖌 inc. 0	🔾 auto 🖲 de	fault 🔾 fixed		106.0357
Avec	VISAMP															-	log 🗌 inc. 0	🔾 auto 🖲 de	fault 🔾 fixed	-0.1	1.1
Axes	VISPHI															•	log 🗌 inc. 0	🔾 auto 🖲 de	fault 🔾 fixed	200	200
																					

2 Our first model : the uniform disk

It is now time to play with a first model. The one already loaded in the *Example1.asprox* file is a uniform disk. It is the grounding of almost all interferometric-data analysis, and it is very often used, not only to perform stellar diameters fits, but also first-order interpretations of any extended objects.

Question : What is the visibility function of a uniform disk?

Question : Give the expression of the first value for which the visibility becomes zero?

This corresponds to the interferometer spatial (or angular) resolution, i.e. the smallest object that can be fully resolved.

Question : Give the same expression with the stellar diameter and wavelength expressed in mas and $\mu {\rm m},$ respectively.

Now look at the **OIFits viewer** tab. Plot the visibility amplitude and phase (VISAMP and VISPHI) as a function of the baseline length (i.e. RADIUS in the software). To do so click on the three dot (...) button at the bottom-right corner, and then select the good X and Y Axes. Roughly measure on the plot the smallest baseline for which the visibility becomes zero and assume that the observations were made in the B band (i.e., at λ =0.46 μ m).

Question : What is our object diameter in mas?

Imagine that you obtained a single visibility measurement (i.e. for a single baseline) and assume that the studied object looks like a uniform disk.

Question : In which case(s) can you determine an unambiguous diameter?

Now look at the phase. It is always equal to 0° or 180° . The jump between these two values happens when the visibility amplitude is equal to zero.

Question : Explain this phase signal.

Question : Finally, note the baseline length corresponding to the first zero of visibility and the amplitude of the second-lobe of the visibility function?

 $V(\rho) = 2 \frac{J_{1}(\pi \rho \theta)}{\pi \rho \theta}$

 $\rho = B/\lambda$ is the spatial frequency (cycles/rad) θ is the star angular diameter (rad) J_1 is the first order Bessel function.

 $\theta = 1.22 \lambda \backslash B$

 $\theta = 250 \lambda \setminus B$

 θ = 4 mas

V>0.132

Below this value there are other lobes of the visibility that match the same values.

2 Our first model : the uniform disk

It is now time to play with a first model. The one already loaded in the *Example1.asprox* file is a uniform disk. It is the grounding of almost all interferometric-data analysis, and it is very often used, not only to perform stellar diameters fits, but also first-order interpretations of any extended objects.

Question : What is the visibility function of a uniform disk?

Question : Give the expression of the first value for which the visibility becomes zero?

This corresponds to the interferometer spatial (or angular) resolution, i.e. the smallest object that can be fully resolved.

Question : Give the same expression with the stellar diameter and wavelength expressed in mas and $\mu {\rm m},$ respectively.

Now look at the **OIFits viewer** tab. Plot the visibility amplitude and phase (VISAMP and VISPHI) as a function of the baseline length (i.e. RADIUS in the software). To do so click on the three dot (...) button at the bottom-right corner, and then select the good X and Y Axes. Roughly measure on the plot the smallest baseline for which the visibility becomes zero and assume that the observations were made in the B band (i.e., at λ =0.46 μ m).

Question : What is our object diameter in mas?

Imagine that you obtained a single visibility measurement (i.e. for a single baseline) and assume that the studied object looks like a uniform disk.

Question : In which case(s) can you determine an unambiguous diameter?

Now look at the phase. It is always equal to 0° or 180° . The jump between these two values happens when the visibility amplitude is equal to zero.

Question : Explain this phase signal.

Question : Finally, note the baseline length corresponding to the first zero of visibility and the amplitude of the second-lobe of the visibility function?

 $V(\rho) = 2 \frac{J_{1(\pi \rho \theta)}}{\pi \rho \theta}$

 $\rho = B/\lambda$ is the spatial frequency (cycles/rad) θ is the star angular diameter (rad) J_1 is the first order Bessel function.

 $\theta = 1.22 \lambda \setminus B$

 $\theta = 250 \lambda \setminus B$

 θ = 4 mas

V>0.132

Below this value there are other lobes of the visibility that match the same values.

File Edentify WLTI School of Interferometry Practice Session I: Interferometry basics 🕼 Targets Main settings Configuration(s) Q V Simbad Interferometer DEMO S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 Night restriction S0 S7 Date 2010/09/21 ♦ 00:00:00.000 89:00:00.000 -Instrument DEMO SPATIAL Editor Min. Elevation 30 Wind 0 Status: 1 Information Sky Map Observability UV coverage OlFits viewer Notebook plot data DEMO - DEMO [0.460 µm - 0.460 µm] - S0-S1-S2-S3-S4-S5-S6-S7-S8-S9-S10-S11-S12-S13-S14-S15-S16 Day: 2010-09-21 - Source: 00:00:00.000 89:00:00.000 1.1 1.0 0.9 0.8 0.7 **Positive Visibility Negative Visibility Positive Visibility dWF** 0.6 0.5 0.4 Negative Visibility Phase = 0° Phase = 180° Phase = 0° Phase = 180° 0.3 0.2 0.1 0.0 OIFitsExplorer/JMM -0.1 150 100 $V(\rho) = 2^{J_{1}(\pi\rho\theta)}$ **NISPHI (deg)** Centro-symmetric object 🗇 Real Fourier Transform Phase=0° (positive number) Phase=180° (negative number) -100 -150 -200 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 0 105 RADIUS (m) [21.161, 0.638] Infos: 136 / 136 points Data: X[1.000, 100.986] Y[2.484E-4, 0.998] Data+Err: X[1.000, 100.986] Y[2.484E-4, 0.998] A D F Show VISAMP, VISPHI vs RADIUS ▼ Color by effective wav... ▼ □ Skip Flagged □ Draw lines ▼ 🗌 log 🖌 inc. 0 🔾 auto 🖲 default 🔾 fixed x Axis RADIUS ▼ 🗌 log 🔲 inc. 0 ○ auto 🖲 default 🔾 fixed VISAMP y Axes 💌 📃 log 📃 inc. 0 🔘 auto 🖲 default 🔾 fixed VISPHI

🕞 OlFits done.

2 Our first model : the uniform disk

It is now time to play with a first model. The one already loaded in the *Example1.asprox* file is a uniform disk. It is the grounding of almost all interferometric-data analysis, and it is very often used, not only to perform stellar diameters fits, but also first-order interpretations of any extended objects.

Question : What is the visibility function of a uniform disk?

Question : Give the expression of the first value for which the visibility becomes zero?

This corresponds to the interferometer spatial (or angular) resolution, i.e. the smallest object that can be fully resolved.

Question : Give the same expression with the stellar diameter and wavelength expressed in mas and $\mu {\rm m},$ respectively.

Now look at the **OIFits viewer** tab. Plot the visibility amplitude and phase (VISAMP and VISPHI) as a function of the baseline length (i.e. RADIUS in the software). To do so click on the three dot (...) button at the bottom-right corner, and then select the good X and Y Axes. Roughly measure on the plot the smallest baseline for which the visibility becomes zero and assume that the observations were made in the B band (i.e., at λ =0.46 μ m).

Question : What is our object diameter in mas?

Imagine that you obtained a single visibility measurement (i.e. for a single baseline) and assume that the studied object looks like a uniform disk.

Question : In which case(s) can you determine an unambiguous diameter?

Now look at the phase. It is always equal to 0° or 180° . The jump between these two values happens when the visibility amplitude is equal to zero.

Question : Explain this phase signal.

Question : Finally, note the baseline length corresponding to the first zero of visibility and the amplitude of the second-lobe of the visibility function?

 $V(\rho) = 2 \frac{J_{1(\pi \rho \theta)}}{\pi \rho \theta}$

 $\rho = B/\lambda$ is the spatial frequency (cycles/rad) θ is the star angular diameter (rad) J_1 is the first order Bessel function.

 $\theta = 1.22 \lambda \backslash B$

 $\theta = 250 \lambda \setminus B$

 θ = 4 mas

V>0.132

Below this value there are other lobes of the visibility that match the same values.

The object is centro-symmetric ⇔

Its Fourier Transform is Real The phase is 0 (positive number) or 180° (negative)

2 Our first model : the uniform disk

It is now time to play with a first model. The one already loaded in the *Example1.asprox* file is a uniform disk. It is the grounding of almost all interferometric-data analysis, and it is very often used, not only to perform stellar diameters fits, but also first-order interpretations of any extended objects.

Question : What is the visibility function of a uniform disk?

Question : Give the expression of the first value for which the visibility becomes zero?

This corresponds to the interferometer spatial (or angular) resolution, i.e. the smallest object that can be fully resolved.

Question : Give the same expression with the stellar diameter and wavelength expressed in mas and μ m, respectively.

Now look at the **OIFits viewer** tab. Plot the visibility amplitude and phase (VISAMP and VISPHI) as a function of the baseline length (i.e. RADIUS in the software). To do so click on the three dot (...) button at the bottom-right corner, and then select the good X and Y Axes. Roughly measure on the plot the smallest baseline for which the visibility becomes zero and assume that the observations were made in the B band (i.e., at λ =0.46 μ m).

Question : What is our object diameter in mas?

Imagine that you obtained a single visibility measurement (i.e. for a single baseline) and assume that the studied object looks like a uniform disk.

Question : In which case(s) can you determine an unambiguous diameter?

Now look at the phase. It is always equal to 0° or 180° . The jump between these two values happens when the visibility amplitude is equal to zero.

Question : Explain this phase signal.

Question : Finally, note the baseline length corresponding to the first zero of visibility and the amplitude of the second-lobe of the visibility function?

 $V(\rho) = 2 \frac{J_{1(\pi \rho \theta)}}{\pi \rho \theta}$

 $\rho = B/\lambda$ is the spatial frequency (cycles/rad) θ is the star angular diameter (rad) J_1 is the first order Bessel function.

 $\theta = 1.22 \lambda \mid B$

 $\theta = 250 \lambda \setminus B$

 θ = 4 mas

V>0.132

Below this value there are other lobes of the visibility that match the same values.

The object is centro-symmetric ⇔

Its Fourier Transform is Real The phase is 0 (positive number) or 180° (negative)

> B(V=0) ≈ 29m Amplitude ≈ 0.132

3. Few other 1D distributions

RA 444

Practice session I: Interferometry basics Cith ASPRO

3.1 Limb darkened disk

Question : Note the baseline length corresponding to the first zero of visibility and the secondlobe amplitude.

Now imagine you would estimate the size of this 4mas limb-darkened star by measuring the position of the first zero of visibility and using the formula determined for a uniform disk in the previous section.

Question : Does the star appears bigger or small than its real size? Explain why.

Question : How can you discriminate between the uniform disk and the limb darkened disk?

3.2 Gaussian distribution

Change the model to a "gaussian" (remove previous), and click on Add. Look at the new set of parameters shown in the bottom part of the window. This model has also four parameters, i.e. *flux_weight1*, x1, y1 like for all models, and *fwhm1*, the full width at half maximum of the Gaussian distribution. Let's set this value to 4 mas and then click on **Ok** to close the window.

Question : What is the Fourier transform of a Gaussian distribution?

Question : Compare the phase signal to that of the uniform disk.

Question : What is the baseline length corresponding to a visibility of 0?

3.3 Ring

Open the **Target editor** again, **Remove** the Gaussian model and **Add** a Ring model instead. This time the model has 5 parameters : $flux_weight1, x1, y1$, a diameter like the uniform disk, and also a width. Let's consider the case of a 4 mas infinitely-thin ring : diameter1=4, and width1=0.

Question : What are the baseline length corresponding to the first zero of visibility and the amplitude of the second lobe?

File Edenness the VLTI School of Interferometry

Practice session I: Interferometry basics with ASPRC

File Edition and the VLTI School of Interferometry

Practice session I: Interferometry basics with BSPRO

Target	s				Main settings	;					Configurati	ion(s)			Constraints						
Ū	Q V Simbad						Interfe	erometer DEI	MO			-	50 S1	S2 S3 S4 S5	S6 S7 S8 S	9 S10 S11 S12	2 S13 S14 S15		Night restrictio	on 🗆	i l'i
	◆ 00:00:00.000	0 89:00:00.00	0		E	ditor	Ins	strument DEI	MO_SPATIAL			•	50 57					Min. Elev	ation 30 Wir	1d 🗆 🕡	
					0	Sky							4				•	Status:	i Informat	tion	
Noteb	ook Map Obs	servability / U\	/ coverage	DIFits viewer																	
plot	data																				
							DEMO - DEMO	[0.460 μm C	- 0.460 µm] - S Day: 2010-09-2	60-S1-S2-S3-S 1 - Source: 0	64-S5-S6-S7- 0:00:00.000 8	S8-S9-S10-S1 89:00:00.000	1-\$12-\$13-\$1	4-S15-S16							
	1.1																				
	0.9	* * * _{* *}																			
	0.8		• • .																		
۵.	0.7		•																		
AM	0.5			- . .																	
Ň	0.4			-	^																
	0.3				_ ^ • •																
1	0.1					^															
(0.0 0.092					^		40,994			* * * * *			* * * * *	* * <u>*</u> * *					• • •	
2	202																			Made by OIFitsExplore	JMMC
1	150 180							* * * * *	· · · · · ·	· · · ·	* * *										
1	100																				
6	50																				
jeb)	50																				
H							•				^			• • • • •		• •					
VIS .	-50																				
-1	100																				
-1	150																				
-2	200							40.994												Made by OIFitsExplore	r/JMMC
	0 4	5 1	0 1	5 20	25	30	35	40	45	50 RAD	55 IUS (m)	60	65	70	75	80	85	90	95	100	105
hide	ArrName: DEMO In Wavelength: 0.460	usName: DEMO_SPA um Spatial F	ATIAL_0.46-1ch reg: 89.12 MA	Date: 2010-09-	21 Baseline: 3 Pos. angle: 3	S1-S7 Config: S 0.00 deg Hour a	0-51-52-53-54-55 ngle: 0.01 h	-86-87-88-89-	-810-811-812-813	-814-815-816	Target: 00:00	:00.000 89:00:00	0.000								
	Table: OI_VIS#3	Row: 21 Col:	0 File: Aspr	ro2_00_00_00_000_	89_00_00_000_DE	MO_DEMO_SPATIAL_O	.46-1ch_30-31-32	-32-34-35-36-	-37-38-39-310-31	1-512-513-514-5	315-316_2010-0	9-21.fits									
Infos:																		or by offective y	vav 🔻 🗆 Skin	Elanged Draw	lines
		r, viseni vs kai	5103																		
AXIS	AD105																	erduit U fixed		100.0357	
Axes	VISAMP															log inc.	0 🔾 auto 🖲 d	efault () fixed	-0.1	1.1	
	VISPHI														-	log inc.	0 🔾 auto 🖲 d	efault O fixed	-200	200	-
2 015	ite dono																		211 M	Provided by	10.00.00
	to dulle.																		2111	r tovided by	1103103

Practice session I: Interferometry basics Dith ASPRC

3.1 Limb darkened disk

Question : Note the baseline length corresponding to the first zero of visibility and the secondlobe amplitude.

Now imagine you would estimate the size of this 4mas limb-darkened star by measuring the position of the first zero of visibility and using the formula determined for a uniform disk in the previous section.

Question : Does the star appears bigger or small than its real size? Explain why.

Question : How can you discriminate between the uniform disk and the limb darkened disk?

3.2 Gaussian distribution

Change the model to a "gaussian" (remove previous), and click on Add. Look at the new set of parameters shown in the bottom part of the window. This model has also four parameters, i.e. *flux_weight1*, x1, y1 like for all models, and *fwhm1*, the full width at half maximum of the Gaussian distribution. Let's set this value to 4 mas and then click on **Ok** to close the window.

Question : What is the Fourier transform of a Gaussian distribution?

Question : Compare the phase signal to that of the uniform disk.

Question : What is the baseline length corresponding to a visibility of 0?

3.3 Ring

Open the **Target editor** again, **Remove** the Gaussian model and **Add** a Ring model instead. This time the model has 5 parameters : $flux_weight1, x1, y1$, a diameter like the uniform disk, and also a width. Let's consider the case of a 4 mas infinitely-thin ring : diameter1=4, and width1=0.

Question : What are the baseline length corresponding to the first zero of visibility and the amplitude of the second lobe?

B ≈ 32 m Aplitude ≈ 0.092

Limb Darkened disk

Practice session I: Interferometry basics Gith RSPRC

3.1 Limb darkened disk

Question : Note the baseline length corresponding to the first zero of visibility and the secondlobe amplitude.

Now imagine you would estimate the size of this 4mas limb-darkened star by measuring the position of the first zero of visibility and using the formula determined for a uniform disk in the previous section.

Question : Does the star appears bigger or small than its real size? Explain why.

Question : How can you discriminate between the uniform disk and the limb darkened disk?

3.2 Gaussian distribution

Change the model to a "gaussian" (remove previous), and click on Add. Look at the new set of parameters shown in the bottom part of the window. This model has also four parameters, i.e. *flux_weight1*, x1, y1 like for all models, and *fwhm1*, the full width at half maximum of the Gaussian distribution. Let's set this value to 4 mas and then click on **Ok** to close the window.

Question : What is the Fourier transform of a Gaussian distribution?

Question : Compare the phase signal to that of the uniform disk.

Question : What is the baseline length corresponding to a visibility of 0?

3.3 Ring

Open the **Target editor** again, **Remove** the Gaussian model and **Add** a Ring model instead. This time the model has 5 parameters : $flux_weight1, x1, y1$, a diameter like the uniform disk, and also a width. Let's consider the case of a 4 mas infinitely-thin ring : diameter1=4, and width1=0.

Question : What are the baseline length corresponding to the first zero of visibility and the amplitude of the second lobe?

B ≈ 32 m Aplitude ≈ 0.092

The star appears smaller although it has exactly the same size as before. The light emission is more "concentrated" in the center due to the limb darkening.

Uniform disk

Limb Darkened disk

Practice session I: Interferometry basics Gith RSPRC

3.1 Limb darkened disk

Question : Note the baseline length corresponding to the first zero of visibility and the secondlobe amplitude.

Now imagine you would estimate the size of this 4mas limb-darkened star by measuring the position of the first zero of visibility and using the formula determined for a uniform disk in the previous section.

Question : Does the star appears bigger or small than its real size? Explain why.

Question : How can you discriminate between the uniform disk and the limb darkened disk?

3.2 Gaussian distribution

Change the model to a "gaussian" (remove previous), and click on Add. Look at the new set of parameters shown in the bottom part of the window. This model has also four parameters, i.e. *flux_weight1*, x1, y1 like for all models, and *fwhm1*, the full width at half maximum of the Gaussian distribution. Let's set this value to 4 mas and then click on **Ok** to close the window.

Question : What is the Fourier transform of a Gaussian distribution?

Question : Compare the phase signal to that of the uniform disk.

Question : What is the baseline length corresponding to a visibility of 0?

3.3 Ring

Open the **Target editor** again, **Remove** the Gaussian model and **Add** a Ring model instead. This time the model has 5 parameters : $flux_weight1, x1, y1$, a diameter like the uniform disk, and also a width. Let's consider the case of a 4 mas infinitely-thin ring : diameter1=4, and width1=0.

Question : What are the baseline length corresponding to the first zero of visibility and the amplitude of the second lobe?

B ≈ 32 m Aplitude ≈ 0.092

The star appears smaller although it has exactly the same size as before. The light emission is more "concentrated" in the center due to the limb darkening.

File Edentify WLTI School of Interferometry Practice session I: Interferometry basics ŔΠ (ions Targets Main settings Configuration(s) Constraints Q V Simbad Interferometer DEMO S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 Night restriction -S0 S7 Date 2010/09/21 ♦ 00:00:00.000 89:00:00.000 -Instrument DEMO SPATIAL Editor Min. Elevation 30 Wind 8 Status: 1 Information Sky • • Map Observability UV coverage OlFits viewer Notebook plot data DEMO - DEMO [0.460 µm - 0.460 µm] - S0-S1-S2-S3-S4-S5-S6-S7-S8-S9-S10-S11-S12-S13-S14-S15-S16 Day: 2010-09-21 - Source: 00:00:00.000 89:00:00.000 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 2nd lobe amplitude 0.132 vs 0.092 0.3 0.2 0.1 ± ± 0.0 Made by OIFitsExplorer/JMM -0.1 200 150 100 VISPHI (deg) 50 -5 -100 -150 38.9940.994 Made by OIFitsExplorer/JMM -200 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 RADIUS (m) ArrName: DEMO | InsName: DEMO_SPATIAL_0.46-lch | Date: 2010-09-21 | Baseline: S1-57 | Config: S0-51-52-53-54-55-56-57-58-59-510-511-512-513-514-515-516 | Target: 00:00:00.000 89:00:00.000 hide Wavelength: 0.460 µm | Spatial Freq: 89.12 MA | Radius: 90.99 m | Pos. angle: 0.00 deg | Hour angle: 0.01 h Table: OI VIS#3 | Row: 21 | Col: 0 | File: Aspro2 00 00 00 00 89 00 00 000 DEMO DEMO DEMO SPATIAL 0.46-1ch S0-S1-S2-S3-S4-S5-S6-S7-S8-S9-S10-S11-S12-S12-S12-S14-S15-S16 2010-09-21.fits Infos A D F Show VISAMP, VISPHI vs RADIUS ▼ Color by effective wav... ▼ □ Skip Flagged □ Draw lines ▼ 🗌 log 🖌 inc. 0 🔾 auto 🖲 default 🔾 fixed + x Axis RADIUS ▼ □ log □ inc. 0 ○ auto ● default ○ fixed VISAMP y Axes 💌 🗌 log 🔄 inc. 0 🔘 auto 🖲 default 🔾 fixed VISPHI

A. 70

Practice session I: Interferometry basics City ASPRC

3.1 Limb darkened disk

Question : Note the baseline length corresponding to the first zero of visibility and the secondlobe amplitude.

Now imagine you would estimate the size of this 4mas limb-darkened star by measuring the position of the first zero of visibility and using the formula determined for a uniform disk in the previous section.

Question : Does the star appears bigger or small than its real size? Explain why.

Question : How can you discriminate between the uniform disk and the limb darkened disk?

3.2 Gaussian distribution

Change the model to a "gaussian" (remove previous), and click on Add. Look at the new set of parameters shown in the bottom part of the window. This model has also four parameters, i.e. *flux_weight1*, x1, y1 like for all models, and *fwhm1*, the full width at half maximum of the Gaussian distribution. Let's set this value to 4 mas and then click on **Ok** to close the window.

Question : What is the Fourier transform of a Gaussian distribution?

Question : Compare the phase signal to that of the uniform disk.

Question : What is the baseline length corresponding to a visibility of 0?

3.3 Ring

Open the **Target editor** again, **Remove** the Gaussian model and **Add** a Ring model instead. This time the model has 5 parameters : $flux_weight1, x1, y1$, a diameter like the uniform disk, and also a width. Let's consider the case of a 4 mas infinitely-thin ring : diameter1=4, and width1=0.

Question : What are the baseline length corresponding to the first zero of visibility and the amplitude of the second lobe?

B ≈ 32 m Aplitude ≈ 0.092

The star appears smaller although it has exactly the same size as before. The light emission is more "concentrated" in the center due to the limb darkening.

By measuring the 2nd lobe amplitude

File Education of Interferometry Practice session I: Interferometry basics 🕻 ŔΠ Constraints Targets Main settings Configuration(s) INTE Q V Simbad Interferometer DEMO S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 Night restriction -S0 S7 Date 2010/09/21 ♦ 00:00:00.000 89:00:00.000 -Instrument DEMO SPATIAL Editor Min. Elevation 30 Wind • Status: 1 Information Sky • • Map Observability UV coverage OlFits viewer Notebook plot data DEMO - DEMO [0.460 µm - 0.460 µm] - S0-S1-S2-S3-S4-S5-S6-S7-S8-S9-S10-S11-S12-S13-S14-S15-S16 Day: 2010-09-21 - Source: 00:00:00.000 89:00:00.000 1.1 1.0 0.9 0.8 0.7 FT of a Gaussian is a Gaussian **dWB3** 0.5 0.4 Phase is 0° and V = 0 \Leftrightarrow B = ∞ 0.3 0.2 0.1 0.0 Made by OIFitsExplorer/JMM -0.1 200 150 100 **NISPHI (deg)** -20

		RADIUS (m)		
Infos:				
🤣 A	F Show VISAMP, VISPHI vs RADIUS	Color by effective wav	💌 🗌 Skip Flagged 🗌 Dra	aw lines 🛛
x Axis	RADIUS	✓ □ log ☑ inc. 0 ○ auto	106.0357	•
	VISAMP	✓ ☐ log ☐ inc. 0 ○ auto	1.1	
y Axes	VISPHI	🔽 🗌 log 🔲 inc. 0 🔘 auto 🖲 default 🔾 fixed -200		-

55

60

65

70

75

80

85

90

95

50

-100 -150 -200

0

5

10

15

20

25

30

35

40

45

100

105

Practice session I: Interferometry basics Cith ASPRC

3.1 Limb darkened disk

Question : Note the baseline length corresponding to the first zero of visibility and the secondlobe amplitude.

Now imagine you would estimate the size of this 4mas limb-darkened star by measuring the position of the first zero of visibility and using the formula determined for a uniform disk in the previous section.

Question : Does the star appears bigger or small than its real size? Explain why.

Question : How can you discriminate between the uniform disk and the limb darkened disk?

3.2 Gaussian distribution

Change the model to a "gaussian" (remove previous), and click on Add. Look at the new set of parameters shown in the bottom part of the window. This model has also four parameters, i.e. *flux_weight1*, x1, y1 like for all models, and *fwhm1*, the full width at half maximum of the Gaussian distribution. Let's set this value to 4 mas and then click on **Ok** to close the window.

Question : What is the Fourier transform of a Gaussian distribution?

Question : Compare the phase signal to that of the uniform disk.

Question : What is the baseline length corresponding to a visibility of 0?

3.3 Ring

Open the **Target editor** again, **Remove** the Gaussian model and **Add** a Ring model instead. This time the model has 5 parameters : $flux_weight1, x1, y1$, a diameter like the uniform disk, and also a width. Let's consider the case of a 4 mas infinitely-thin ring : diameter1=4, and width1=0.

Question : What are the baseline length corresponding to the first zero of visibility and the amplitude of the second lobe?

B ≈ 32 m Aplitude ≈ 0.092

The star appears smaller although it has exactly the same size as before. The light emission is more "concentrated" in the center due to the limb darkening.

By measuring the 2nd lobe amplitude

A Gaussian distribution

The phase is always 0

The zero is at the infinity

File Line Market Street Street

Practice session I: Interferometry basics with ASPRO

argets	s						Mai	n settings						Configuration	(s)				Constraints		"Briti	
Ū	Q Simba	ad	000			E dite a	\square	Interferome	eter DEMO				-	S0 S1 S1 S0 S7	2 S3 S4 S5 S	6 S7 S8 S9	S10 S11 S12	S13 S14 S15	Da	Night restriction		2175
	¥ 00.00.					Editor		mstrum		PATIAL			`						Min. Elevatio	on 30 Wind		
						Sky	y							•					Status: 🧃	Informatio	on	
Notobr	nok X Man	Chaonuchility																				
plot	data	Observability	UV COVETage	OIFILS VIEW																		
							DEMO	- DEMO [0.46	60 µm - 0.4 Dav: :	60 µm] - S0- 2010-09-21 -	-S1-S2-S3-S4 - Source: 00	-S5-S6-S7	7-S8-S9-S10-S11-S 0 89:00:00.000	12-\$13-\$14-	S15-S16							
	1.1																					
	0.9	^																				
	0.8	^																				
٩.	0.7							I = 0			10m											
SAM	0.5		A _					/ = 0		D ≈ .	TOUL											
⋝	0.4		*				* * * * * .															
	0.2			.	^ ^			1 • • •			· · · · ·	• •	* * * 				· · · · ·					
	0.1				A			•	· ·	•			^		.			· · · ·		▲ <u> </u>		
-	0.0 0.1 0.011			17.998					-										•		Made by OIFitsExplor	rer/JMMC
2	200								• •													
1	50																					
1	00																					
deg)	50																					
Ē	0 🔺 🔺	• • • • • • • •		+ + + +					▲ ▲	• • • • •	• • • •	• • • •	• • • • • • • •	▲ ▲					· · · ·	• • • • •	▲ ▲ ▲	
VISP -	-50																					
-1	00																					
-1	50																					
-2	200			17.998																	Made by OIFitsExplor	rer/JMMC
	0	5	10	15	20	25	30	35	40	45	50 RADII	55 US(m)	60	65	70	75	80	85	90	95	100	105
	ArrName: DE	MO InsName: DEMO	SPATIAL_0.46-1c	:h Date: 2	010-09-21 Bas	eline: 32-35	Config: S0-S1-S2	-83-84-85-86-81	7-38-39-310-	S11-S12-S13-S	14-315-316 T	arget: 00:0	00:00.000 89:00:00.00	10								
hide n	Wavelength: Fable: OI_V	0.460 µm Spatia 15#3 Row: 33 Co	Freq: 39.13 Μλ bl: 0 File: As	Radius: pro2_00_00_	18.00 m Pos. 00_000_89_00_00	angle: 0.00 deg _000_DEMO_DEMO_	g Hour angle: 0 _SPATIAL_0.46-1ch	.01 h _50-51-52-52-54	4-35-36-37-3	8-59-510-511-:	512-513-514-51	.5-516_2010-	-09-21.fits									
nfos:																						
2 A	D F Show	VISAMP, VISPHI vs I	RADIUS															Color	by effective wav	💌 🗌 Skip Fl	agged 📃 Draw	lines
Axis	RADIUS																log 🖌 inc. 0	🔾 auto 🖲 def	fault O fixed 0		106.0357	+
Aves	VISAMP															-	log 🗌 inc. 0	🔾 auto 🖲 def	fault) fixed -0	1	1.1	
HAC2	VISPHI															-	log 🗌 inc. 0	🔾 auto 🖲 def	fault 🔾 fixed -2			-
OIFit	ts done.																			216 M	Provided by	JMMC

File Education of Interferometry

Practice session I: Interferometry basics 📿

OlFits done.

Practice session I: Interferometry basics Cith ASPRC

3.1 Limb darkened disk

Question : Note the baseline length corresponding to the first zero of visibility and the secondlobe amplitude.

Now imagine you would estimate the size of this 4mas limb-darkened star by measuring the position of the first zero of visibility and using the formula determined for a uniform disk in the previous section.

Question : Does the star appears bigger or small than its real size? Explain why.

Question : How can you discriminate between the uniform disk and the limb darkened disk?

3.2 Gaussian distribution

Change the model to a "gaussian" (remove previous), and click on Add. Look at the new set of parameters shown in the bottom part of the window. This model has also four parameters, i.e. *flux_weight1*, x1, y1 like for all models, and *fwhm1*, the full width at half maximum of the Gaussian distribution. Let's set this value to 4 mas and then click on **Ok** to close the window.

Question : What is the Fourier transform of a Gaussian distribution?

Question : Compare the phase signal to that of the uniform disk.

Question : What is the baseline length corresponding to a visibility of 0?

3.3 Ring

Open the **Target editor** again, **Remove** the Gaussian model and **Add** a Ring model instead. This time the model has 5 parameters : $flux_weight1, x1, y1$, a diameter like the uniform disk, and also a width. Let's consider the case of a 4 mas infinitely-thin ring : diameter1=4, and width1=0.

Question : What are the baseline length corresponding to the first zero of visibility and the amplitude of the second lobe?

B ≈ 32 m Aplitude ≈ 0.092

The star appears smaller although it has exactly the same size as before. The light emission is more "concentrated" in the center due to the limb darkening.

By measuring the 2nd lobe amplitude

A Gaussian distribution

The phase is always 0

The zero is at the infinity

B ≈ 39m Aplitude ≈ 0.4

Practice session I: Interferometry basics City ASPRC

3.4 Comparison of these models

In the previous sections you have build four models (uniform disk, Gaussian distribution, ring, and limb darkened disk) with a characteristic size of 4 mas. Their main difference is the smoothness/sharpness of their intensity distribution.

Question : First, classify the models in term of sharpness/smoothness

Question : What is the relation between the distribution sharpness and the 2^{nd} lobe amplitude ?

3.5 Model confusion

If the interferometer largest spatial frequency (the ratio baseline length over wavelength) is not of the order of the typical size of your source, this may cause problems when you try to interpret your data.

Question : Compare the visibility obtained at 100m for a 0.9 mas uniform disk and a 0.5 mas Gaussian distribution.

Now switch to the K band using the UV-Coverage tab and changing the Instrument mode.

Question : Do the same comparison.

Typical uncertainties on the visibility measurements are of the order of a few percent.

 $\label{eq:Question:In which band(s) can you discriminate between these models and determine the object size?$

Go back to the B band, and compare the visibility at 100m from the 0.9 mas uniform disk and a 0.61 mas Gaussian distribution.

Question : How can we discriminate between these two intensity distributions?

3.6 Point source and flat field

There is two additional intensity distributions that are widely used for modelling :

- the point source used to model a source too small to be resolved whatever by the interferometer
- the flat field used to represent the exact opposite, a fully resolved object.

Note that these models are useless on their own and are only used to build multi-component models described further down.

Question : What are the point source and flat field visibility functions?

In ASPRO2 point sources are modelled using the *punct* function. Flat field are not included, but can be modelled easily using a very extended uniform disk, for example with $D \ge 250$ mas.

Practice session I: Interferometry basics Gith ASPRO

Ring

3.4 Comparison of these models

In the previous sections you have build four models (uniform disk, Gaussian distribution, ring, and limb darkened disk) with a characteristic size of 4 mas. Their main difference is the smoothness/sharpness of their intensity distribution.

Question : First, classify the models in term of sharpness/smoothness

Question : What is the relation between the distribution sharpness and the 2^{nd} lobe amplitude ?

3.5 Model confusion

If the interferometer largest spatial frequency (the ratio baseline length over wavelength) is not of the order of the typical size of your source, this may cause problems when you try to interpret your data.

Question : Compare the visibility obtained at 100m for a 0.9 mas uniform disk and a 0.5 mas Gaussian distribution.

Now switch to the K band using the UV-Coverage tab and changing the Instrument mode.

Question : Do the same comparison.

Typical uncertainties on the visibility measurements are of the order of a few percent.

Question : In which band(s) can you discriminate between these models and determine the object size?

Go back to the B band, and compare the visibility at 100m from the 0.9 mas uniform disk and a 0.61 mas Gaussian distribution.

Question : How can we discriminate between these two intensity distributions?

3.6 Point source and flat field

There is two additional intensity distributions that are widely used for modelling :

- the point source used to model a source too small to be resolved whatever by the interferometer
- the flat field used to represent the exact opposite, a fully resolved object.

Note that these models are useless on their own and are only used to build multi-component models described further down.

Question : What are the point source and flat field visibility functions?

In ASPRO2 point sources are modelled using the *punct* function. Flat field are not included, but can be modelled easily using a very extended uniform disk, for example with $D \ge 250$ mas.

From the sharpest to the smoothest: Ring, Uniform disk, Limb-Darkened disk, Gaussian

Gaussian

LDD

Practice session I: Interferometry basics City ASPRO

3.4 Comparison of these models

In the previous sections you have build four models (uniform disk, Gaussian distribution, ring, and limb darkened disk) with a characteristic size of 4 mas. Their main difference is the smoothness/sharpness of their intensity distribution.

Question : First, classify the models in term of sharpness/smoothness

Question : What is the relation between the distribution sharpness and the 2nd lobe amplitude ?

3.5 Model confusion

If the interferometer largest spatial frequency (the ratio baseline length over wavelength) is not of the order of the typical size of your source, this may cause problems when you try to interpret your data.

Question : Compare the visibility obtained at 100m for a 0.9 mas uniform disk and a 0.5 mas Gaussian distribution.

Now switch to the K band using the UV-Coverage tab and changing the Instrument mode.

Question : Do the same comparison.

Typical uncertainties on the visibility measurements are of the order of a few percent.

Question : In which band(s) can you discriminate between these models and determine the object size?

Go back to the B band, and compare the visibility at 100m from the 0.9 mas uniform disk and a 0.61 mas Gaussian distribution.

Question : How can we discriminate between these two intensity distributions?

3.6 Point source and flat field

There is two additional intensity distributions that are widely used for modelling :

- the point source used to model a source too small to be resolved whatever by the interferometer
- the flat field used to represent the exact opposite, a fully resolved object.

Note that these models are useless on their own and are only used to build multi-component models described further down.

Question : What are the point source and flat field visibility functions?

In ASPR02 point sources are modelled using the *punct* function. Flat field are not included, but can be modelled easily using a very extended uniform disk, for example with $D \ge 250$ mas.

From the sharpest to the smoothest: Ring, Uniform disk, Limb-Darkened disk, Gaussian

2nd Lobe Amplitudes 0.13 0.09

LDD

UD

0.4

Ring

Gaussian

Practice session I: Interferometry basics City, ASPRO

3.4 Comparison of these models

In the previous sections you have build four models (uniform disk, Gaussian distribution, ring, and limb darkened disk) with a characteristic size of 4 mas. Their main difference is the smoothness/sharpness of their intensity distribution.

Question : First, classify the models in term of sharpness/smoothness

Question : What is the relation between the distribution sharpness and the 2^{nd} lobe amplitude ?

3.5 Model confusion

If the interferometer largest spatial frequency (the ratio baseline length over wavelength) is not of the order of the typical size of your source, this may cause problems when you try to interpret your data.

Question : Compare the visibility obtained at 100m for a 0.9 mas uniform disk and a 0.5 mas Gaussian distribution.

Now switch to the K band using the UV-Coverage tab and changing the Instrument mode.

Question : Do the same comparison.

Typical uncertainties on the visibility measurements are of the order of a few percent.

Question : In which band(s) can you discriminate between these models and determine the object size?

Go back to the B band, and compare the visibility at 100m from the 0.9 mas uniform disk and a 0.61 mas Gaussian distribution.

Question : How can we discriminate between these two intensity distributions?

3.6 Point source and flat field

There is two additional intensity distributions that are widely used for modelling :

- the point source used to model a source too small to be resolved whatever by the interferometer
- the flat field used to represent the exact opposite, a fully resolved object.

Note that these models are useless on their own and are only used to build multi-component models described further down.

Question : What are the point source and flat field visibility functions?

In ASPR02 point sources are modelled using the *punct* function. Flat field are not included, but can be modelled easily using a very extended uniform disk, for example with $D \ge 250$ mas.

From the sharpest to the smoothest: Ring, Uniform disk, Limb-Darkened disk, Gaussian

2nd Lobe Amplitudes

0.09

LDD

Gaussian

0.13

UD

0.4

Ring

Sharpness in image ⇔ higher lobes in FT Ring = 0.4 UD = 0.13 LDD = 0.09 Gauss. = 0

Practice session I: Interferometry basics City ASPRC

3.4 Comparison of these models

In the previous sections you have build four models (uniform disk, Gaussian distribution, ring, and limb darkened disk) with a characteristic size of 4 mas. Their main difference is the smoothness/sharpness of their intensity distribution.

Question : First, classify the models in term of sharpness/smoothness

Question : What is the relation between the distribution sharpness and the 2^{nd} lobe amplitude ?

3.5 Model confusion

If the interferometer largest spatial frequency (the ratio baseline length over wavelength) is not of the order of the typical size of your source, this may cause problems when you try to interpret your data.

Question : Compare the visibility obtained at 100m for a 0.9 mas uniform disk and a 0.5 mas Gaussian distribution.

Now switch to the K band using the UV-Coverage tab and changing the Instrument mode.

Question : Do the same comparison.

Typical uncertainties on the visibility measurements are of the order of a few percent.

Question : In which band(s) can you discriminate between these models and determine the object size?

Go back to the B band, and compare the visibility at 100m from the 0.9 mas uniform disk and a 0.61 mas Gaussian distribution.

Question : How can we discriminate between these two intensity distributions?

3.6 Point source and flat field

There is two additional intensity distributions that are widely used for modelling :

- the point source used to model a source too small to be resolved whatever by the interferometer
- the flat field used to represent the exact opposite, a fully resolved object.

Note that these models are useless on their own and are only used to build multi-component models described further down.

Question : What are the point source and flat field visibility functions?

In ASPRO2 point sources are modelled using the *punct* function. Flat field are not included, but can be modelled easily using a very extended uniform disk, for example with $D \ge 250$ mas.

From the sharpest to the smoothest: Ring, Uniform disk, Limb-Darkened disk, Gaussian

Sharpness in image \Leftrightarrow higher lobes in FT Ring = 0.4 UD = 0.13 LDD = 0.09 Gauss. = 0

Practice session I: Interferometry basics Gith RSPRC

3.4 Comparison of these models

In the previous sections you have build four models (uniform disk, Gaussian distribution, ring, and limb darkened disk) with a characteristic size of 4 mas. Their main difference is the smoothness/sharpness of their intensity distribution.

Question : First, classify the models in term of sharpness/smoothness

Question : What is the relation between the distribution sharpness and the 2^{nd} lobe amplitude ?

3.5 Model confusion

If the interferometer largest spatial frequency (the ratio baseline length over wavelength) is not of the order of the typical size of your source, this may cause problems when you try to interpret your data.

Question : Compare the visibility obtained at 100m for a 0.9 mas uniform disk and a 0.5 mas Gaussian distribution.

Now switch to the K band using the UV-Coverage tab and changing the Instrument mode.

Question : Do the same comparison.

Typical uncertainties on the visibility measurements are of the order of a few percent.

Question : In which band(s) can you discriminate between these models and determine the object size?

Go back to the B band, and compare the visibility at 100m from the 0.9 mas uniform disk and a 0.61 mas Gaussian distribution.

Question : How can we discriminate between these two intensity distributions?

3.6 Point source and flat field

There is two additional intensity distributions that are widely used for modelling :

- the point source used to model a source too small to be resolved whatever by the interferometer
- the flat field used to represent the exact opposite, a fully resolved object.

Note that these models are useless on their own and are only used to build multi-component models described further down.

Question : What are the point source and flat field visibility functions?

In ASPRO2 point sources are modelled using the *punct* function. Flat field are not included, but can be modelled easily using a very extended uniform disk, for example with $D \ge 250$ mas.

From the sharpest to the smoothest: Ring, Uniform disk, Limb-Darkened disk, Gaussian

> Sharpness in image ⇔ higher lobes in FT Ring = 0.4 UD = 0.13 LDD = 0.09 Gauss. = 0

0.9 mas UD ⇔V = 0.233 0.5 mas Gaussian ⇔ V= 0.372

Practice session I: Interferometry basics Gith RSPRC

3.4 Comparison of these models

In the previous sections you have build four models (uniform disk, Gaussian distribution, ring, and limb darkened disk) with a characteristic size of 4 mas. Their main difference is the smoothness/sharpness of their intensity distribution.

Question : First, classify the models in term of sharpness/smoothness

Question : What is the relation between the distribution sharpness and the 2^{nd} lobe amplitude ?

3.5 Model confusion

If the interferometer largest spatial frequency (the ratio baseline length over wavelength) is not of the order of the typical size of your source, this may cause problems when you try to interpret your data.

Question : Compare the visibility obtained at 100m for a 0.9 mas uniform disk and a 0.5 mas Gaussian distribution.

Now switch to the K band using the UV-Coverage tab and changing the Instrument mode.

Question : Do the same comparison.

Typical uncertainties on the visibility measurements are of the order of a few percent.

Question : In which band(s) can you discriminate between these models and determine the object size?

Go back to the B band, and compare the visibility at 100m from the 0.9 mas uniform disk and a 0.61 mas Gaussian distribution.

Question : How can we discriminate between these two intensity distributions?

3.6 Point source and flat field

There is two additional intensity distributions that are widely used for modelling :

- the point source used to model a source too small to be resolved whatever by the interferometer
- the flat field used to represent the exact opposite, a fully resolved object.

Note that these models are useless on their own and are only used to build multi-component models described further down.

Question : What are the point source and flat field visibility functions?

In ASPRO2 point sources are modelled using the *punct* function. Flat field are not included, but can be modelled easily using a very extended uniform disk, for example with $D \ge 250$ mas.

From the sharpest to the smoothest: Ring, Uniform disk, Limb-Darkened disk, Gaussian

> Sharpness in image ⇔ higher lobes in FT Ring = 0.4 UD = 0.13 LDD = 0.09 Gauss. = 0

0.9 mas UD ⇔V = 0.233 0.5 mas Gaussian ⇔ V= 0.372

0.9 mas UD ⇔V = V=0.958 0.5 mas Gaussian ⇔ 0.963

Practice session I: Interferometry basics City ASPRC

3.4 Comparison of these models

In the previous sections you have build four models (uniform disk, Gaussian distribution, ring, and limb darkened disk) with a characteristic size of 4 mas. Their main difference is the smoothness/sharpness of their intensity distribution.

Question : First, classify the models in term of sharpness/smoothness

Question : What is the relation between the distribution sharpness and the 2^{nd} lobe amplitude ?

3.5 Model confusion

If the interferometer largest spatial frequency (the ratio baseline length over wavelength) is not of the order of the typical size of your source, this may cause problems when you try to interpret your data.

Question : Compare the visibility obtained at 100m for a 0.9 mas uniform disk and a 0.5 mas Gaussian distribution.

Now switch to the K band using the UV-Coverage tab and changing the Instrument mode.

Question : Do the same comparison.

Typical uncertainties on the visibility measurements are of the order of a few percent.

Question : In which band(s) can you discriminate between these models and determine the object size?

Go back to the B band, and compare the visibility at 100m from the 0.9 mas uniform disk and a 0.61 mas Gaussian distribution.

Question : How can we discriminate between these two intensity distributions?

3.6 Point source and flat field

There is two additional intensity distributions that are widely used for modelling :

- the point source used to model a source too small to be resolved whatever by the interferometer
- the flat field used to represent the exact opposite, a fully resolved object.

Note that these models are useless on their own and are only used to build multi-component models described further down.

Question : What are the point source and flat field visibility functions?

In ASPRO2 point sources are modelled using the *punct* function. Flat field are not included, but can be modelled easily using a very extended uniform disk, for example with $D \ge 250$ mas.

From the sharpest to the smoothest: Ring, Uniform disk, Limb-Darkened disk, Gaussian

> Sharpness in image \Leftrightarrow higher lobes in FT Ring = 0.4 UD = 0.13 LDD = 0.09 Gauss. = 0

0.9 mas UD ⇔V = 0.233 0.5 mas Gaussian ⇔ V= 0.372

0.9 mas UD ⇔V = V=0.958 0.5 mas Gaussian ⇔ 0.963

Only in B band as visibility are too similar in K band
Rid Edentify VLTI School of Interferometry Practice session I: Interferometry basics Targets Main settings Configuration(s) Constraints <u>EUCIE</u> QT Interferometer DEMO S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 Night restriction S0 S7 Date 2010/09/21 ♦ 00:00:00.000 89:00:00.000 Instrument DEMO SPATIAL -Editor Min. Elevation 30 Wind 8 Status: 1 Information Sky 4 • Map Observability UV coverage **OIFits viewer** Notebook plot data DEMO - DEMO [0.460 µm - 0.460 µm] - S0-S1-S2-S3-S4-S5-S6-S7-S8-S9-S10-S11-S12-S13-S14-S15-S16 Day: 2010-09-21 - Source: 00:00:00.000 89:00:00.000 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.5 0.4 0.3 Measurements at different baselines 0.2 0.1 0.0 -0.1 150 Longer baselines for 2nd lobe 100 VISPHI (deg) -100 -150 -200 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 0 105 RADIUS (m) Infos A D F Show VISAMP, VISPHI vs RADIUS ▼ Color by effective wav... ▼ □ Skip Flagged □ Draw lines x Axis RADIUS ✓ ☐ log ☑ inc. 0 ○ auto ● default ○ fixed ✓ ☐ log ☐ inc. 0 ○ auto ● default ○ fixed VISAMP v Axes ▼ 🗌 log 🔲 inc. 0 ○ auto 🖲 default ○ fixed VISPHI

OIFits done.

Practice session I: Interferometry basics City ASPRC

3.4 Comparison of these models

In the previous sections you have build four models (uniform disk, Gaussian distribution, ring, and limb darkened disk) with a characteristic size of 4 mas. Their main difference is the smoothness/sharpness of their intensity distribution.

Question : First, classify the models in term of sharpness/smoothness

Question : What is the relation between the distribution sharpness and the 2nd lobe amplitude ?

3.5 Model confusion

If the interferometer largest spatial frequency (the ratio baseline length over wavelength) is not of the order of the typical size of your source, this may cause problems when you try to interpret your data.

Question : Compare the visibility obtained at 100m for a 0.9 mas uniform disk and a 0.5 mas Gaussian distribution.

Now switch to the K band using the UV-Coverage tab and changing the Instrument mode.

Question : Do the same comparison.

Typical uncertainties on the visibility measurements are of the order of a few percent.

Question : In which band(s) can you discriminate between these models and determine the object size?

Go back to the B band, and compare the visibility at 100m from the 0.9 mas uniform disk and a 0.61 mas Gaussian distribution.

Question : How can we discriminate between these two intensity distributions?

3.6 Point source and flat field

There is two additional intensity distributions that are widely used for modelling :

- the point source used to model a source too small to be resolved whatever by the interferometer
- the flat field used to represent the exact opposite, a fully resolved object.

Note that these models are useless on their own and are only used to build multi-component models described further down.

Question : What are the point source and flat field visibility functions?

In ASPR02 point sources are modelled using the *punct* function. Flat field are not included, but can be modelled easily using a very extended uniform disk, for example with $D \ge 250$ mas.

From the sharpest to the smoothest: Ring, Uniform disk, Limb-Darkened disk, Gaussian

> Sharpness in image \Leftrightarrow higher lobes in FT Ring = 0.4 UD = 0.13 LDD = 0.09 Gauss. = 0

> > 0.9 mas UD ⇔V = 0.233 0.5 mas Gaussian ⇔ V= 0.372

0.9 mas UD ⇔V = V=0.958 0.5 mas Gaussian ⇔ 0.963

Only in B band as visibility are too similar in K band

The visiblity are very similar at 100m (0.23) Having measurements at multiple baselines length can help discriminate between these models + longer baselines for 2nd lobe measurements

Practice session I: Interferometry basics City ASPRC

3.4 Comparison of these models

In the previous sections you have build four models (uniform disk, Gaussian distribution, ring, and limb darkened disk) with a characteristic size of 4 mas. Their main difference is the smoothness/sharpness of their intensity distribution.

Question : First, classify the models in term of sharpness/smoothness

Question : What is the relation between the distribution sharpness and the 2nd lobe amplitude ?

3.5 Model confusion

If the interferometer largest spatial frequency (the ratio baseline length over wavelength) is not of the order of the typical size of your source, this may cause problems when you try to interpret your data.

Question : Compare the visibility obtained at 100m for a 0.9 mas uniform disk and a 0.5 mas Gaussian distribution.

Now switch to the K band using the UV-Coverage tab and changing the Instrument mode.

Question : Do the same comparison.

Typical uncertainties on the visibility measurements are of the order of a few percent.

Question : In which band(s) can you discriminate between these models and determine the object size?

Go back to the B band, and compare the visibility at 100m from the 0.9 mas uniform disk and a 0.61 mas Gaussian distribution.

Question : How can we discriminate between these two intensity distributions?

3.6 Point source and flat field

There is two additional intensity distributions that are widely used for modelling :

- the point source used to model a source too small to be resolved whatever by the interferometer
- the flat field used to represent the exact opposite, a fully resolved object.

Note that these models are useless on their own and are only used to build multi-component models described further down.

Question : What are the point source and flat field visibility functions?

In ASPRO2 point sources are modelled using the *punct* function. Flat field are not included, but can be modelled easily using a very extended uniform disk, for example with $D \ge 250$ mas.

From the sharpest to the smoothest: Ring, Uniform disk, Limb-Darkened disk, Gaussian

> Sharpness in image ⇔ higher lobes in FT Ring = 0.4 UD = 0.13 LDD = 0.09 Gauss. = 0

> > 0.9 mas UD ⇔V = 0.233 0.5 mas Gaussian ⇔ V= 0.372

0.9 mas UD ⇔V = V=0.958 0.5 mas Gaussian ⇔ 0.963

Only in B band as visibility are too similar in K band

The visiblity are very similar at 100m (0.23) Having measurements at multiple baselines length can help discriminate between these models + longer baselines for 2nd lobe measurements

Practice session I: Interferometry basics City ASPRC

3.4 Comparison of these models

In the previous sections you have build four models (uniform disk, Gaussian distribution, ring, and limb darkened disk) with a characteristic size of 4 mas. Their main difference is the smoothness/sharpness of their intensity distribution.

Question : First, classify the models in term of sharpness/smoothness

Question : What is the relation between the distribution sharpness and the 2^{nd} lobe amplitude ?

3.5 Model confusion

If the interferometer largest spatial frequency (the ratio baseline length over wavelength) is not of the order of the typical size of your source, this may cause problems when you try to interpret your data.

Question : Compare the visibility obtained at 100m for a 0.9 mas uniform disk and a 0.5 mas Gaussian distribution.

Now switch to the K band using the UV-Coverage tab and changing the Instrument mode.

Question : Do the same comparison.

Typical uncertainties on the visibility measurements are of the order of a few percent.

Question : In which band(s) can you discriminate between these models and determine the object size?

Go back to the B band, and compare the visibility at 100m from the 0.9 mas uniform disk and a 0.61 mas Gaussian distribution.

Question : How can we discriminate between these two intensity distributions?

3.6 Point source and flat field

There is two additional intensity distributions that are widely used for modelling :

- the point source used to model a source too small to be resolved whatever by the interferometer
- the flat field used to represent the exact opposite, a fully resolved object.

Note that these models are useless on their own and are only used to build multi-component models described further down.

Question : What are the point source and flat field visibility functions?

In ASPR02 point sources are modelled using the *punct* function. Flat field are not included, but can be modelled easily using a very extended uniform disk, for example with $D \ge 250$ mas.

From the sharpest to the smoothest: Ring, Uniform disk, Limb-Darkened disk, Gaussian

> Sharpness in image ⇔ higher lobes in FT Ring = 0.4 UD = 0.13 LDD = 0.09 Gauss. = 0

> > 0.9 mas UD ⇔V = 0.233 0.5 mas Gaussian ⇔ V= 0.372

0.9 mas UD ⇔V = V=0.958 0.5 mas Gaussian ⇔ 0.963

Only in B band as visibility are too similar in K band

The visiblity are very similar at 100m (0.23) Having measurements at multiple baselines length can help discriminate between these models + longer baselines for 2nd lobe measurements

FT(Point Source) : V = 1 FT(flat field) : V = 1 if (B=0) and V = 0 otherwise

Practice session I: Interferometry basics City ASPRO

4. Going 2D with flattened models

Practice session I: Interferometry basics City ASPRC

4 Going 2D with flattened models

In the previous sections you learned about 1D functions to model interferometric measurements. Now it is time to take a look at two-dimensional intensity distributions.

4.1 Elliptical distributions

Question : Compare its visibility function to the one obtained for the 4 mas uniform disk.

Now modify the model so that the major-axis is oriented East-West.

Question : Where is the first zero of the visibility function?

Question : What uniform disk diameter does this correspond to?

Finally, put the disk major-axis at 45°.

Question : Can you conclude on the extension measured by an interferometer?

Now, let's use a new set of baselines. Load the configuration file *Example2.asprox*. Look at the UV plan in the UV coverage tab. The baselines in the new set all have the same length, i.e. 42m, but they have different position angles, and cover all directions.

Go to the **OIFits viewer** tab and plot the Visibility (VISAMP and VISPHI) as a function of the position angle (POS_ANGLE).

Question : Without looking at the model can you determine the major-axis position angle?

Question : Assuming an elliptical Gaussian model what are the major and minor axes FWHMs?

4.2 Application to geometrically thin disk

Elliptical intensity distributions are widely used to model geometrically-thin circumstellar disks. In this case the flattening is due to the projection of the disk on the sky-plane, i.e., perpendicular to the observer line of sight. At an inclination angle of 0° , i.e. pole-on, the disk is not flattened, and the elongation ratio (i.e. major-axis/minor-axis) grows with the inclination angle.

Question : Find the formula of the elongation ratio for this simple geometrically thin disk model Question : Conclude on the inclination angle of our object.

FILL ENCLOSE STREET School of Interferometry Practice session I: Interferometry basics 🚇 Stions Targets Main settings Configuration(s) Constraint Q V Simbad S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S1 Interferometer DEMO Night restriction -S0 S7 2010/09/21 ÷ ♦ 00:00:00.000 89:00:00.000 Date Instrument DEMO SPATIAL -Editor Min. Elevation 30 Wind Status: 👔 Information • Sky • Map Observability UV coverage **OIFits viewer** Notebook plot data DEMO - DEMO [0.460 µm - 0.460 µm] - S0-S1-S2-S3-S4-S5-S6-S7-S8-S9-S10-S11-S12-S13-S14-S15-S16 Day: 2010-09-21 - Source: 00:00:00.000 89:00:00.000 1.1 1.0 0.9 0.8 0.7 Same Visibility curve as for the 4 mas uniform disk **UNEXTICATION** 0.6 0.5 0.4 0.3 0.2 0.1 0.0 -0.1 _____ North-South Baseline 150 100 And North South Elongation VISPHI (deg) 50 Elong = 2 D(minor_axis) = 2mas -100 $D(Major_axis) = 2x2 = 4 mas$ -150 -200 20 5 10 25 30 35 45 50 55 60 65 70 75 80 85 90 95 100 0 40 105 RADIUS (m) ArrName: DEMO | InsName: DEMO_SPATIAL 0.46-1ch | Date: 2010-09-21 | Baseline: 52-56 | Config: S0-51-52-53-54-55-56-57-58-59-510-511-512-513-516 | Target: 00:00:00.000 89:00:00.000 hide Wavelength: 0.460 µm | Spatial Freq: 63.03 MA | Radius: 29.00 m | Pos. angle: 0.00 deg | Hour angle: 0.01 h Table: OI VIS#3 | Row: 34 | Col: 0 | File: Aspro2 00 00 00 089 00 00 000 DEMO DEMO DEMO SPATIAL 0.46-1ch 80-81-52-53-54-55-56-57-58-59-510-511-512-513-514-515-516 2010-09-21.fits

Infos:			
🤣 A	D F Show VISAMP, VISPHI vs RADIUS	Color by effective wav	🗌 Skip Flagged 🔲 Draw lines 🛄
x Axis	RADIUS	✓ ☐ log ☑ inc. 0 ○ auto	106.0357
	VISAMP	v 🗌 log 🗌 inc. 0 🔘 auto 🖲 default 🔾 fixed -0.1	1.1
y Axes	VISPHI	✓ ☐ log ☐ inc. 0 ○ auto	200 -

Practice session I: Interferometry basics with ASPRC

4 Going 2D with flattened models

In the previous sections you learned about 1D functions to model interferometric measurements. Now it is time to take a look at two-dimensional intensity distributions.

4.1 Elliptical distributions

Question : Compare its visibility function to the one obtained for the 4 mas uniform disk.

Now modify the model so that the major-axis is oriented East-West.

Question : Where is the first zero of the visibility function?

Question : What uniform disk diameter does this correspond to?

Finally, put the disk major-axis at 45°.

Question : Can you conclude on the extension measured by an interferometer?

Now, let's use a new set of baselines. Load the configuration file *Example2.asprox*. Look at the UV plan in the UV coverage tab. The baselines in the new set all have the same length, i.e. 42m, but they have different position angles, and cover all directions.

Go to the **OIFits viewer** tab and plot the Visibility (VISAMP and VISPHI) as a function of the position angle (POS_ANGLE).

Question : Without looking at the model can you determine the major-axis position angle?

Question : Assuming an elliptical Gaussian model what are the major and minor axes FWHMs?

4.2 Application to geometrically thin disk

Elliptical intensity distributions are widely used to model geometrically-thin circumstellar disks. In this case the flattening is due to the projection of the disk on the sky-plane, i.e., perpendicular to the observer line of sight. At an inclination angle of 0° , i.e. pole-on, the disk is not flattened, and the elongation ratio (i.e. major-axis/minor-axis) grows with the inclination angle.

Question : Find the formula of the elongation ratio for this simple geometrically thin disk model Question : Conclude on the inclination angle of our object.

It is extacly the same! (V=0 ⇔ B=29m) The baseline is North-South oriented and so it ``sees'' The major-axis of the Elongated disk

Practice session I: Interferometry basics with ASPRC

4 Going 2D with flattened models

In the previous sections you learned about 1D functions to model interferometric measurements. Now it is time to take a look at two-dimensional intensity distributions.

4.1 Elliptical distributions

Question : Compare its visibility function to the one obtained for the 4 mas uniform disk.

Now modify the model so that the major-axis is oriented East-West.

Question : Where is the first zero of the visibility function?

Question : What uniform disk diameter does this correspond to?

Finally, put the disk major-axis at 45°.

Question : Can you conclude on the extension measured by an interferometer?

Now, let's use a new set of baselines. Load the configuration file *Example2.asprox*. Look at the UV plan in the UV coverage tab. The baselines in the new set all have the same length, i.e. 42m, but they have different position angles, and cover all directions.

Go to the **OIFits viewer** tab and plot the Visibility (VISAMP and VISPHI) as a function of the position angle (POS_ANGLE).

Question : Without looking at the model can you determine the major-axis position angle?

Question : Assuming an elliptical Gaussian model what are the major and minor axes FWHMs?

4.2 Application to geometrically thin disk

Elliptical intensity distributions are widely used to model geometrically-thin circumstellar disks. In this case the flattening is due to the projection of the disk on the sky-plane, i.e., perpendicular to the observer line of sight. At an inclination angle of 0° , i.e. pole-on, the disk is not flattened, and the elongation ratio (i.e. major-axis/minor-axis) grows with the inclination angle.

Question : Find the formula of the elongation ratio for this simple geometrically thin disk model Question : Conclude on the inclination angle of our object.

It is extacly the same! (V=0 ⇔ B=29m) The baseline is North-South oriented and so it ``sees'' The major-axis of the Elongated disk

Fill Edge 19th YLTI School of Interferometry

Practice session I: Interferometry basics

Targets	S		Main settings				Configuration(s)		Constraints		Centia -
((Q▼ Simbad		Interferomete	r DEMO		•	S0 S1 S2 S0 S7	S3 S4 S5 S6 S7 S8 S	9 S10 S11 S12 S13 S14	SI Ni	ght restriction	SUDE
	♦ 00:00:00.000 89:00:00.000	Editor	Instrumen	t demo_spatial		•				Min. Elevation	30 Wind	
		Sky					•			Status:	Information	
Notebo	ook Map Observability UV coverage OlFits viewer											
plot	data											
			DEMO - DEMO [0.4	460 µm - 0.460 µm] Day: 2010-09	- S0-S1-S2-S3-S4 9-21 - Source: 00:	-S5-S6-S7-S8-S9-S10 00:00.000 89:00:00.00	-S11-S12-S13-S ⁻ 0	14-S15-S16				
				_								
	0.9											
	0.8											
	0.7											
AMP												
VIS												
	0.3	.										
	0.2	^										
			· · · · ·		* * * * * * * * *							· • • •
-1	0.1	28.990										Made by OIFitsExplorer/JMMC
2											-	
1	150											
1	100											
leg)	50											
° ₹						_ .			•			
ISPI	-50											
>	100											
-1												
-1	150	28,996										
-2	200	25	30 35	40 45	50 RADIL	55 60	65	70 7	5 80	85 90	95	Made by OIFitsExplorer/JMMC 100 105
2	ArrName: DEMO InsName: DEMO_SPATIAL_0.46-lch Date: 2010-09-21	Baseline: S2-S6 C	onfig: 30-31-32-33-34-35-36-	37-38-39-310-311-312-	313-314-315-316 T	rget: 00:00:00.000 89:0	0:00.000					
hide	Wavelength: 0.460 µm Spatial Freq: 63.03 MA Radius: 29.00 m H Table: OI VIS#3 Row: 34 Col: 0 File: Aspro2 00 00 00 000 89 (Pos. angle: 0.00 deg	Hour angle: 0.01 h PATIAL 0.46-1ch S0-S1-S2-S3-	34-35-36-37-38-39-310	-811-812-812-814-81	-516 2010-09-21.fits						
Infos:						-						
🤣 A	D F Show VISAMP, VISPHI vs RADIUS									Color by effective	e wav 🔻 🗌 Skip	Flagged 🗌 Draw lines 🛄
x Axis	RADIUS								▼ □ log ⊮ inc. 0 ○	auto 🖲 default 🔾 fix	ed 0	106.0357
	VISAMP								🔽 🗌 log 🔲 inc. 0 🔾	auto 🖲 default 🔾 fix	ed -0.1	1.1
y Axes	VISPHI								🔽 🗌 log 🔲 inc. 0 🔘	auto 🖲 default 🔾 fix	ed -200	200
•. 												
5	OlFits done.										376 M	Provided by JMMC

OlFits done.

360 M Provided by JMMC

File Edentity VLTI School of Interferometry Practice session I: Interferometry basics 😡 ŘΠ stions Main settings Targets Configuration(s) Constraints Interferometer DEMO S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S1 Night restriction -50 57 Date 2010/09/21 ♦ 00:00:00.000 89:00:00.000 Instrument DEMO SPATIAL -Editor Min. Elevation 30 Wind Status: 👔 Information • Sky • • Map Observability UV coverage OlFits viewer Notebook plot data DEMO - DEMO [0.460 µm - 0.460 µm] - S0-S1-S2-S3-S4-S5-S6-S7-S8-S9-S10-S11-S12-S13-S14-S15-S16 Day: 2010-09-21 - Source: 00:00:00.000 89:00:00.000 1.1 1.0 0.9 0.8 0.7 **dWBSIN** 0.6 0.5 4 mas * • 3.2 mas 2 mas 0.3 0.2 0.1 ... * * * * * 0.0 Made by OIFitsExplorer/JMM -0.1 150 100 VISPHI (deg) 50 -5 -100 -150 36.995 Made by OIFitsExplorer/JMN -200 5 10 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 0 15 105 RADIUS (m) ArrName: DEMO | InsName: DEMO SPATIAL_0.46-lch | Date: 2010-09-21 | Baseline: 39-316 | Config: 30-31-52-53-54-55-36-37-38-59-310-511-512-513-514-515-516 | Target: 00:00:00.000 89:00:00.000 hide Wavelength: 0.460 µm | Spatial Freq: 80.42 MA | Radius: 37.00 m | Pos. angle: 0.00 deg | Hour angle: 0.01 h Table: OI VIS#3 | Row: 114 | Col: 0 | File: Aspro2_00_00_00_00_09_00_00_000_DEMO_DEMO_DEMO_SPATIAL_0.46-1ch_S0-S1-S2-38-S4-S5-S6-37-S8-S9-S10-S11-S12-S13-S14-S15-S16_2010-09-21.fits Data: X[1.000, 100.986] Y[1.123E-4, 0.999] [13.874, 1.060] Infos: 136 / 136 points Data+Err: X[1.000, 100.986] Y[1.123E-4, 0.999] A D F Show VISAMP, VISPHI vs RADIUS ▼ Color by effective wav... ▼ □ Skip Flagged □ Draw lines x Axis RADIUS ▼ 🗌 log 🖌 inc. 0 🔾 auto 🖲 default 🔾 fixed ▼ □ log □ inc. 0 ○ auto ● default ○ fixed VISAMP y Axes 💌 📃 log 📃 inc. 0 🔘 auto 🖲 default 🔾 fixed VISPHI A.7.

OlFits done.

282 M Provided by JMMC

Practice Session I: Interferometry basics with ASPRC

4 Going 2D with flattened models

In the previous sections you learned about 1D functions to model interferometric measurements. Now it is time to take a look at two-dimensional intensity distributions.

4.1 Elliptical distributions

Question : Compare its visibility function to the one obtained for the 4 mas uniform disk.

Now modify the model so that the major-axis is oriented East-West.

Question : Where is the first zero of the visibility function?

Question : What uniform disk diameter does this correspond to?

Finally, put the disk major-axis at 45°.

Question : Can you conclude on the extension measured by an interferometer?

Now, let's use a new set of baselines. Load the configuration file *Example2.asprox*. Look at the UV plan in the UV coverage tab. The baselines in the new set all have the same length, i.e. 42m, but they have different position angles, and cover all directions.

Go to the **OIFits viewer** tab and plot the Visibility (VISAMP and VISPHI) as a function of the position angle (POS_ANGLE).

Question : Without looking at the model can you determine the major-axis position angle?

Question : Assuming an elliptical Gaussian model what are the major and minor axes FWHMs?

4.2 Application to geometrically thin disk

Elliptical intensity distributions are widely used to model geometrically-thin circumstellar disks. In this case the flattening is due to the projection of the disk on the sky-plane, i.e., perpendicular to the observer line of sight. At an inclination angle of 0° , i.e. pole-on, the disk is not flattened, and the elongation ratio (i.e. major-axis/minor-axis) grows with the inclination angle.

Question : Find the formula of the elongation ratio for this simple geometrically thin disk model

Question : Conclude on the inclination angle of our object.

It is extacly the same! (V=0 ⇔ B=29m) The baseline is North-South oriented and so it ``sees'' The major-axis of the Elongated disk

Twice as far, i.e., B=58m Now the baseline is oriented along the minor-axis

2mas

At 45° we found 3.1 mas, an intermediate value between the major and minor axes. The interferometer only measures extension along the baseline orientation

File Edition of Interferometry Practice Session I: Interferometry basics 🔂 ŘΠ CTIONS Targets Main settings Configuration(s) Constraint Q Simbad Interferometer DEMO S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S1 Night restriction -S0 S7 Date 2013/09/06 ♦ 00:00:00.000 89:00:00.000 Instrument DEMO SPATIAL -Editor Min. Elevation 30 Wind Status: 👘 Information 8 Sky • • Map Observability UV coverage OlFits viewer Notebook plot data DEMO - DEMO [0.460 µm - 0.460 µm] - S0-S7 Day: 2013-09-06 - Source: 00:00:00.000 89:00:00.000 1.1 1.0 0.9 0.8 0.7 **UISAMP** 0.6 0.5 0.4 0.498 0.3 All baselines have the same Length! 0.2 0.1 0.0 49.648 Made by OIFitsExplorer/JMN -0.1 200 150 100 Lower Visibility 🗇 Larger extension VISPHI (deg) 50 Major-axis at 50° 0 -50 -100 -150 49.648 -200 -200 -190 -180 -170 -160 -150 -140 -130 -120 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 POS_ANGLE (deg) ArrName: DEMO | InsName: DEMO_SPATIAL_0.46-lch | Date: 2013-09-06 | Baseline: S0-S7 | Config: S0-S7 | Target: 00:00:00.000 89:00:00.000 hide Wavelength: 0.460 µm | Spatial Freq: 91.30 MA | Radius: 42.00 m | Pos. angle: 49.65 deg | Hour angle: -3.30 h Table: OI_VIS#3 | Row: 13 | Col: 0 | File: Aspro2_00_00_00_00_00_00_00_00DEMO_DEMO_SPATIAL_0.46-1ch_S0-57_2013-09-06.fits Infos A D F Show VISAMP, VISPHI vs POS_ANGLE ▼ Color by effective wav... ▼ □ Skip Flagged □ Draw lines ▼ 🗌 log 🖌 inc. 0 🔾 auto 🖲 default 🔾 fixed x Axis POS ANGLE 🔻 🗌 log 🔄 inc. 0 🔾 auto 🖲 default 🔾 fixed VISAMP y Axes ▼ □ log □ inc. 0 ○ auto ● default ○ fixed VISPHI

OlFits done.

352 M Provided by JMMC

Practice session I: Interferometry basics Lith ASPRC

4 Going 2D with flattened models

In the previous sections you learned about 1D functions to model interferometric measurements. Now it is time to take a look at two-dimensional intensity distributions.

4.1 Elliptical distributions

Question : Compare its visibility function to the one obtained for the 4 mas uniform disk.

Now modify the model so that the major-axis is oriented East-West.

Question : Where is the first zero of the visibility function?

Question : What uniform disk diameter does this correspond to?

Finally, put the disk major-axis at 45°.

Question : Can you conclude on the extension measured by an interferometer?

Now, let's use a new set of baselines. Load the configuration file *Example2.asprox*. Look at the UV plan in the UV coverage tab. The baselines in the new set all have the same length, i.e. 42m, but they have different position angles, and cover all directions.

Go to the **OIFits viewer** tab and plot the Visibility (VISAMP and VISPHI) as a function of the position angle (POS_ANGLE).

Question : Without looking at the model can you determine the major-axis position angle?

Question : Assuming an elliptical Gaussian model what are the major and minor axes FWHMs?

4.2 Application to geometrically thin disk

Elliptical intensity distributions are widely used to model geometrically-thin circumstellar disks. In this case the flattening is due to the projection of the disk on the sky-plane, i.e., perpendicular to the observer line of sight. At an inclination angle of 0° , i.e. pole-on, the disk is not flattened, and the elongation ratio (i.e. major-axis/minor-axis) grows with the inclination angle.

Question : Find the formula of the elongation ratio for this simple geometrically thin disk model

Question : Conclude on the inclination angle of our object.

It is extacly the same! (V=0 ⇔ B=29m) The baseline is North-South oriented and so it ``sees'' The major-axis of the Elongated disk

Twice as far, i.e., B=58m Now the baseline is oriented along the minor-axis

2mas

At 45° we found 3.1 mas, an intermediate value between the major and minor axes. The interferometer only measures extension along the baseline orientation

yes, as there is some modulation, minimum is at 50°, which mean the longest dimension (the major axis) has a PA of 50°

Practice session I: Interferometry basics with ASPRC

4 Going 2D with flattened models

In the previous sections you learned about 1D functions to model interferometric measurements. Now it is time to take a look at two-dimensional intensity distributions.

4.1 Elliptical distributions

Question : Compare its visibility function to the one obtained for the 4 mas uniform disk.

Now modify the model so that the major-axis is oriented East-West.

Question : Where is the first zero of the visibility function?

Question : What uniform disk diameter does this correspond to?

Finally, put the disk major-axis at 45°.

Question : Can you conclude on the extension measured by an interferometer?

Now, let's use a new set of baselines. Load the configuration file *Example2.asprox*. Look at the UV plan in the UV coverage tab. The baselines in the new set all have the same length, i.e. 42m, but they have different position angles, and cover all directions.

Go to the **OIFits viewer** tab and plot the Visibility (VISAMP and VISPHI) as a function of the position angle (POS_ANGLE).

Question : Without looking at the model can you determine the major-axis position angle?

Question : Assuming an elliptical Gaussian model what are the major and minor axes FWHMs?

4.2 Application to geometrically thin disk

Elliptical intensity distributions are widely used to model geometrically-thin circumstellar disks. In this case the flattening is due to the projection of the disk on the sky-plane, i.e., perpendicular to the observer line of sight. At an inclination angle of 0° , i.e. pole-on, the disk is not flattened, and the elongation ratio (i.e. major-axis/minor-axis) grows with the inclination angle.

Question : Find the formula of the elongation ratio for this simple geometrically thin disk model

Question : Conclude on the inclination angle of our object.

It is extacly the same! (V=0 ⇔ B=29m) The baseline is North-South oriented and so it ``sees" The major-axis of the Elongated disk

Twice as far, i.e., B=58m Now the baseline is oriented along the minor-axis

2mas

At 45° we found 3.1 mas, an intermediate value between the major and minor axes. The interferometer only measures extension along the baseline orientation

yes, as there is some modulation, minimum is at 50°, which mean the longest dimension (the major axis) has a PA of 50°

Practice session I: Interferometry basics Gith ASPRC

4 Going 2D with flattened models

In the previous sections you learned about 1D functions to model interferometric measurements. Now it is time to take a look at two-dimensional intensity distributions.

4.1 Elliptical distributions

Question : Compare its visibility function to the one obtained for the 4 mas uniform disk.

Now modify the model so that the major-axis is oriented East-West.

Question : Where is the first zero of the visibility function?

Question : What uniform disk diameter does this correspond to?

Finally, put the disk major-axis at 45°.

Question : Can you conclude on the extension measured by an interferometer?

Now, let's use a new set of baselines. Load the configuration file *Example2.asprox*. Look at the UV plan in the UV coverage tab. The baselines in the new set all have the same length, i.e. 42m, but they have different position angles, and cover all directions.

Go to the **OIFits viewer** tab and plot the Visibility (VISAMP and VISPHI) as a function of the position angle (POS_ANGLE).

Question : Without looking at the model can you determine the major-axis position angle?

Question : Assuming an elliptical Gaussian model what are the major and minor axes FWHMs?

4.2 Application to geometrically thin disk

Elliptical intensity distributions are widely used to model geometrically-thin circumstellar disks. In this case the flattening is due to the projection of the disk on the sky-plane, i.e., perpendicular to the observer line of sight. At an inclination angle of 0° , i.e. pole-on, the disk is not flattened, and the elongation ratio (i.e. major-axis/minor-axis) grows with the inclination angle.

Question : Find the formula of the elongation ratio for this simple geometrically thin disk model

Question : Conclude on the inclination angle of our object.

It is extacly the same! (V=0 ⇔ B=29m) The baseline is North-South oriented and so it ``sees'' The major-axis of the Elongated disk

Twice as far, i.e., B=58m Now the baseline is oriented along the minor-axis

2mas

At 45° we found 3.1 mas, an intermediate value between the major and minor axes. The interferometer only measures extension along the baseline orientation

yes, as there is some modulation, minimum is at 50°, which mean the longest dimension (the major axis) has a PA of 50°

Using the FT given in the cheatsheet for the Gaussian

fwhm
$$\approx 1.66\sqrt{-lnV}rac{\lambda}{\pi B} \Leftrightarrow fwhm = 1 ext{ and } 0.5$$

Practice session I: Interferometry basics Gith ASPRC

4 Going 2D with flattened models

In the previous sections you learned about 1D functions to model interferometric measurements. Now it is time to take a look at two-dimensional intensity distributions.

4.1 Elliptical distributions

Question : Compare its visibility function to the one obtained for the 4 mas uniform disk.

Now modify the model so that the major-axis is oriented East-West.

Question : Where is the first zero of the visibility function?

Question : What uniform disk diameter does this correspond to?

Finally, put the disk major-axis at 45°.

Question : Can you conclude on the extension measured by an interferometer?

Now, let's use a new set of baselines. Load the configuration file *Example2.asprox*. Look at the UV plan in the UV coverage tab. The baselines in the new set all have the same length, i.e. 42m, but they have different position angles, and cover all directions.

Go to the **OIFits viewer** tab and plot the Visibility (VISAMP and VISPHI) as a function of the position angle (POS_ANGLE).

Question : Without looking at the model can you determine the major-axis position angle?

Question : Assuming an elliptical Gaussian model what are the major and minor axes FWHMs?

4.2 Application to geometrically thin disk

Elliptical intensity distributions are widely used to model geometrically-thin circumstellar disks. In this case the flattening is due to the projection of the disk on the sky-plane, i.e., perpendicular to the observer line of sight. At an inclination angle of 0° , i.e. pole-on, the disk is not flattened, and the elongation ratio (i.e. major-axis/minor-axis) grows with the inclination angle.

Question : Find the formula of the elongation ratio for this simple geometrically thin disk model

Question : Conclude on the inclination angle of our object.

It is extacly the same! (V=0 ⇔ B=29m) The baseline is North-South oriented and so it ``sees'' The major-axis of the Elongated disk

Twice as far, i.e., B=58m Now the baseline is oriented along the minor-axis

2mas

At 45° we found 3.1 mas, an intermediate value between the major and minor axes. The interferometer only measures extension along the baseline orientation

yes, as there is some modulation, minimum is at 50°, which mean the longest dimension (the major axis) has a PA of 50°

Using the FT given in the cheatsheet for the Gaussian

fwhm
$$\approx 1.66\sqrt{-lnV}rac{\lambda}{\pi B} \Leftrightarrow fwhm = 1 ext{ and } 0.5$$

Elong = 1 / cos (inclination)

Practice session I: Interferometry basics City ASPRC

4 Going 2D with flattened models

In the previous sections you learned about 1D functions to model interferometric measurements. Now it is time to take a look at two-dimensional intensity distributions.

4.1 Elliptical distributions

Question : Compare its visibility function to the one obtained for the 4 mas uniform disk.

Now modify the model so that the major-axis is oriented East-West.

Question : Where is the first zero of the visibility function?

Question : What uniform disk diameter does this correspond to?

Finally, put the disk major-axis at 45°.

Question : Can you conclude on the extension measured by an interferometer?

Now, let's use a new set of baselines. Load the configuration file *Example2.asprox*. Look at the UV plan in the UV coverage tab. The baselines in the new set all have the same length, i.e. 42m, but they have different position angles, and cover all directions.

Go to the **OIFits viewer** tab and plot the Visibility (VISAMP and VISPHI) as a function of the position angle (POS_ANGLE).

Question : Without looking at the model can you determine the major-axis position angle?

Question : Assuming an elliptical Gaussian model what are the major and minor axes FWHMs?

4.2 Application to geometrically thin disk

Elliptical intensity distributions are widely used to model geometrically-thin circumstellar disks. In this case the flattening is due to the projection of the disk on the sky-plane, i.e., perpendicular to the observer line of sight. At an inclination angle of 0° , i.e. pole-on, the disk is not flattened, and the elongation ratio (i.e. major-axis/minor-axis) grows with the inclination angle.

Question : Find the formula of the elongation ratio for this simple geometrically thin disk model

Question : Conclude on the inclination angle of our object.

It is extacly the same! (V=0 ⇔ B=29m) The baseline is North-South oriented and so it ``sees'' The major-axis of the Elongated disk

Twice as far, i.e., B=58m Now the baseline is oriented along the minor-axis

2mas

At 45° we found 3.1 mas, an intermediate value between the major and minor axes. The interferometer only measures extension along the baseline orientation

yes, as there is some modulation, minimum is at 50°, which mean the longest dimension (the major axis) has a PA of 50°

Using the FT given in the cheatsheet for the Gaussian

fwhm
$$\approx 1.66\sqrt{-lnV}\frac{\lambda}{\pi B} \Leftrightarrow fwhm = 1 \text{ and } 0.5$$

Elong = 1 / cos (inclination)

Practice session I: Interferometry basics City ASPRO

5 Composed models

RAAAA

5 Composed models

Imagine that your model is a weighted sum of N components :

$$I_{tot}(x,y) = \sum_{i=1}^{N} f_i I_i(x,y)$$
(1)

where $I_i(x, y)$ is the intensity distribution of the ith component and f_i its relative flux with $\Sigma f_i=1$. Question : What is the visibility function (i.e. normalized Fourier Transform) for this model?

5.1 Star + circumstellar disk model

Let's look at a simple star + circumstellar disk example. First, load a new observation file : *Example3.asprox*. Go to the UV coverage tab and look at it (again remove the annoying Plot rise/set uv tracks option). It is composed two perpendicular strips of baselines : one North-South and one East-West. It will allow us to probe our object along these two perpendicular orientations.

Now, open the **Target Editor** and create a two components model composed of a 0.5 uniform disk (for the star) and an elliptical Gaussian distribution (for the circumstellar disk), with a 8 mas major-axis oriented North-South and a 4 mas minor-axis. Put the flux contribution of each component to 50%.

Plot the visibility amplitude and phase as a function of the baselines lengths.

Question : Describe the visibility function.

Change the flux ratio between the two components and look at the visibility function.

Question : What has been modified? Can you explain why?

Now imagine that you want to constrain the circumstellar environment extension and flattening.

Question : What baseline lengths and orientations will you choose?

Question : Will these set of baselines give information on the stellar surface?

Practice session I: Interferometry basics City ASPRC

5 Composed models

Imagine that your model is a weighted sum of N components :

$$I_{tot}(x, y) = \sum_{i=1}^{N} f_i I_i(x, y)$$
(1)

where $I_i(x, y)$ is the intensity distribution of the ith component and f_i its relative flux with $\Sigma f_i=1$. Question : What is the visibility function (i.e. normalized Fourier Transform) for this model?

5.1 Star + circumstellar disk model

Let's look at a simple star + circumstellar disk example. First, load a new observation file : *Example3.asprox*. Go to the UV coverage tab and look at it (again remove the annoying Plot rise/set uv tracks option). It is composed two perpendicular strips of baselines : one North-South and one East-West. It will allow us to probe our object along these two perpendicular orientations.

Now, open the **Target Editor** and create a two components model composed of a 0.5 uniform disk (for the star) and an elliptical Gaussian distribution (for the circumstellar disk), with a 8 mas major-axis oriented North-South and a 4 mas minor-axis. Put the flux contribution of each component to 50%.

Plot the visibility amplitude and phase as a function of the baselines lengths.

Question : Describe the visibility function.

Change the flux ratio between the two components and look at the visibility function.

Question : What has been modified? Can you explain why?

Now imagine that you want to constrain the circumstellar environment extension and flattening.

Question : What baseline lengths and orientations will you choose?

Question : Will these set of baselines give information on the stellar surface?

The Fourier transform of a weighted sum of functions is the weighted sum of their respective Fourier transforms.

Practice session I: Interferometry basics with ASPRC

5 Composed models

Imagine that your model is a weighted sum of N components :

$$I_{tot}(x, y) = \sum_{i=1}^{N} f_i I_i(x, y)$$
(1)

where $I_i(x, y)$ is the intensity distribution of the *i*th component and f_i its relative flux with $\Sigma f_i=1$. Question : What is the visibility function (i.e. normalized Fourier Transform) for this model?

5.1 Star + circumstellar disk model

Let's look at a simple star + circumstellar disk example. First, load a new observation file : *Example3.asprox*. Go to the UV coverage tab and look at it (again remove the annoying Plot rise/set uv tracks option). It is composed two perpendicular strips of baselines : one North-South and one East-West. It will allow us to probe our object along these two perpendicular orientations.

Now, open the **Target Editor** and create a two components model composed of a 0.5 uniform disk (for the star) and an elliptical Gaussian distribution (for the circumstellar disk), with a 8 mas major-axis oriented North-South and a 4 mas minor-axis. Put the flux contribution of each component to 50%.

Plot the visibility amplitude and phase as a function of the baselines lengths.

Question : Describe the visibility function.

Change the flux ratio between the two components and look at the visibility function.

Question : What has been modified? Can you explain why?

Now imagine that you want to constrain the circumstellar environment extension and flattening.

Question : What baseline lengths and orientations will you choose?

Question : Will these set of baselines give information on the stellar surface?

The Fourier transform of a weighted sum of functions is the weighted sum of their respective Fourier transforms.

File Editemetry

Practice session I: Interferometry basics City, ASPRO

Target	un - Interop	Main settings		•		C	onfiguration(s)				Const	raints	rrend	His .
	Q V Simbad	Interferometer	DEMO		-		S0 S1 S2 S	3 S4 S5 S6 S	7 S8 S9 S10	S11 S12 S13 S14	SI	Night restriction	X	JUI S
	♦ 00:00:00.000 89:00:00.000 Editor	Instrument	DEMO_SPATIAL		-		S0 S7				Min. El	Date 2013/09/06 evation 30 Wind		
	Sky						•				▶ Status	i 🕧 Information		
Noteb	book Map Observability UV coverage OlFits viewer													
plot	data													
		DEMO - DEMO [0.46	50 μm - 0.460 μm] - S Day: 2013-09-0	0-S1-S2-S3-S 6 - Source: 00	4-S5-S6-S7-S8-S):00:00.000 89:00	9-S10-S11):00.000	-S12-S13-S1	4-S15-S16		Starts	s resol	ving the		
	Elong. Gaussian mino	r axis								0.5m	as unit	form Disk		
										0.5111	us unn			
đ	0.7													
ISA		* * * * * * * * *	* * * * * * * *											
>	0.4	1											* * * *	
	Elong. Gaussian major-axis													
-	-0.1	platea	u at V=0.5	5									Made by OIFits	Explorer/JMMC
	150	1-8ma	c Gaussia	n fully	rocolvo	hd								
	100	4-0111a	s Gaussia	ii iuny	16201ve	u								
But not the 0.5mas uniform Disk														
P) IH													• • • • •	
VISF	-50													
	-100													
-*	150												Mada ity OliFite	Externel MMC
-:	0 5 10 15 20 25 30	35	40 45	50 RADI	55 IUS (m)	60	65	70	75	80	85	90 95	100	105
hide	ArrName: DEMO InsName: DEMO_SPATIAL_0.46-lch Date: 2012-09-06 Baseline: S10-S15 Cor Wavelength: 0.460 µm Spatial Freq: 54.25 MA Radius: 25.00 m Pos. angle: 90.00 deg }	fig: 30-31-32-33-34-35-36- Cour angle: -5.99 h	-37-38-39-310-311-312-3	13-514-515-516	Target: 00:00:00	.000 89:00:	00.000							
Infost	Table: OI_VIS#3 Row: 119 Col: 0 File: Aspro2_00_00_000_089_00_000_DEMO_DEMO_SPAT	IAL_0.46-1ch_S0-S1-S2-S3-S	34-35-36-37-38-39-310-3	11-512-513-514-	815-816_2013-09-06	.fits								
🤣 A	D F Show VISAMP, VISPHI vs RADIUS			I							Color by	effective wav 🔻 🗌 S	kip Flagged 📃 D	raw lines
x Axis	RADIUS								-	log 🗹 inc. 0 🔾	auto 🖲 defaul	t 🔾 fixed 0	106.05	+
N A.Y.C.	VISAMP								-	log 🗌 inc. 0 🔾	auto 🖲 defaul	t O fixed -0.1	1.1	
y Axes	VISPHI								-	log 🗌 inc. 0 🛛	auto 🖲 defaul	t O fixed -200	200	-
														10.00.00
LÞ	Ultits done.											201 M	Provided	by JIMIMC

Practice session I: Interferometry basics Lith ASPRC

5 Composed models

Imagine that your model is a weighted sum of N components :

$$I_{tot}(x, y) = \sum_{i=1}^{N} f_i I_i(x, y)$$
(1)

where $I_i(x, y)$ is the intensity distribution of the ith component and f_i its relative flux with $\Sigma f_i=1$. Question : What is the visibility function (i.e. normalized Fourier Transform) for this model?

5.1 Star + circumstellar disk model

Let's look at a simple star + circumstellar disk example. First, load a new observation file : *Example3.asprox*. Go to the UV coverage tab and look at it (again remove the annoying Plot rise/set uv tracks option). It is composed two perpendicular strips of baselines : one North-South and one East-West. It will allow us to probe our object along these two perpendicular orientations.

Now, open the **Target Editor** and create a two components model composed of a 0.5 uniform disk (for the star) and an elliptical Gaussian distribution (for the circumstellar disk), with a 8 mas major-axis oriented North-South and a 4 mas minor-axis. Put the flux contribution of each component to 50%.

Plot the visibility amplitude and phase as a function of the baselines lengths.

Question : Describe the visibility function.

Change the flux ratio between the two components and look at the visibility function.

Question : What has been modified? Can you explain why?

Now imagine that you want to constrain the circumstellar environment extension and flattening.

Question : What baseline lengths and orientations will you choose?

Question : Will these set of baselines give information on the stellar surface?

The Fourier transform of a weighted sum of functions is the weighted sum of their respective Fourier transforms.

A sum of the Fourier transform of :

- the elliptical Gaussian distribution (seen at short baselines and that gives different values for the two perpendicular strips of baselines)
- and of the uniform disk (Airy function seen at long baseline and never fully resolved)

File Editemetry

Practice session I: Interferometry basics City, ASPRO

Fargets			Main settings						Configuration(s)					onstraints		Tection.
(Q V Simbad		Interfero	DEMO				-	S0 S1 S2 S S0 S7	3 S4 S5 S6	S7 S8 S9 S10	S11 S12 S13	S14 SI	Night res		
	◆ 00:00:00.000 89:00:00.000	Editor	Instr	ument DEMO_SPATI	AL			•					N	in. Elevation 30	Wind	
		Sky							•		III		> S	tatus: 🥡 Infoi	mation	
Notebo	ook Map Observability UV coverage OlFits viewer															
plot	data															
			DEMO - DEMO	Ο [0.460 μm - 0.460 Day: 20	0 µm] - S0-S 013-09-06 - 9	1-S2-S3-S4-S Source: 00:00	5-S6-S7-S 0:00.000 8	8-S9-S10-S1 9:00:00.000	1-S12-S13-S1	4-S15-S16						
1	1.1			-												
0																
0	D.8															
0 • •																
MA 0																
j 0	D.4 0.499		•					· · · · ·	* * * * * *	* * * * * *						A A A
0	0.3															
0	D.1															
0	fluxes are t	25	mlat		-0 F											Made by OlEitsExplored/IMMC
-0 20	nuxes are :		piat	leau al v	=0.5						Lwill	chang	o tho f	luvos to	<u>۱</u>	max by our habitation many
15	• 0.5 for the Gauss	ian										chang	eulei	ועאבא ננ	,	
10											• 0.8	8 for tl	ne Gau	ıssian		
(B	• 0.5 for the UD										• • •					
) (de											• 0.4	ZIOLU	ne UD			
SPH																
5 3	50															
-10	00															
-15	50	25														
-20	00 5 10 15 20	25	30 35	40	45	50 RADIUS	55 5 (m)	60	65	70	75	80	85	90	95	Made by OIFitsExplorer/JMMC 100 105
A	ArrName: DEMO InsName: DEMO_SPATIAL_0.46-1ch Date: 2013-09-0	6 Baseline: S10-S15	Config: S0-S1-S2-S3-S4	1-35-36-37-38-39-310-	511-512-513-5	14-315-316 T	arget: 00:00	:00.000 89:00	:00.000							
hide wa	<pre>favelength: 0.460 µm Spatial Freq: 54.35 MA Radius: 25.00 m Cable: OI_VIS#3 Row: 119 Col: 0 File: Aspro2_00_00_000_000_</pre>	Pos. angle: 90.00 deg 89_00_00_000_DEMO_DEMO_S	Hour angle: -5.99 h SPATIAL_0.46-1ch_S0-S1-	-82-83-84-85-86-87-88	-39-310-311-3	12-513-514-515	-516_2013-09	-06.fits								
Infos:																
🤣 A D	D F Show VISAMP, VISPHI vs RADIUS												Colo	r by effective wav	. 🔻 🗌 Skip	Flagged Draw lines .
x Axis	RADIUS										-	🗌 log 🔽 inc. () 🔾 auto 🖲 d	efault 🔾 fixed 0		106.05
·	VISAMP										-	🗌 log 📃 inc. () 🔾 auto 🖲 d	efault 🔾 fixed -0.1	1	1.1
Axes	VISPHI										-	🗌 log 📃 inc. () 🔾 auto 🖲 d	efault 🔾 fixed -20		200
	OIFits done.														201 M	Provided by

File Edentity VLTI School of Interferometry Practice session I: Interferometry basics 🔂 Stions Main settings Targets Configuration(s) Constraints Interferometer DEMO S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S1 Night restriction • S0 S7 Date 2013/09/06 ♦ 00:00:00.000 89:00:00.000 Instrument DEMO SPATIAL -Editor Min. Elevation 30 Wind 8 Status: 👘 Information Sky • •

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 0 105 RADIUS (m) ArrName: DEMO | InsName: DEMO_SPATIAL_0.46-lch | Date: 2013-09-06 | Baseline: S5-S8 | Config: S0-S1-S2-S3-34-S5-S6-S7-38-S9-S10-S11-S12-S13-314-S15-S16 | Target: 00:00:00.000 89:00:00.000 hide Wavelength: 0.460 µm | Spatial Freq: 71.74 MA | Radius: 33.00 m | Pos. angle: 90.00 deg | Hour angle: -5.99 h Infos: A D F Show VISAMP, VISPHI vs RADIUS 💌 Color by effective wav... 💌 🗌 Skip Flagged 🗌 Draw lines x Axis RADIUS ▼ 🗌 log 🖌 inc. 0 🔾 auto 🖲 default 🔾 fixed ▼ □ log □ inc. 0 ○ auto ● default ○ fixed VISAMP y Axes VISPHI 💌 🗌 log 🔄 inc. 0 🔘 auto 🖲 default 🔘 fixed

OlFits done.

A.7.

VISPHI (deg)

ŔΠ

Practice session I: Interferometry basics with ASPRC

5 Composed models

Imagine that your model is a weighted sum of N components :

$$I_{tot}(x, y) = \sum_{i=1}^{N} f_i I_i(x, y)$$
(1)

where $I_i(x, y)$ is the intensity distribution of the ith component and f_i its relative flux with $\Sigma f_i=1$. Question : What is the visibility function (i.e. normalized Fourier Transform) for this model?

5.1 Star + circumstellar disk model

Let's look at a simple star + circumstellar disk example. First, load a new observation file : *Example3.asprox*. Go to the UV coverage tab and look at it (again remove the annoying Plot rise/set uv tracks option). It is composed two perpendicular strips of baselines : one North-South and one East-West. It will allow us to probe our object along these two perpendicular orientations.

Now, open the **Target Editor** and create a two components model composed of a 0.5 uniform disk (for the star) and an elliptical Gaussian distribution (for the circumstellar disk), with a 8 mas major-axis oriented North-South and a 4 mas minor-axis. Put the flux contribution of each component to 50%.

Plot the visibility amplitude and phase as a function of the baselines lengths.

Question : Describe the visibility function.

Change the flux ratio between the two components and look at the visibility function.

Question : What has been modified? Can you explain why?

Now imagine that you want to constrain the circumstellar environment extension and flattening.

Question : What baseline lengths and orientations will you choose?

Question : Will these set of baselines give information on the stellar surface

The Fourier transform of a weighted sum of functions is the weighted sum of their respective Fourier transforms.

A sum of the Fourier transform of :

- the elliptical Gaussian distribution (seen at short baselines and that gives different values for the two perpendicular strips of baselines)
- and of the uniform disk (Airy function seen at long baseline and never fully resolved)

the level of the plateau between the baselines resolving the Gaussian and the ones resolving the Uniform disk have changed. This plateau allows to make a direct measure of the relative flux of the two components of our model.

File Edentify VLTI School of Interferometry Practice session I: Interferometry basics 🔂 Targets Main settings Configuration(s) Constraint Q V Simbad S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S1 Night restriction Interferometer DEMO • S0 S7 Date 2013/09/06 ♦ 00:00:00.000 89:00:00.000 Instrument DEMO SPATIAL -Editor Min. Elevation 30 Wind

Provided by JMMC

ŔΠ

Stions

Practice session I: Interferometry basics with ASPRC

5 Composed models

Imagine that your model is a weighted sum of N components :

$$I_{tot}(x, y) = \sum_{i=1}^{N} f_i I_i(x, y)$$
(1)

where $I_i(x, y)$ is the intensity distribution of the ith component and f_i its relative flux with $\Sigma f_i=1$. Question : What is the visibility function (i.e. normalized Fourier Transform) for this model?

5.1 Star + circumstellar disk model

Let's look at a simple star + circumstellar disk example. First, load a new observation file : *Example3.asprox*. Go to the UV coverage tab and look at it (again remove the annoying Plot rise/set uv tracks option). It is composed two perpendicular strips of baselines : one North-South and one East-West. It will allow us to probe our object along these two perpendicular orientations.

Now, open the **Target Editor** and create a two components model composed of a 0.5 uniform disk (for the star) and an elliptical Gaussian distribution (for the circumstellar disk), with a 8 mas major-axis oriented North-South and a 4 mas minor-axis. Put the flux contribution of each component to 50%.

Plot the visibility amplitude and phase as a function of the baselines lengths.

Question : Describe the visibility function.

Change the flux ratio between the two components and look at the visibility function.

Question : What has been modified? Can you explain why?

Now imagine that you want to constrain the circumstellar environment extension and flattening.

Question : What baseline lengths and orientations will you choose?

Question : Will these set of baselines give information on the stellar surface

The Fourier transform of a weighted sum of functions is the weighted sum of their respective Fourier transforms.

A sum of the Fourier transform of :

- the elliptical Gaussian distribution (seen at short baselines and that gives different values for the two perpendicular strips of baselines)
- and of the uniform disk (Airy function seen at long baseline and never fully resolved)

the level of the plateau between the baselines resolving the Gaussian and the ones resolving the Uniform disk have changed. This plateau allows to make a direct measure of the relative flux of the two components of our model.

Baselines shorter than the plateau : B < 20 m Disk elongated ⇔ Baselines in many orientations.

No. The star start to be significantly resolved for baselines larger than 60 m.

Practice session I: Interferometry basics City ASPRO

5.2 Binaries

A second kind of very useful two components model is the binary model. We will use a single strip of North-South aligned baselines to exlpore this model. So, load the *Example1.asprox* file.

Then, open the **Target Editor** and create a model consisting of two point sources. Set their flux to 0.2 and 0.8. Look at the second component, the *x*2 and *y*2 parameters have been replaced by *sep*2 and *pos_angle2*, i.e. polar coordinates. Choose *sep*2=5 and *pos_angle2*=0. This simulates two unresolved stars separated by 5 mas in the North-South orientation, i.e. aligned with our baselines.

Question : Describe and explain the visibility function.

Write down the amplitude of the sinusoidal modulation. Set the flux ratio to 0.1/0.9 and then to 0.5/0.5.

Question : What is the link between the flux ratio and the amplitude of the binary modulation?

Write down the modulation period in meter, and express it in B/λ units (cycles/rad). Then set the binary separation, i.e. *sep2*, to 10 mas. and do this again.

Question : Give the relation between the binary separation (in rad) and the modulation period (in cycles/rad).

Now change *theta2* to 90° : binary in the East-West orientation.

Question : Describe and explain the visibility function.

Do the same but with *theta2* equal to 30° , 45° , and 60° .

Question : How does this affect the visibility function? Why?

Finally replace the components by uniform disks and try various diameters between 0 and 2 mas, for each component, separately.

Question : What is the effect of resolving one component on the visibility function?

OlFits done.

Practice session I: Interferometry basics City, ASPR0

5.2 Binaries

A second kind of very useful two components model is the binary model. We will use a single strip of North-South aligned baselines to exlpore this model. So, load the *Example1.asprox* file.

Then, open the **Target Editor** and create a model consisting of two point sources. Set their flux to 0.2 and 0.8. Look at the second component, the x2 and y2 parameters have been replaced by *sep2* and *pos_angle2*, i.e. polar coordinates. Choose *sep2*=5 and *pos_angle2*=0. This simulates two unresolved stars separated by 5 mas in the North-South orientation, i.e. aligned with our baselines.

Question : Describe and explain the visibility function.

Write down the amplitude of the sinusoidal modulation. Set the flux ratio to 0.1/0.9 and then to 0.5/0.5.

Question : What is the link between the flux ratio and the amplitude of the binary modulation?

Write down the modulation period in meter, and express it in B/λ units (cycles/rad). Then set the binary separation, i.e. *sep2*, to 10 mas. and do this again.

Question : Give the relation between the binary separation (in rad) and the modulation period (in cycles/rad).

Now change theta2 to 90°: binary in the East-West orientation.

Question : Describe and explain the visibility function.

Do the same but with *theta2* equal to 30° , 45° , and 60° .

Question : How does this affect the visibility function? Why?

Finally replace the components by uniform disks and try various diameters between 0 and 2 mas, for each component, separately.

Question : What is the effect of resolving one component on the visibility function?

The visibility function corresponding to a binary is a weighted cosine function.

Practice session I: Interferometry basics Gith ASPRC

5.2 Binaries

A second kind of very useful two components model is the binary model. We will use a single strip of North-South aligned baselines to exlpore this model. So, load the *Example1.asprox* file.

Then, open the **Target Editor** and create a model consisting of two point sources. Set their flux to 0.2 and 0.8. Look at the second component, the x2 and y2 parameters have been replaced by *sep2* and *pos_angle2*, i.e. polar coordinates. Choose *sep2*=5 and *pos_angle2*=0. This simulates two unresolved stars separated by 5 mas in the North-South orientation, i.e. aligned with our baselines.

Question : Describe and explain the visibility function.

Write down the amplitude of the sinusoidal modulation. Set the flux ratio to 0.1/0.9 and then to 0.5/0.5.

Question : What is the link between the flux ratio and the amplitude of the binary modulation?

Write down the modulation period in meter, and express it in B/λ units (cycles/rad). Then set the binary separation, i.e. *sep2*, to 10 mas. and do this again.

Question : Give the relation between the binary separation (in rad) and the modulation period (in cycles/rad).

Now change theta2 to 90°: binary in the East-West orientation.

Question : Describe and explain the visibility function.

Do the same but with *theta2* equal to 30° , 45° , and 60° .

Question : How does this affect the visibility function? Why?

Finally replace the components by uniform disks and try various diameters between 0 and 2 mas, for each component, separately.

Question : What is the effect of resolving one component on the visibility function?

The visibility function corresponding to a binary is a weighted cosine function.

OlFits done.

411 M Provided by JMMC
Practice session I: Interferometry basics Gith ASPRC

5.2 Binaries

A second kind of very useful two components model is the binary model. We will use a single strip of North-South aligned baselines to exlpore this model. So, load the *Example1.asprox* file.

Then, open the **Target Editor** and create a model consisting of two point sources. Set their flux to 0.2 and 0.8. Look at the second component, the *x*2 and *y*2 parameters have been replaced by *sep*2 and *pos_angle2*, i.e. polar coordinates. Choose *sep*2=5 and *pos_angle2*=0. This simulates two unresolved stars separated by 5 mas in the North-South orientation, i.e. aligned with our baselines.

Question : Describe and explain the visibility function.

Write down the amplitude of the sinusoidal modulation. Set the flux ratio to 0.1/0.9 and then to 0.5/0.5.

Question : What is the link between the flux ratio and the amplitude of the binary modulation?

Write down the modulation period in meter, and express it in B/λ units (cycles/rad). Then set the binary separation, i.e. *sep2*, to 10 mas. and do this again.

Question : Give the relation between the binary separation (in rad) and the modulation period (in cycles/rad).

Now change theta2 to 90°: binary in the East-West orientation.

Question : Describe and explain the visibility function.

Do the same but with *theta2* equal to 30° , 45° , and 60° .

Question : How does this affect the visibility function? Why?

Finally replace the components by uniform disks and try various diameters between 0 and 2 mas, for each component, separately.

Question : What is the effect of resolving one component on the visibility function?

The visibility function corresponding to a binary is a weighted cosine function.

If r is the flux ratio between the components (r<1), the amplitude A of the modulation is given by :

 $\chi = \frac{2r}{1+r}$

Accesso2 - Exampled asprox [s] File Edd Interferometry File Edd Interferometry Targets Main settings

Practice Session I: Interferometry basics with ASPR

File Edition of Interferometry Practice session I: Interferometry basics 🔂 TIONS Targets Main settings Configuration(s) Constraint Interferometer DEMO S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S1 Night restriction S0 S7 2010/09/21 ÷ ♦ 00:00:00.000 89:00:00.000 Date Instrument DEMO SPATIAL Editor Min. Elevation 30 Wind • Status: 👘 Information Sky Observability UV coverage **OIFits viewer** Notebook Map plot data DEMO - DEMO [0.460 µm - 0.460 µm] - S0-S1-S2-S3-S4-S5-S6-S7-S8-S9-S10-S11-S12-S13-S14-S15-S16 Day: 2010-09-21 - Source: 00:00:00.000 89:00:00.000 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 $T = 9.5 \text{ m} \Leftrightarrow 2.06e7 \text{ cycles/rad}$ 0.3 10 mas binary 0.2 0.1 0.0 Made by OIFitsE: -0.1 150 100 $\Rightarrow 1/10$ mas = 2:06e7 cycles/rad 1 mas = 4.84 e-9 radVISPHI (deg) 50 -50 -100 -150 18.997 -200 10 15 20 25 30 35 40 50 55 60 65 70 75 80 85 95 5 45 90 100 105 RADIUS (m) ArrName: DEMO | InsName: DEMO_SPATIAL_0.46-1ch | Date: 2010-09-21 | Baseline: S1-S5 | Config: S0-S1-S2-S3-S4-S5-S6-S7-S8-S9-S10-S11-S12-S13-S14-S15-S16 | Target: 00:00:00.000 89:00:00.000 hide Wavelength: 0.460 µm | Spatial Freq: 41.30 MA | Radius: 19.00 m | Pos. angle: 0.00 deg | Hour angle: 0.01 h Table: OI VIS#3 | Row: 19 | Col: 0 | File: Aspro2 00 00 00 00 89 00 00 000 DEMO DEMO DEMO SPATIAL 0.46-1ch 80-81-82-83-84-85-86-87-88-89-810-811-812-813-814-815-816 2010-09-21.fits A D F Show VISAMP, VISPHI vs RADIUS ▼ Color by effective wav... ▼ □ Skip Flagged □ Draw lines x Axis RADIUS ▼ 🗌 log 🖌 inc. 0 🔘 auto 🖲 default 🔾 fixed VISAMP ▼ □ log □ inc. 0 ○ auto ④ default ○ fixed y Axes ▼ □ log □ inc. 0 ○ auto ● default ○ fixed VISPHI

OlFits done.

Practice session I: Interferometry basics Cith RSP

Binaries 5.2

A second kind of very useful two components model is the binary model. We will use a single strip of North-South aligned baselines to expore this model. So, load the *Example1.asprox* file.

Then, open the Target Editor and create a model consisting of two point sources. Set their flux to 0.2 and 0.8. Look at the second component, the x2 and y2 parameters have been replaced by sep2 and pos_angle2, i.e. polar coordinates. Choose sep2=5 and pos_angle2=0. This simulates two unresolved stars separated by 5 mas in the North-South orientation, i.e. aligned with our baselines.

Question : Describe and explain the visibility function.

Write down the amplitude of the sinusoidal modulation. Set the flux ratio to 0.1/0.9 and then to 0.5/0.5.

Question : What is the link between the flux ratio and the amplitude of the binary modulation?

Write down the modulation period in meter, and express it in B/λ units (cycles/rad). Then set the binary separation, i.e. sep2, to 10 mas. and do this again.

Question : Give the relation between the binary separation (in rad) and the modulation period (in cycles/rad).

Now change theta2 to 90°: binary in the East-West orientation.

Question : Describe and explain the visibility function.

Do the same but with *theta2* equal to 30° , 45° , and 60° .

Question : How does this affect the visibility function? Why?

Finally replace the components by uniform disks and try various diameters between 0 and 2 mas, for each component, separately.

Question : What is the effect of resolving one component on the visibility function?

The visibility function corresponding to a binary is a weighted cosine function.

If r is the flux ratio between the components (r<1), the amplitude A of the modulation is given by :

 $A = \frac{2r}{1+r}$

- 5mas => 19m => 4.13^{e-7} cycles/rad
- 10mas => 9.5m => 2.06^{e-7} cycles/rad The modulation period is equal to the inverse of the binary separation.

 $1 \text{ mas} = 4.84^{e-9} \text{ rad}$ $4.13^{e-7} = 1/5$ mas $2.06^{e-7} = 1/10$ mas

Practice session I: Interferometry basics City, ASPR0

5.2 Binaries

A second kind of very useful two components model is the binary model. We will use a single strip of North-South aligned baselines to exlpore this model. So, load the *Example1.asprox* file.

Then, open the **Target Editor** and create a model consisting of two point sources. Set their flux to 0.2 and 0.8. Look at the second component, the *x*2 and *y*2 parameters have been replaced by *sep*2 and *pos_angle2*, i.e. polar coordinates. Choose *sep*2=5 and *pos_angle2*=0. This simulates two unresolved stars separated by 5 mas in the North-South orientation, i.e. aligned with our baselines.

Question : Describe and explain the visibility function.

Write down the amplitude of the sinusoidal modulation. Set the flux ratio to 0.1/0.9 and then to 0.5/0.5.

Question : What is the link between the flux ratio and the amplitude of the binary modulation?

Write down the modulation period in meter, and express it in B/λ units (cycles/rad). Then set the binary separation, i.e. *sep2*, to 10 mas. and do this again.

Question : Give the relation between the binary separation (in rad) and the modulation period (in cycles/rad).

Now change theta2 to 90°: binary in the East-West orientation.

Question : Describe and explain the visibility function.

Do the same but with *theta2* equal to 30° , 45° , and 60° .

Question : How does this affect the visibility function? Why?

Finally replace the components by uniform disks and try various diameters between 0 and 2 mas, for each component, separately.

Question : What is the effect of resolving one component on the visibility function?

The visibility function corresponding to a binary is a weighted cosine function.

If r is the flux ratio between the components (r<1), the amplitude A of the modulation is given by :

 $A = \frac{2r}{1+r}$

- 5mas => 19m => 4.13^{e-7} cycles/rad
- 10mas => 9.5m => 2.06^{e-7} cycles/rad
 The modulation period is equal to the inverse of the binary separation.

1 mas = 4.84^{e-9} rad $4.13^{e-7} = 1/5$ mas $2.06^{e-7} = 1/10$ mas

File Editemetry Practice session I: Interferometry basics with BSPRO

Targets						Main	settings						Configuration(s)				Constr	aints		'enti-		
	Qv						Interferometer DEMO					-	50 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S1					Night restriction			<u>- 40</u> Fis	
````	(41)					4	interferometer	DEMO					S0 S7					Data 2010/00		Set by		
	♦ 00:0	0:00.000 89:00:0	0.000		Editor		Instrument	DEMO_SPATI	AL			▼						Date 2010/05	<u>nzı</u>			
																	Min. Ele	vation 30 W	ind 🔄	CXIX2		
																				A		
					Clau	-											<b>6</b> 1-11-11	A 1.46 a 1.44 a				
					Sky								•				status:	<b>Informa</b>	luon			
·····			V																			
Notebo		ap Observability	UV coverage	OIFITS VIEWER																		
plot	data																					
						DEM	O - DEMO [0.4	60 µm - 0.460	) µm] - S0-S1	I-S2-S3-S4-S	5-S6-S7-S8-	-S9-S10-S1	11-S12-S13-S1	4-S15-S16								
								Day: 20	)10-09-21 - S	ource: 00:00	:00.000 89:0	00:00.000										
	1.1																					
	1.0																• • • • •			• •		
	0.9																					
	0.8																					
	0.7																					
۵.	0.6																					
Ψ	0.5																					
SI I	0.4																					
-	0.4																					
	0.3																					
	0.2				_																	
	0.1																					
	0.0	-			-																-	
-	0.1																			Made by OIFitsExplorer/JM	MC	
2	00																					
1	50																					
1	00																					
<b>a</b>	50																					
ğ	50																					
Ŧ	0				· · · · · · · ·													<b></b>		• •		
ι.																						
, ≝ ·	-50																					
1	00																					
-1																						
-1	50																					
																				Made by OlEiteEvolorer/ M	MC	
-2	00	5	10	15 20	25	30	35	40	45	50	55	60	65	70	75	80	85	90 99	5	100 10	15	
	0	0		10 20	20		00	10		RADIUS	(m)				,.							
				1	•						(,							1				
Infos:																						
🌮 A	D F Sho	W VISAMP, VISPHI	/s RADIUS														Color by e	ffective wav	Skip Fla	gged 📃 Draw lin	es	
x Axis	RADIUS														-	🗌 log 🗹 inc. 0 🔾 a	uto 🖲 default	○ fixed 0		106.0357	+	
														0.000								
v Axes	VISAMP											l log l lnc. 0 0 a	uto 🖲 default			1.1						
JANCS	VISPHI 🗸 🗌 log 🗌 in										🗌 log 🔲 inc. 0 🔾 a	uto 🖲 default	◯ fixed -200		200							
<b></b>																-						
	OIFite	done.																3	64 M	Provided by	ARAC	
	Sandt																				/***** <b>``</b>	

## Practice session I: Interferometry basics City, ASPR0

#### 5.2 Binaries

A second kind of very useful two components model is the binary model. We will use a single strip of North-South aligned baselines to exlpore this model. So, load the *Example1.asprox* file.

Then, open the **Target Editor** and create a model consisting of two point sources. Set their flux to 0.2 and 0.8. Look at the second component, the *x*2 and *y*2 parameters have been replaced by *sep*2 and *pos_angle2*, i.e. polar coordinates. Choose *sep*2=5 and *pos_angle2*=0. This simulates two unresolved stars separated by 5 mas in the North-South orientation, i.e. aligned with our baselines.

Question : Describe and explain the visibility function.

Write down the amplitude of the sinusoidal modulation. Set the flux ratio to 0.1/0.9 and then to 0.5/0.5.

Question : What is the link between the flux ratio and the amplitude of the binary modulation?

Write down the modulation period in meter, and express it in  $B/\lambda$  units (cycles/rad). Then set the binary separation, i.e. *sep2*, to 10 mas. and do this again.

Question : Give the relation between the binary separation (in rad) and the modulation period (in cycles/rad).

Now change theta2 to 90°: binary in the East-West orientation.

Question : Describe and explain the visibility function.

Do the same but with *theta2* equal to  $30^\circ$ ,  $45^\circ$ , and  $60^\circ$ .

Question : How does this affect the visibility function? Why?

Finally replace the components by uniform disks and try various diameters between 0 and 2 mas, for each component, separately.

Question : What is the effect of resolving one component on the visibility function?

The visibility function corresponding to a binary is a weighted cosine function.

If r is the flux ratio between the components (r<1), the amplitude A of the modulation is given by :

 $A = \frac{2r}{1+r}$ 

• 5mas => 19m => 4.13^{e-7} cycles/rad

10mas => 9.5m => 2.06^{e-7} cycles/rad
 The modulation period is equal to the inverse of the binary separation.

1 mas =  $4.84^{e-9}$  rad  $4.13^{e-7} = 1/5$  mas  $2.06^{e-7} = 1/10$  mas

There is no modulation anymore as the baseline samples perpendicular to the binary direction. V = 1 as the interferometer ``sees" an unresolved object in the baselines orientation.



OlFits done.

330 M Provided by JMMC



OlFits done.

311 M Provided by JMMC



Infos:			
🤣 A	F Show VISAMP, VISPHI vs RADIUS	Color by effective wav 💌 🗌 Skip Fl	agged 🔲 Draw lines 🛄
x Axis	RADIUS	🔽 🗌 log 🗹 inc. 0 \Rightarrow auto 💿 default 🔷 fixed 0	106.0357
y Axes	VISAMP	🔽 🗌 log 🔲 inc. 0 🔘 auto 💿 default 🔾 fixed -0.1	1.1
	VISPHI	✓ □ log □ inc. 0 ○ auto	200

## Practice session I: Interferometry basics City, ASPR0

#### 5.2 Binaries

A second kind of very useful two components model is the binary model. We will use a single strip of North-South aligned baselines to exlpore this model. So, load the *Example1.asprox* file.

Then, open the **Target Editor** and create a model consisting of two point sources. Set their flux to 0.2 and 0.8. Look at the second component, the *x*2 and *y*2 parameters have been replaced by *sep*2 and *pos_angle2*, i.e. polar coordinates. Choose *sep*2=5 and *pos_angle2*=0. This simulates two unresolved stars separated by 5 mas in the North-South orientation, i.e. aligned with our baselines.

Question : Describe and explain the visibility function.

Write down the amplitude of the sinusoidal modulation. Set the flux ratio to 0.1/0.9 and then to 0.5/0.5.

Question : What is the link between the flux ratio and the amplitude of the binary modulation?

Write down the modulation period in meter, and express it in  $B/\lambda$  units (cycles/rad). Then set the binary separation, i.e. *sep2*, to 10 mas. and do this again.

Question : Give the relation between the binary separation (in rad) and the modulation period (in cycles/rad).

Now change theta2 to 90°: binary in the East-West orientation.

Question : Describe and explain the visibility function.

Do the same but with *theta2* equal to  $30^\circ$ ,  $45^\circ$ , and  $60^\circ$ .

Question : How does this affect the visibility function? Why?

Finally replace the components by uniform disks and try various diameters between 0 and 2 mas, for each component, separately.

Question : What is the effect of resolving one component on the visibility function?

The visibility function corresponding to a binary is a weighted cosine function.

If r is the flux ratio between the components (r<1), the amplitude A of the modulation is given by :

 $A = \frac{2r}{1+r}$ 

• 5mas => 19m => 4.13^{e-7} cycles/rad

10mas => 9.5m => 2.06^{e-7} cycles/rad
 The modulation period is equal to the inverse of the binary separation.

1 mas =  $4.84^{e-9}$  rad  $4.13^{e-7} = 1/5$  mas  $2.06^{e-7} = 1/10$  mas

There is no modulation anymore as the baseline samples perpendicular to the binary direction. V = 1 as the interferometer ``sees" an unresolved object in the baselines orientation.

The interferometer samples the projected separation of the binary along the baseline orientation



OlFits done.

## Practice session I: Interferometry basics City, ASPR0

#### 5.2 Binaries

A second kind of very useful two components model is the binary model. We will use a single strip of North-South aligned baselines to exlpore this model. So, load the *Example1.asprox* file.

Then, open the **Target Editor** and create a model consisting of two point sources. Set their flux to 0.2 and 0.8. Look at the second component, the *x*2 and *y*2 parameters have been replaced by *sep*2 and *pos_angle2*, i.e. polar coordinates. Choose *sep*2=5 and *pos_angle2*=0. This simulates two unresolved stars separated by 5 mas in the North-South orientation, i.e. aligned with our baselines.

Question : Describe and explain the visibility function.

Write down the amplitude of the sinusoidal modulation. Set the flux ratio to 0.1/0.9 and then to 0.5/0.5.

Question : What is the link between the flux ratio and the amplitude of the binary modulation?

Write down the modulation period in meter, and express it in  $B/\lambda$  units (cycles/rad). Then set the binary separation, i.e. *sep2*, to 10 mas. and do this again.

Question : Give the relation between the binary separation (in rad) and the modulation period (in cycles/rad).

Now change theta2 to 90°: binary in the East-West orientation.

Question : Describe and explain the visibility function.

Do the same but with *theta2* equal to  $30^\circ$ ,  $45^\circ$ , and  $60^\circ$ .

Question : How does this affect the visibility function? Why?

Finally replace the components by uniform disks and try various diameters between 0 and 2 mas, for each component, separately.

Question : What is the effect of resolving one component on the visibility function?

The visibility function corresponding to a binary is a weighted cosine function.

If r is the flux ratio between the components (r<1), the amplitude A of the modulation is given by :

 $A = \frac{2r}{1+r}$ 

- 5mas => 19m => 4.13^{e-7} cycles/rad
- 10mas => 9.5m => 2.06^{e-7} cycles/rad
   The modulation period is equal to the inverse of the binary separation.

1 mas =  $4.84^{e-9}$  rad 4.13^{e-7} = 1/5 mas 2.06^{e-7} = 1/10 mas

There is no modulation anymore as the baseline samples perpendicular to the binary direction. V = 1 as the interferometer ``sees" an unresolved object in the baselines orientation.

The interferometer samples the projected separation of the binary along the baseline orientation

It is a convolution of two distributions in the image plane, so in the Fourier plane it amounts to a mutiplication of the binary pattern with the FT of a disk, i.e., a Bessel function

## Practice session I: Interferometry basics City ASPRO

#### 5.3 Home-made models

Up to now we've been working with simple geometric models. But one might want to use homemade models such as outputs from radiative transfer codes. For that purpose ASPRO2 allow us to upload images in fits format and computes the visibility corresponding to this model and the selected interferometer and instrument configuration.

In this session, we will use a N band image of a dusty disk surrounding a massive hot star generated with the radiative transfer code MC3D developed by Sebastian Wolf.

First, load the *Example3.asprox* file to have two strips of perpendicular baselines. Then, open the **Target Editor**. In the **Model** tab, choose **User Model** and then click on the **Open** button. Go to the models sub-directory and choose the HD62623.fits file. After selecting the file you should see the image in the **Target Editor** window.

Question : what is the field of view (the size) of this image?

Play with the zooming and the color scale.

Question : Can you explain the shape of the intensity distribution?

Close the **Target Editor** window, and go to the UV Coverage tab to select the N band. Look at the 2D Fourier transform of the image overplotted on the UV Coverage plot.

Finally, go back to the **OiFits viewer** tab to see North-South and East-West cuts of the 2D-visibility function. As before, plot VISAMP & VISPHI as a function of RADIUS.

Question : Is the visibility function closer to that of a Gaussian distribution or uniform disk?

Question : What are the values of the visibility in the two orientations for a 20 m baseline?

Question : Using these values estimate the objects extension in the North-South and East-West orientations.

Question : Assuming that the disk is geometrically thin what is the object inclination angle?



## Practice session I: Interferometry basics City ASPRC

#### 5.3 Home-made models

Up to now we've been working with simple geometric models. But one might want to use homemade models such as outputs from radiative transfer codes. For that purpose ASPRO2 allow us to upload images in fits format and computes the visibility corresponding to this model and the selected interferometer and instrument configuration.

In this session, we will use a N band image of a dusty disk surrounding a massive hot star generated with the radiative transfer code MC3D developed by Sebastian Wolf.

First, load the *Example3.asprox* file to have two strips of perpendicular baselines. Then, open the **Target Editor**. In the **Model** tab, choose **User Model** and then click on the **Open** button. Go to the models sub-directory and choose the HD62623.fits file. After selecting the file you should see the image in the **Target Editor** window.

Question : what is the field of view (the size) of this image?

Play with the zooming and the color scale.

Question : Can you explain the shape of the intensity distribution?

Close the **Target Editor** window, and go to the UV Coverage tab to select the N band. Look at the 2D Fourier transform of the image overplotted on the UV Coverage plot.

Finally, go back to the **OiFits viewer** tab to see North-South and East-West cuts of the 2D-visibility function. As before, plot VISAMP & VISPHI as a function of RADIUS.

Question : Is the visibility function closer to that of a Gaussian distribution or uniform disk?

Question : What are the values of the visibility in the two orientations for a 20 m baseline?

Question : Using these values estimate the objects extension in the North-South and East-West orientations.

Question : Assuming that the disk is geometrically thin what is the object inclination angle?



## Practice session I: Interferometry basics with ASPRC

#### 5.3 Home-made models

Up to now we've been working with simple geometric models. But one might want to use homemade models such as outputs from radiative transfer codes. For that purpose ASPRO2 allow us to upload images in fits format and computes the visibility corresponding to this model and the selected interferometer and instrument configuration.

In this session, we will use a N band image of a dusty disk surrounding a massive hot star generated with the radiative transfer code MC3D developed by Sebastian Wolf.

First, load the *Example3.asprox* file to have two strips of perpendicular baselines. Then, open the **Target Editor**. In the **Model** tab, choose **User Model** and then click on the **Open** button. Go to the models sub-directory and choose the HD62623.fits file. After selecting the file you should see the image in the **Target Editor** window.

Question : what is the field of view (the size) of this image?

Play with the zooming and the color scale.

Question : Can you explain the shape of the intensity distribution?

Close the **Target Editor** window, and go to the **UV Coverage** tab to select the N band. Look at the 2D Fourier transform of the image overplotted on the UV Coverage plot.

Finally, go back to the **OiFits viewer** tab to see North-South and East-West cuts of the 2D-visibility function. As before, plot VISAMP & VISPHI as a function of RADIUS.

Question : Is the visibility function closer to that of a Gaussian distribution or uniform disk?

Question : What are the values of the visibility in the two orientations for a 20 m baseline?

Question : Using these values estimate the objects extension in the North-South and East-West orientations.

Question : Assuming that the disk is geometrically thin what is the object inclination angle?

#### 227 mas

We see the inner rim of the dusty disk, the disk emission in N band, and some central emission which correspond to the central star. The disk is flattened which is a hint that it is not seen pole-on.



## Practice session I: Interferometry basics with ASPRC

#### 5.3 Home-made models

Up to now we've been working with simple geometric models. But one might want to use homemade models such as outputs from radiative transfer codes. For that purpose ASPRO2 allow us to upload images in fits format and computes the visibility corresponding to this model and the selected interferometer and instrument configuration.

In this session, we will use a N band image of a dusty disk surrounding a massive hot star generated with the radiative transfer code MC3D developed by Sebastian Wolf.

First, load the *Example3.asprox* file to have two strips of perpendicular baselines. Then, open the **Target Editor**. In the **Model** tab, choose **User Model** and then click on the **Open** button. Go to the models sub-directory and choose the HD62623.fits file. After selecting the file you should see the image in the **Target Editor** window.

Question : what is the field of view (the size) of this image?

Play with the zooming and the color scale.

Question : Can you explain the shape of the intensity distribution?

Close the **Target Editor** window, and go to the UV Coverage tab to select the N band. Look at the 2D Fourier transform of the image overplotted on the UV Coverage plot.

Finally, go back to the **OiFits viewer** tab to see North-South and East-West cuts of the 2D-visibility function. As before, plot VISAMP & VISPHI as a function of RADIUS.

Question : Is the visibility function closer to that of a Gaussian distribution or uniform disk?

Question : What are the values of the visibility in the two orientations for a 20 m baseline?

Question : Using these values estimate the objects extension in the North-South and East-West orientations.

Question : Assuming that the disk is geometrically thin what is the object inclination angle?

#### 227 mas

We see the inner rim of the dusty disk, the disk emission in N band, and some central emission which correspond to the central star. The disk is flattened which is a hint that it is not seen pole-on.

## FILLE MARKET School of Interferometry

## Practice Session I: Interferometry basics City, ASPRO



## Practice session I: Interferometry basics City, ASPRC

#### 5.3 Home-made models

Up to now we've been working with simple geometric models. But one might want to use homemade models such as outputs from radiative transfer codes. For that purpose ASPRO2 allow us to upload images in fits format and computes the visibility corresponding to this model and the selected interferometer and instrument configuration.

In this session, we will use a N band image of a dusty disk surrounding a massive hot star generated with the radiative transfer code MC3D developed by Sebastian Wolf.

First, load the *Example3.asprox* file to have two strips of perpendicular baselines. Then, open the **Target Editor**. In the **Model** tab, choose **User Model** and then click on the **Open** button. Go to the models sub-directory and choose the HD62623.fits file. After selecting the file you should see the image in the **Target Editor** window.

Question : what is the field of view (the size) of this image?

Play with the zooming and the color scale.

Question : Can you explain the shape of the intensity distribution?

Close the **Target Editor** window, and go to the **UV Coverage** tab to select the N band. Look at the 2D Fourier transform of the image overplotted on the UV Coverage plot.

Finally, go back to the **OiFits viewer** tab to see North-South and East-West cuts of the 2D-visibility function. As before, plot VISAMP & VISPHI as a function of RADIUS.

Question : Is the visibility function closer to that of a Gaussian distribution or uniform disk?

Question : What are the values of the visibility in the two orientations for a 20 m baseline?

Question : Using these values estimate the objects extension in the North-South and East-West orientations.

Question : Assuming that the disk is geometrically thin what is the object inclination angle?

#### 227 mas

We see the inner rim of the dusty disk, the disk emission in N band, and some central emission which correspond to the central star. The disk is flattened which is a hint that it is not seen pole-on.

As the object intensity distribution has no sharp edge beside the inner rim that is very small compared to the object extension, its visibility function is closer to that of a Gaussian distribution.

## Practice session I: Interferometry basics Gith ASPRC

#### 5.3 Home-made models

Up to now we've been working with simple geometric models. But one might want to use homemade models such as outputs from radiative transfer codes. For that purpose ASPRO2 allow us to upload images in fits format and computes the visibility corresponding to this model and the selected interferometer and instrument configuration.

In this session, we will use a N band image of a dusty disk surrounding a massive hot star generated with the radiative transfer code MC3D developed by Sebastian Wolf.

First, load the *Example3.asprox* file to have two strips of perpendicular baselines. Then, open the **Target Editor**. In the **Model** tab, choose **User Model** and then click on the **Open** button. Go to the models sub-directory and choose the HD62623.fits file. After selecting the file you should see the image in the **Target Editor** window.

Question : what is the field of view (the size) of this image?

Play with the zooming and the color scale.

Question : Can you explain the shape of the intensity distribution?

Close the **Target Editor** window, and go to the **UV Coverage** tab to select the N band. Look at the 2D Fourier transform of the image overplotted on the UV Coverage plot.

Finally, go back to the **OiFits viewer** tab to see North-South and East-West cuts of the 2D-visibility function. As before, plot VISAMP & VISPHI as a function of RADIUS.

Question : Is the visibility function closer to that of a Gaussian distribution or uniform disk?

Question : What are the values of the visibility in the two orientations for a 20 m baseline?

Question : Using these values estimate the objects extension in the North-South and East-West orientations.

Question : Assuming that the disk is geometrically thin what is the object inclination angle?

#### 227 mas

We see the inner rim of the dusty disk, the disk emission in N band, and some central emission which correspond to the central star. The disk is flattened which is a hint that it is not seen pole-on.

As the object intensity distribution has no sharp edge beside the inner rim that is very small compared to the object extension, its visibility function is closer to that of a Gaussian distribution.

> V= 0.755 V= 0.618

## Practice session I: Interferometry basics City ASPRC

#### 5.3 Home-made models

Up to now we've been working with simple geometric models. But one might want to use homemade models such as outputs from radiative transfer codes. For that purpose ASPRO2 allow us to upload images in fits format and computes the visibility corresponding to this model and the selected interferometer and instrument configuration.

In this session, we will use a N band image of a dusty disk surrounding a massive hot star generated with the radiative transfer code MC3D developed by Sebastian Wolf.

First, load the *Example3.asprox* file to have two strips of perpendicular baselines. Then, open the **Target Editor**. In the **Model** tab, choose **User Model** and then click on the **Open** button. Go to the models sub-directory and choose the HD62623.fits file. After selecting the file you should see the image in the **Target Editor** window.

Question : what is the field of view (the size) of this image?

Play with the zooming and the color scale.

Question : Can you explain the shape of the intensity distribution?

Close the **Target Editor** window, and go to the **UV Coverage** tab to select the N band. Look at the 2D Fourier transform of the image overplotted on the UV Coverage plot.

Finally, go back to the **OiFits viewer** tab to see North-South and East-West cuts of the 2D-visibility function. As before, plot VISAMP & VISPHI as a function of RADIUS.

Question : Is the visibility function closer to that of a Gaussian distribution or uniform disk?

Question : What are the values of the visibility in the two orientations for a 20 m baseline?

Question : Using these values estimate the objects extension in the North-South and East-West orientations.

Question: Assuming that the disk is geometrically thin what is the object inclination angle?

#### 227 mas

We see the inner rim of the dusty disk, the disk emission in N band, and some central emission which correspond to the central star. The disk is flattened which is a hint that it is not seen pole-on.

As the object intensity distribution has no sharp edge beside the inner rim that is very small compared to the object extension, its visibility function is closer to that of a Gaussian distribution.

V= 0.755

V= 0.618



fwhm ≈ 34.7 mas fwhm ≈ 45.4 mas

## Practice session I: Interferometry basics Gith ASPRC

#### 5.3 Home-made models

Up to now we've been working with simple geometric models. But one might want to use homemade models such as outputs from radiative transfer codes. For that purpose ASPRO2 allow us to upload images in fits format and computes the visibility corresponding to this model and the selected interferometer and instrument configuration.

In this session, we will use a N band image of a dusty disk surrounding a massive hot star generated with the radiative transfer code MC3D developed by Sebastian Wolf.

First, load the *Example3.asprox* file to have two strips of perpendicular baselines. Then, open the **Target Editor**. In the **Model** tab, choose **User Model** and then click on the **Open** button. Go to the models sub-directory and choose the HD62623.fits file. After selecting the file you should see the image in the **Target Editor** window.

Question : what is the field of view (the size) of this image?

Play with the zooming and the color scale.

Question : Can you explain the shape of the intensity distribution?

Close the **Target Editor** window, and go to the **UV Coverage** tab to select the N band. Look at the 2D Fourier transform of the image overplotted on the UV Coverage plot.

Finally, go back to the **OiFits viewer** tab to see North-South and East-West cuts of the 2D-visibility function. As before, plot VISAMP & VISPHI as a function of RADIUS.

Question : Is the visibility function closer to that of a Gaussian distribution or uniform disk?

Question : What are the values of the visibility in the two orientations for a 20 m baseline?

Question : Using these values estimate the objects extension in the North-South and East-West orientations.

Question : Assuming that the disk is geometrically thin what is the object inclination angle?

#### 227 mas

We see the inner rim of the dusty disk, the disk emission in N band, and some central emission which correspond to the central star. The disk is flattened which is a hint that it is not seen pole-on.

As the object intensity distribution has no sharp edge beside the inner rim that is very small compared to the object extension, its visibility function is closer to that of a Gaussian distribution.



 $B = 20m \lambda = 12\mu m$ 

fwhm ≈ 34.7 mas fwhm ≈ 45.4 mas

Elong = 1 / cos (incl.) Elong = 45.4/34.7 = 1.31Incl  $\approx 40^{\circ}$ 

## Practice session I: Interferometry basics City ASPRO

# 6 Effect of the Wavelength

* * * * * *

## Practice session I: Interferometry basics City ASPRC

## 6 Effect of the observed wavelength

#### 6.1 Achromatic objects observed at various wavelengths

The spatial resolution of an inteferometer strongly depends on the observing wavelength. Imagine that our North-Pole interferometer is able to observe in any photometric band between  $0.46\mu m$  (B) and  $12\mu m$  (N).

#### Question : Which band will give the highest resolution?

To change the observing wavelength go to the UV Coverage tab. You can select a photometric band between B and N in the Instrument mode list.

#### Question : Give the ratio between the resolutions in N and B bands

Let's assume a 0.05 uncertainty on our visibility measurement and three baselines of 50, 70 and 100 m.

#### Question : In which band should we observe a 1 mas star?

#### Question : Should we observe a 5 mas star with the same configuration?

Now, let's do a multi-wavelength observation. First load the *Example4.asprox* file. It contains a 3 telescopes (S0-S5-S16) configuration of baselines. Unlike for the other exercices the observing wavelength is not fixed to one band but ranges between  $0.1\mu$ m to  $10\mu$ m, the "Wide" (and fake) instrument mode of the UV Coverage panel.

Note that for this observation we use a 1 mas uniform disk model.

First plot the visibility and phase as a function of the baseline length to see the visibility of the three baselines.

#### Question : Explain why we obtain a large range of values for the visibility of each baseline.

Now plot the visibility as a function of the spatial frequency  $B/\lambda$  (SPATIAL_FREQ). The different colors correspond to different wavelengths from purple for the smallest one  $(0.1\mu m)$  to red for the largest one  $(10\mu m)$ .

Question : For this achromatic model case, conclude on the effect of observing at multiple wavelengths.



## Practice session I: Interferometry basics Gith ASPRO

#### 6 Effect of the observed wavelength

#### 6.1 Achromatic objects observed at various wavelengths

The spatial resolution of an inteferometer strongly depends on the observing wavelength. Imagine that our North-Pole interferometer is able to observe in any photometric band between  $0.46\mu$ m (B) and  $12\mu$ m (N).

#### Question : Which band will give the highest resolution?

To change the observing wavelength go to the UV Coverage tab. You can select a photometric band between B and N in the Instrument mode list.

#### Question : Give the ratio between the resolutions in N and B bands

Let's assume a 0.05 uncertainty on our visibility measurement and three baselines of 50, 70 and 100 m.

#### Question : In which band should we observe a 1 mas star?

#### Question : Should we observe a 5 mas star with the same configuration?

Now, let's do a multi-wavelength observation. First load the *Example4.asprox* file. It contains a 3 telescopes (S0-S5-S16) configuration of baselines. Unlike for the other exercices the observing wavelength is not fixed to one band but ranges between  $0.1\mu$ m to  $10\mu$ m, the "Wide" (and fake) instrument mode of the UV Coverage panel.

Note that for this observation we use a 1 mas uniform disk model.

First plot the visibility and phase as a function of the baseline length to see the visibility of the three baselines.

#### Question : Explain why we obtain a large range of values for the visibility of each baseline.

Now plot the visibility as a function of the spatial frequency  $B/\lambda$  (SPATIAL_FREQ). The different colors correspond to different wavelengths from purple for the smallest one  $(0.1\mu m)$  to red for the largest one  $(10\mu m)$ .

Question : For this achromatic model case, conclude on the effect of observing at multiple wavelengths.

## Resolution $\Leftrightarrow$ B/ $\lambda$ Smaller $\lambda$ higher resolution

## Practice session I: Interferometry basics City ASPRC

#### 6 Effect of the observed wavelength

#### 6.1 Achromatic objects observed at various wavelengths

The spatial resolution of an inteferometer strongly depends on the observing wavelength. Imagine that our North-Pole interferometer is able to observe in any photometric band between  $0.46\mu$ m (B) and  $12\mu$ m (N).

Question : Which band will give the highest resolution?

To change the observing wavelength go to the UV Coverage tab. You can select a photometric band between B and N in the Instrument mode list.

Question : Give the ratio between the resolutions in N and B bands

Let's assume a 0.05 uncertainty on our visibility measurement and three baselines of 50, 70 and 100 m.

Question : In which band should we observe a 1 mas star?

Question : Should we observe a 5 mas star with the same configuration?

Now, let's do a multi-wavelength observation. First load the *Example4.asprox* file. It contains a 3 telescopes (S0-S5-S16) configuration of baselines. Unlike for the other exercices the observing wavelength is not fixed to one band but ranges between  $0.1\mu$ m to  $10\mu$ m, the "Wide" (and fake) instrument mode of the UV Coverage panel.

Note that for this observation we use a 1 mas uniform disk model.

First plot the visibility and phase as a function of the baseline length to see the visibility of the three baselines.

Question : Explain why we obtain a large range of values for the visibility of each baseline.

Now plot the visibility as a function of the spatial frequency  $B/\lambda$  (SPATIAL_FREQ). The different colors correspond to different wavelengths from purple for the smallest one  $(0.1\mu m)$  to red for the largest one  $(10\mu m)$ .

Question : For this achromatic model case, conclude on the effect of observing at multiple wavelengths.

Resolution  $\Leftrightarrow$  B/ $\lambda$ Smaller  $\lambda$  higher resolution

12/0.46 = 26

## Practice session I: Interferometry basics City ASPRC

#### 6 Effect of the observed wavelength

#### 6.1 Achromatic objects observed at various wavelengths

The spatial resolution of an inteferometer strongly depends on the observing wavelength. Imagine that our North-Pole interferometer is able to observe in any photometric band between  $0.46\mu$ m (B) and  $12\mu$ m (N).

Question : Which band will give the highest resolution?

To change the observing wavelength go to the UV Coverage tab. You can select a photometric band between B and N in the Instrument mode list.

Question : Give the ratio between the resolutions in N and B bands

Let's assume a 0.05 uncertainty on our visibility measurement and three baselines of 50, 70 and 100 m.

Question : In which band should we observe a 1 mas star?

Question : Should we observe a 5 mas star with the same configuration?

Now, let's do a multi-wavelength observation. First load the *Example4.asprox* file. It contains a 3 telescopes (S0-S5-S16) configuration of baselines. Unlike for the other exercices the observing wavelength is not fixed to one band but ranges between  $0.1\mu$ m to  $10\mu$ m, the "Wide" (and fake) instrument mode of the UV Coverage panel.

Note that for this observation we use a 1 mas uniform disk model.

First plot the visibility and phase as a function of the baseline length to see the visibility of the three baselines.

Question : Explain why we obtain a large range of values for the visibility of each baseline.

Now plot the visibility as a function of the spatial frequency  $B/\lambda$  (SPATIAL_FREQ). The different colors correspond to different wavelengths from purple for the smallest one  $(0.1\mu m)$  to red for the largest one  $(10\mu m)$ .

Question : For this achromatic model case, conclude on the effect of observing at multiple wavelengths.

Resolution  $\Leftrightarrow$  B/ $\lambda$ Smaller  $\lambda$  higher resolution

12/0.46 = 26

## File Edentify VLTI School of Interferometry

## Practice session I: Interferometry basics



## Practice session I: Interferometry basics Cith ASPRC

#### 6 Effect of the observed wavelength

#### 6.1 Achromatic objects observed at various wavelengths

The spatial resolution of an inteferometer strongly depends on the observing wavelength. Imagine that our North-Pole interferometer is able to observe in any photometric band between  $0.46\mu$ m (B) and  $12\mu$ m (N).

Question : Which band will give the highest resolution?

To change the observing wavelength go to the UV Coverage tab. You can select a photometric band between B and N in the Instrument mode list.

Question : Give the ratio between the resolutions in N and B bands

Let's assume a 0.05 uncertainty on our visibility measurement and three baselines of 50, 70 and 100 m.

Question : In which band should we observe a 1 mas star?

Question : Should we observe a 5 mas star with the same configuration?

Now, let's do a multi-wavelength observation. First load the *Example4.asprox* file. It contains a 3 telescopes (S0-S5-S16) configuration of baselines. Unlike for the other exercices the observing wavelength is not fixed to one band but ranges between  $0.1\mu$ m to  $10\mu$ m, the "Wide" (and fake) instrument mode of the UV Coverage panel.

Note that for this observation we use a 1 mas uniform disk model.

First plot the visibility and phase as a function of the baseline length to see the visibility of the three baselines.

Question : Explain why we obtain a large range of values for the visibility of each baseline.

Now plot the visibility as a function of the spatial frequency  $B/\lambda$  (SPATIAL_FREQ). The different colors correspond to different wavelengths from purple for the smallest one  $(0.1\mu m)$  to red for the largest one  $(10\mu m)$ .

Question : For this achromatic model case, conclude on the effect of observing at multiple wavelengths.

Resolution  $\Leftrightarrow$  B/ $\lambda$ Smaller  $\lambda$  higher resolution

12/0.46 = 26

### B is the best (but V, R, or I are Ok)

## File Edented Standed asprove (st) File Edented Standard S

## Practice Session I: Interferometry basics with ASPRO



## Practice session I: Interferometry basics City ASPRC

#### 6 Effect of the observed wavelength

#### 6.1 Achromatic objects observed at various wavelengths

The spatial resolution of an inteferometer strongly depends on the observing wavelength. Imagine that our North-Pole interferometer is able to observe in any photometric band between  $0.46\mu$ m (B) and  $12\mu$ m (N).

Question : Which band will give the highest resolution?

To change the observing wavelength go to the UV Coverage tab. You can select a photometric band between B and N in the Instrument mode list.

Question : Give the ratio between the resolutions in N and B bands

Let's assume a 0.05 uncertainty on our visibility measurement and three baselines of 50, 70 and 100 m.

Question : In which band should we observe a 1 mas star?

Question : Should we observe a 5 mas star with the same configuration?

Now, let's do a multi-wavelength observation. First load the *Example4.asprox* file. It contains a 3 telescopes (S0-S5-S16) configuration of baselines. Unlike for the other exercices the observing wavelength is not fixed to one band but ranges between  $0.1\mu$ m to  $10\mu$ m, the "Wide" (and fake) instrument mode of the UV Coverage panel.

Note that for this observation we use a 1 mas uniform disk model.

First plot the visibility and phase as a function of the baseline length to see the visibility of the three baselines.

Question : Explain why we obtain a large range of values for the visibility of each baseline.

Now plot the visibility as a function of the spatial frequency  $B/\lambda$  (SPATIAL_FREQ). The different colors correspond to different wavelengths from purple for the smallest one  $(0.1\mu m)$  to red for the largest one  $(10\mu m)$ .

Question : For this achromatic model case, conclude on the effect of observing at multiple wavelengths.

Resolution  $\Leftrightarrow$  B/ $\lambda$ Smaller  $\lambda$  higher resolution

12/0.46 = 26

#### B is the best (but V, R, or I are Ok)

No, it would be overresolved by the 50m baseline. The star should be observed in the J, H, K, or L bands.

## Practice session I: Interferometry basics Cith ASPRC

#### 6 Effect of the observed wavelength

#### 6.1 Achromatic objects observed at various wavelengths

The spatial resolution of an inteferometer strongly depends on the observing wavelength. Imagine that our North-Pole interferometer is able to observe in any photometric band between  $0.46\mu$ m (B) and  $12\mu$ m (N).

Question : Which band will give the highest resolution?

To change the observing wavelength go to the UV Coverage tab. You can select a photometric band between B and N in the Instrument mode list.

Question : Give the ratio between the resolutions in N and B bands

Let's assume a 0.05 uncertainty on our visibility measurement and three baselines of 50, 70 and 100 m.

Question : In which band should we observe a 1 mas star?

Question : Should we observe a 5 mas star with the same configuration?

Now, let's do a multi-wavelength observation. First load the *Example4.asprox* file. It contains a 3 telescopes (S0-S5-S16) configuration of baselines. Unlike for the other exercices the observing wavelength is not fixed to one band but ranges between  $0.1\mu$ m to  $10\mu$ m, the "Wide" (and fake) instrument mode of the UV Coverage panel.

Note that for this observation we use a 1 mas uniform disk model.

First plot the visibility and phase as a function of the baseline length to see the visibility of the three baselines.

Question : Explain why we obtain a large range of values for the visibility of each baseline.

Now plot the visibility as a function of the spatial frequency  $B/\lambda$  (SPATIAL_FREQ). The different colors correspond to different wavelengths from purple for the smallest one  $(0.1\mu m)$  to red for the largest one  $(10\mu m)$ .

Question : For this achromatic model case, conclude on the effect of observing at multiple wavelengths.

Resolution  $\Leftrightarrow$  B/ $\lambda$ Smaller  $\lambda$  higher resolution

12/0.46 = 26

#### B is the best (but V, R, or I are Ok)

No, it would be overresolved by the 50m baseline. The star should be observed in the J, H, K, or L bands.

File Edition of Interferometry

#### PRŎ Practice session I: Interferometry basics



Provided by JMMC

## Practice session I: Interferometry basics Cith ASPRC

#### 6 Effect of the observed wavelength

#### 6.1 Achromatic objects observed at various wavelengths

The spatial resolution of an inteferometer strongly depends on the observing wavelength. Imagine that our North-Pole interferometer is able to observe in any photometric band between  $0.46\mu$ m (B) and  $12\mu$ m (N).

Question : Which band will give the highest resolution?

To change the observing wavelength go to the UV Coverage tab. You can select a photometric band between B and N in the Instrument mode list.

Question : Give the ratio between the resolutions in N and B bands

Let's assume a 0.05 uncertainty on our visibility measurement and three baselines of 50, 70 and 100 m.

Question : In which band should we observe a 1 mas star?

Question : Should we observe a 5 mas star with the same configuration?

Now, let's do a multi-wavelength observation. First load the *Example4.asprox* file. It contains a 3 telescopes (S0-S5-S16) configuration of baselines. Unlike for the other exercices the observing wavelength is not fixed to one band but ranges between  $0.1\mu$ m to  $10\mu$ m, the "Wide" (and fake) instrument mode of the UV Coverage panel.

Note that for this observation we use a 1 mas uniform disk model.

First plot the visibility and phase as a function of the baseline length to see the visibility of the three baselines.

Question : Explain why we obtain a large range of values for the visibility of each baseline.

Now plot the visibility as a function of the spatial frequency  $B/\lambda$  (SPATIAL_FREQ). The different colors correspond to different wavelengths from purple for the smallest one  $(0.1\mu m)$  to red for the largest one  $(10\mu m)$ .

Question : For this achromatic model case, conclude on the effect of observing at multiple wavelengths.

Resolution  $\Leftrightarrow B/\lambda$ Smaller  $\lambda$  higher resolution

12/0.46 = 26

#### B is the best (but V, R, or I are Ok)

No, it would be overresolved by the 50m baseline. The star should be observed in the J, H, K, or L bands.

The visibility is not a function of the baseline but of the spatial frequency  $B/\lambda$ .

For the same baseline length, observing at different  $\lambda$  leads to probing different spatial frequencies.



Provided by JMMC 463 M

## Practice session I: Interferometry basics Cith ASPRC

#### 6 Effect of the observed wavelength

#### 6.1 Achromatic objects observed at various wavelengths

The spatial resolution of an inteferometer strongly depends on the observing wavelength. Imagine that our North-Pole interferometer is able to observe in any photometric band between  $0.46\mu$ m (B) and  $12\mu$ m (N).

Question : Which band will give the highest resolution?

To change the observing wavelength go to the UV Coverage tab. You can select a photometric band between B and N in the Instrument mode list.

Question : Give the ratio between the resolutions in N and B bands

Let's assume a 0.05 uncertainty on our visibility measurement and three baselines of 50, 70 and 100 m.

Question : In which band should we observe a 1 mas star?

Question : Should we observe a 5 mas star with the same configuration?

Now, let's do a multi-wavelength observation. First load the *Example4.asprox* file. It contains a 3 telescopes (S0-S5-S16) configuration of baselines. Unlike for the other exercices the observing wavelength is not fixed to one band but ranges between  $0.1\mu$ m to  $10\mu$ m, the "Wide" (and fake) instrument mode of the UV Coverage panel.

Note that for this observation we use a 1 mas uniform disk model.

First plot the visibility and phase as a function of the baseline length to see the visibility of the three baselines.

Question : Explain why we obtain a large range of values for the visibility of each baseline.

Now plot the visibility as a function of the spatial frequency  $B/\lambda$  (SPATIAL_FREQ). The different colors correspond to different wavelengths from purple for the smallest one  $(0.1\mu m)$  to red for the largest one  $(10\mu m)$ .

Question : For this achromatic model case, conclude on the effect of observing at multiple wavelengths.

Resolution  $\Leftrightarrow B/\lambda$ Smaller  $\lambda$  higher resolution

12/0.46 = 26

#### B is the best (but V, R, or I are Ok)

No, it would be overresolved by the 50m baseline. The star should be observed in the J, H, K, or L bands.

The visibility is not a function of the baseline but of the spatial frequency  $B/\lambda$ .

For the same baseline length, observing at different  $\lambda$  leads to probing different spatial frequencies.

This that case it is strictly equivalent to observing with different baselines lengths. It helps a lot to enhance the UV coverage.
# Practice session I: Interferometry basics Gith ASPRO

#### 6.2 Examples of chromatic objects

Question : Assuming that a star and its circumstellar environment emit as black-bodies, can you conclude on their flux ratio dependence on the wavelength? Which component will dominate the visible flux? What about the mid-infrared?

#### Question : How does the model depend on the wavelength?

Before closing the **Target Editor** let's rotate our model by 90° so that our 3 North-South baselines will make measurements along the major-axis (i.e. the equator) of this object. Now, close the **Target Editor** and go to the **OiFits Viewer** tab.

Plot the visibility and phase as a function of the spatial frequency. For chromatic objects, such plots mix-up the spatial and spectral dependency of the object. To disentangle these aspects you can draw imaginary lines between points of the same colour (i.e. wavelengths): this will gives you information on the object spatial distribution at each wavelength.

Question : Is the object more extended in the visible  $(0.5\mu m)$  or the mid-infrared  $(10\mu m)$ ?

Question : Assuming that the star is a uniform disk, estimate the stellar diameter in mas Question : Assuming a distance of 60pc give the stellar Radius in  $R_{\odot}$ .

## Practice session I: Interferometry basics with ASPRC

#### 6.2 Examples of chromatic objects

Question : Assuming that a star and its circumstellar environment emit as black-bodies, can you conclude on their flux ratio dependence on the wavelength? Which component will dominate the visible flux? What about the mid-infrared?

#### Question : How does the model depend on the wavelength?

Before closing the **Target Editor** let's rotate our model by 90° so that our 3 North-South baselines will make measurements along the major-axis (i.e. the equator) of this object. Now, close the **Target Editor** and go to the **OiFits Viewer** tab.

Plot the visibility and phase as a function of the spatial frequency. For chromatic objects, such plots mix-up the spatial and spectral dependency of the object. To disentangle these aspects you can draw imaginary lines between points of the same colour (i.e. wavelengths): this will gives you information on the object spatial distribution at each wavelength.

Question : Is the object more extended in the visible  $(0.5\mu m)$  or the mid-infrared  $(10\mu m)$ ?

Question : Assuming that the star is a uniform disk, estimate the stellar diameter in mas Question : Assuming a distance of 60pc give the stellar Radius in  $R_{\odot}$ .

The central star (hotter, but of smaller angular size) will dominate on the short wavelength, and gradually the cooler but much larger environment will take its place when the wavelength increases.

## Practice session I: Interferometry basics with ASPRC

#### 6.2 Examples of chromatic objects

Question : Assuming that a star and its circumstellar environment emit as black-bodies, can you conclude on their flux ratio dependence on the wavelength? Which component will dominate the visible flux? What about the mid-infrared?

#### Question : How does the model depend on the wavelength?

Before closing the **Target Editor** let's rotate our model by 90° so that our 3 North-South baselines will make measurements along the major-axis (i.e. the equator) of this object. Now, close the **Target Editor** and go to the **OiFits Viewer** tab.

Plot the visibility and phase as a function of the spatial frequency. For chromatic objects, such plots mix-up the spatial and spectral dependency of the object. To disentangle these aspects you can draw imaginary lines between points of the same colour (i.e. wavelengths): this will gives you information on the object spatial distribution at each wavelength.

Question : Is the object more extended in the visible  $(0.5\mu m)$  or the mid-infrared  $(10\mu m)$ ?

Question : Assuming that the star is a uniform disk, estimate the stellar diameter in mas Question : Assuming a distance of 60pc give the stellar Radius in  $R_{\odot}$ .

The central star (hotter, but of smaller angular size) will dominate on the short wavelength, and gradually the cooler but much larger environment will take its place when the wavelength increases.

# Practice session I: Interferometry basics City ASPRO



DISCO model taken from the AMHRA website https://amhra.oca.eu/AMHRA/disco-gas/input.htm

## Practice session I: Interferometry basics with ASPRC

#### 6.2 Examples of chromatic objects

Question : Assuming that a star and its circumstellar environment emit as black-bodies, can you conclude on their flux ratio dependence on the wavelength? Which component will dominate the visible flux? What about the mid-infrared?

Question : How does the model depend on the wavelength?

Before closing the **Target Editor** let's rotate our model by 90° so that our 3 North-South baselines will make measurements along the major-axis (i.e. the equator) of this object. Now, close the **Target Editor** and go to the **OiFits Viewer** tab.

Plot the visibility and phase as a function of the spatial frequency. For chromatic objects, such plots mix-up the spatial and spectral dependency of the object. To disentangle these aspects you can draw imaginary lines between points of the same colour (i.e. wavelengths): this will gives you information on the object spatial distribution at each wavelength.

Question : Is the object more extended in the visible  $(0.5\mu m)$  or the mid-infrared  $(10\mu m)$ ?

Question : Assuming that the star is a uniform disk, estimate the stellar diameter in mas Question : Assuming a distance of 60pc give the stellar Radius in  $R_{\odot}$ .

The central star (hotter, but of smaller angular size) will dominate on the short wavelength, and gradually the cooler but much larger environment will take its place when the wavelength increases.

The size of the circumstellar disk emission grows with  $\lambda$ . Its relative contribution to the total flux is also growing with the  $\lambda$ .

## File the second of Interferometry

## Practice session I: Interferometry basics with ASPRO

argets	Main settings	Configuration(s)	Constraints
Q▼ Simbad           ♦ 00:00:00.000 89:00:00.000           Editor	Interferometer DEMO  Instrument DEMO_3T_SPECTRAL	S0 S6 S16	Night restriction
Sky			Min. Elevation 30 Wind Status: A Warning
Notebook Map Observability UV coverage OlFits viewer			
plot data			
	DEMO - DEMO [0.4763 µm - 9.9975 µm] - S0-S6-S Day: 2013-09-10 - Source: 00:00:00.000 89:00:00.	316 .000	
$h_{\text{eq}} = 10 \mu \text{m}$			Made by OIFitsExplore/JIMMC
150 166.514 100 50 Hess -50 -100 4.50	λ=0.5	μm	
-200 0 5 10 15 20 25 30 35 40 45 50 55 60	65 70 75 80 85 90 95 100 105 110 115 120 125 SPATIAL_FREQ (Μλ)	130 135 140 145 150 155 160 165 170 17	Made by OliFilisExploren/JMMC 5 180 185 190 195 200 205 210 215 220
0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2	3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.1	0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0	8.2 8.4 8.6 8.8 9.0 9.2 9.4 9.6 9.8
ArrName: DEMO   InsName: DEMO 2T_SPECTRAL_0.4763-9.99747-1886ch   Date: 2012-09-10   Bas           Ndee         Wavelength: 0.6379 µm   Spatial Freq: 158.30 MA   Radius: 100.99 m   Pos. angle: -0.00 d           Table: 0I_VIS\$3   Row: 1   Col: 32   File: Aspro2_00_00_00_00_00_00_00_000_DEMO_DEMO_DEMO_ST	eline: S0-S16   Config: S0-S6-S16   Target: 00:00:00.000 89:00:00.000 eg   Hour angle: 0.01 h _SPECTRAL_0.4762-9.99747-1886ch_S0-S6-S16_2013-09-10.fits		
			Color by offective way
A D I SHOW VISAMP, VISPHIVS SPATIAL_TREQ			Color by effective way      Skip riagged Draw lines
Axes VISPHT			
7.0.112			
OlFits done.			233 M Provided by

## Practice session I: Interferometry basics with ASPRC

#### 6.2 Examples of chromatic objects

Question : Assuming that a star and its circumstellar environment emit as black-bodies, can you conclude on their flux ratio dependence on the wavelength? Which component will dominate the visible flux? What about the mid-infrared?

Question : How does the model depend on the wavelength?

Before closing the **Target Editor** let's rotate our model by 90° so that our 3 North-South baselines will make measurements along the major-axis (i.e. the equator) of this object. Now, close the **Target Editor** and go to the **OiFits Viewer** tab.

Plot the visibility and phase as a function of the spatial frequency. For chromatic objects, such plots mix-up the spatial and spectral dependency of the object. To disentangle these aspects you can draw imaginary lines between points of the same colour (i.e. wavelengths): this will gives you information on the object spatial distribution at each wavelength.

1 6 4 4

Question : Is the object more extended in the visible  $(0.5\mu m)$  or the mid-infrared  $(10\mu m)$ ?

Question : Assuming that the star is a uniform disk, estimate the stellar diameter in mas Question : Assuming a distance of 60pc give the stellar Radius in  $R_{\odot}$ .

The central star (hotter, but of smaller angular size) will dominate on the short wavelength, and gradually the cooler but much larger environment will take its place when the wavelength increases.

The size of the circumstellar disk emission grows with  $\lambda$ . Its relative contribution to the total flux is also growing with the  $\lambda$ .

The object is more extended at  $10\mu m$  where the large circumstellar disk dominates the emission

## Practice session I: Interferometry basics with ASPRC

#### 6.2 Examples of chromatic objects

Question : Assuming that a star and its circumstellar environment emit as black-bodies, can you conclude on their flux ratio dependence on the wavelength? Which component will dominate the visible flux? What about the mid-infrared?

Question : How does the model depend on the wavelength?

Before closing the **Target Editor** let's rotate our model by 90° so that our 3 North-South baselines will make measurements along the major-axis (i.e. the equator) of this object. Now, close the **Target Editor** and go to the **OiFits Viewer** tab.

Plot the visibility and phase as a function of the spatial frequency. For chromatic objects, such plots mix-up the spatial and spectral dependency of the object. To disentangle these aspects you can draw imaginary lines between points of the same colour (i.e. wavelengths): this will gives you information on the object spatial distribution at each wavelength.

Question : Is the object more extended in the visible  $(0.5\mu m)$  or the mid-infrared  $(10\mu m)$ ?

Question : Assuming that the star is a uniform disk, estimate the stellar diameter in mas

Question : Assuming a distance of 60pc give the stellar Radius in  $R_{\odot}.$ 

The central star (hotter, but of smaller angular size) will dominate on the short wavelength, and gradually the cooler but much larger environment will take its place when the wavelength increases.

The size of the circumstellar disk emission grows with  $\lambda$ . Its relative contribution to the total flux is also growing with the  $\lambda$ .

The object is more extended at  $10\mu m$  where the large circumstellar disk dominates the emission

## File Edented Strategy VLTI School of Interferometry

### Practice session I: Interferometry basics with RSPRO



## Practice session I: Interferometry basics with ASPRC

#### 6.2 Examples of chromatic objects

Question : Assuming that a star and its circumstellar environment emit as black-bodies, can you conclude on their flux ratio dependence on the wavelength? Which component will dominate the visible flux? What about the mid-infrared?

Question : How does the model depend on the wavelength?

Before closing the **Target Editor** let's rotate our model by 90° so that our 3 North-South baselines will make measurements along the major-axis (i.e. the equator) of this object. Now, close the **Target Editor** and go to the **OiFits Viewer** tab.

Plot the visibility and phase as a function of the spatial frequency. For chromatic objects, such plots mix-up the spatial and spectral dependency of the object. To disentangle these aspects you can draw imaginary lines between points of the same colour (i.e. wavelengths): this will gives you information on the object spatial distribution at each wavelength.

Question : Is the object more extended in the visible  $(0.5\mu m)$  or the mid-infrared  $(10\mu m)$ ?

Question : Assuming that the star is a uniform disk, estimate the stellar diameter in ma

Question : Assuming a distance of 60pc give the stellar Radius in  $R_{\odot}$ .

The central star (hotter, but of smaller angular size) will dominate on the short wavelength, and gradually the cooler but much larger environment will take its place when the wavelength increases.

The size of the circumstellar disk emission grows with  $\lambda$ . Its relative contribution to the total flux is also growing with the  $\lambda$ .

The object is more extended at  $10\mu m$  where the large circumstellar disk dominates the emission

#### V=0 for B/λ ≈ 158.3 ⇔ θ ≈ 1.58 mas

## Practice session I: Interferometry basics with ASPRC

#### 6.2 Examples of chromatic objects

Question : Assuming that a star and its circumstellar environment emit as black-bodies, can you conclude on their flux ratio dependence on the wavelength? Which component will dominate the visible flux? What about the mid-infrared?

Question : How does the model depend on the wavelength?

Before closing the **Target Editor** let's rotate our model by 90° so that our 3 North-South baselines will make measurements along the major-axis (i.e. the equator) of this object. Now, close the **Target Editor** and go to the **OiFits Viewer** tab.

Plot the visibility and phase as a function of the spatial frequency. For chromatic objects, such plots mix-up the spatial and spectral dependency of the object. To disentangle these aspects you can draw imaginary lines between points of the same colour (i.e. wavelengths): this will gives you information on the object spatial distribution at each wavelength.

Question : Is the object more extended in the visible  $(0.5\mu m)$  or the mid-infrared  $(10\mu m)$ ?

Question : Assuming that the star is a uniform disk, estimate the stellar diameter in ma

Question : Assuming a distance of 60pc give the stellar Radius in  $R_{\odot}$ .

The central star (hotter, but of smaller angular size) will dominate on the short wavelength, and gradually the cooler but much larger environment will take its place when the wavelength increases.

The size of the circumstellar disk emission grows with  $\lambda$ . Its relative contribution to the total flux is also growing with the  $\lambda$ .

The object is more extended at  $10\mu m$  where the large circumstellar disk dominates the emission

V=0 for B/λ ≈ 158.3  $\Leftrightarrow$  θ ≈ 1.58 mas

1" = 1au at 1 pc. 1au ≈ 107 Dsol Rstar ≈ 0.107 × distance (in pc) × θ (in mas) Rstar ≈ 10 Rsol

# Practice session I: Interferometry basics City ASPRO

# 7 Bonus

R. A. A. A. A.

## Practice session I: Interferometry basics Cith ASPRC

#### 6.3 Bonus : play with the models from the AMHRA service

You can go to the AMHRA service web page, download models and load them on ASPRO2. Currently, AMHRA gives access to the following models:

- Kinematic Be Disk : Model of the geometry (size and shape) and kinematics (rotation and expansion) of circumstellar disks, especially of Be stars observed at high spectral resolution (R>1000). It is not adapted to our DEMO interferometer that does not have a high spectral resolution mode. But you might test it with GRAVITY (in Brγ line) or MATISSE (in Brα line)
- Disk and stellar Continuum DISCO : we already used it, but you might want to compute model with different paramters.
- Evolved stars (Red Supergiants and AGBs): Stellar surface maps of evolved stars computed from 3D hydrodynamical simulation with CO5BOLD-OPTIM3D
- **Binary spiral model** : Phenomenological model mimicking the shock caused by the collision between the winds from massive stars (e.g. the WR and OB stars)
- Supergiant B[e] stars with HDUST : Grid of models for B[e] supergiants, i.e. hot stars surrounded by gaseous and dusty circusmtellar disk.
- Limb-darkening with SAtlas : Grid of models providing realistic intensity maps for spherically symmetric stars, showing the limb darkening effect.



