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How to learn interferometry

The phase-coherent interferometer
Making fringes
From fringes to images

The atmosphere and quantum noise

Interferometry in practice



The need for

Interferometry



Science consists of solving inverse prob-
lems
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Degeneracies mean that the inverse is not
unique

Model space Data space
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We need to take measurements such that
different models predict different data

Bayes’ theorem formalises this:

P(model|data) o P(datajmodel)P(model)



Angular resolution is the sensitivity to
structure on small spatial scales




The resolution of a conventional telescope
is limited by diffraction

Star

Wavefronts
Lens Circular aperture
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Below a given separation, two stars are in-
distinguishable from one brighter star

AO=2.0N/d AO=1.0N/d AO=05)/d AO=0.1\/d




An ELT is not big enough

d=39m, A =22 pum — 1.22)\/d = 14 milliarcsec
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The Sun at 10 pc is 0.9 mas
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The Earth forming at 150 pc is 6 mas
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AGN dust tori are a few mas
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We need measurements which are sensitive
to structure on (sub-)mas scales




Making fringes
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We can derive the interferometric measure-
ment equation in three steps

The fringe pattern for 1 star

The fringe pattern for 2 stars

The fringe pattern for an arbitrary object



One star



An interferometer adds time-delayed light
beams

Beam relay
+
delay line

......................................
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In the optical we normally talk about
Optical Path Difference (OPD)

Text2 — Text] = OPDext/C = BCOSQ/C
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A beam combiner allows us to sample a
range of time delays

incoming beams
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We represent light waves in terms of com-
plex coefficients

Eo <Re [Woe *™"]
E1(x) «Re [Wi(x)e™]
E2(X) oxRe [Wo(x)e ™
W, (x) =W, 2 [Text 1 +Tine.1 78,1 (X)]

v, (X) :\UOezﬁiV[Texm+Tint,2+TBc,2(X)]
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The interference term depends on the

phase difference of the beams

i) =€0 ((E1(x) + E2())?)
= (M09 + W29
+ 2Re [{W1(X)W5(x))]
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The phase difference can be written
terms of delay differences

Wy (X)W3(x) = [Wo|” @2t recn()]
where

T2 = (Text1 — Text2) + (Tint1 — Tint2)

TBC,12(X) = TBC,1(X) — TBc,z(X)-
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The phase of the sinusoidal fringe pattern

depends on 7

i(X) = 2Fo (1+ Re [e'77e”™])
where
Fo = W’

1 =2TVUT

S :V’TBC"]z(X)/X
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The phase of the fringes changes if the star
moves

A star at direction 6y is at the phase centre if 7, = 0.
For a star offset by Af from the phase centre:

CTy, = Bcos(6p + Af) — Bcos by
~ —A6OBsinf,
= gqu = —2nuld

where
U = Bsin 90/)\
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TwoO stars



Binary object composed of two point sources

Can be considered as two individual sources \

Bright source Faint source # 4?,
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Path length Path length
delay dela
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Interference pattern Interference pattern Detected interference

from bright star only from faint star only pattern



Collector

Collector
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The fringe pattern depends on the angular
offset and not just the intensities

i(X) = Fqa (1+ Re [e27risx]) +Fp (1 + Re [e2wi(A9u+5x)]>
=Fa+ Fp+ Re [(Fa + FbQZWiAGU) ezmsx]

Imaginary
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We are sensitive to source structure on
small angular scales

Noticeable effect when A0 2> 1/u ~ \/B

This is the same as the resolution of a telescope of
diameter ~ B.

If B=100m and A =500nm then A/B ~ 1mas
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Arbitrary 2-D object



Vector formulation

To star

0%

Collector 1

B12

Collector 2
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We use axes based on the tangent plane at
the phase centre

NCP
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For small fields of view, only u and v matter

7o = By -S/c — By - So/c,
=By -o/C Wherea:§—§o
= ¢, = 27U - where u = By/\
Uu-o=ul+vm-+nw

1 :
nz5(12+m2)<<\a\ if[Lm <1

=U-o~Uul+vm
Hereafter write u = (u,v) and o = ({, m)
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We sum the fringe patternsfrom all sources

0=/ " (o) (1+ Re {e 779>} dldm
= F(0) + Re [F(u)e”™]

F(u) = // ye Mot dld
= F(0) ://_OO o)

where
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F(u) weights the object /(o) with a sinu-
soidal “mask” and sums the result
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Nomenclature

F(u): coherent flux, correlated flux

V(u) = F(u)/F(0): object (complex) visibility
Vio: fringe (complex) visibility

|V(u)]: object visibility (modulus)

|Vi2|: fringe contrast, fringe visibility (modulus)
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Michelson fringe visibility

V=1.0

V] =0.1
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Coherence and fringes
Mutual intensity of two beams V¥, and V.

Mi = (W1W3)

Degree of coherence:

M
Crp = 12

VMuMy'

Interference measures cross-correlation:
00 = (NP + 92 )
+ 2Re [(W1(x)W3(x))]
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The coherence length varies inversely with

the bandwidth

F(u,v)

H

-
-

)
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A wide bandwidth can limitthe field of view

flux

double packet

source 1

source 2

0 Bii/2zmay : 8 (OPD)
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From fringes to Images



Fourier transforms

Can compose any function f from sine waves:
fx) = / / 9(s)e>™5* ds, ds,
where coefficients are

g(s) = / /_ Z f(x)e=*m* dx dy.

Fourier transform g(s) = F [f(x)]

Inverse Fourier transform: f(x) = 7' [g(s)] 4



A fringe measurement measures a single
Fourier component of the image

u)—// (o)e " dld

Is equivalent to F(u) = F[l(o)]
If we measure F(u)Vu we can in principle invert this.

Better to first develop your Bayesian intuition: what
models give what data?
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Point source

= F(u)

N
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N
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arg[V(u)] (radians)
o

(o — o0)

ezﬂ'iu~0'o
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Binary star system
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The binary star Capella (Hummel+ 1994)

801nm
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Vega (Absil+ 2006)

Oup = 3.218 = 0.005 mas

X =

V2

1.29

90 100 110 120 130
Projected baseline [m]
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Gaussian disc
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Objects offset from the phase centre

Convolution theorem: F{f* g} = FG where
F(s) = F{f(x)} and G(s) = F{g(x)}, where

(]61 * fZ)(X) - //All spaceﬁ(X/)fz(X N X/) i

f(x — Xo) f(X) * 0(x — Xo)
= F{flc — o¢)} = Fe*™uoo
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Rules of thumb

V(0) =1and |V(u)| <1

Significant deviations from |V| = 1 (“resolved”)
when Bz \/6

Sharp-edged structures show “ringing” sidelobes
Symmetric objects have real visibility functions

For all objects V(—u) = V*(u) (Hermitian symmetry)

58



How to sample the

Fourier plane



We can change the baseline by moving the
telescopes




Earth rotation is carbon-neutral telescope
transportation

u 61



Multiple telescopes sample many (u,v)
points
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Telescope coordinates
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We typically use multiple telescopes in tan-
dem with Earth rotation
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Observing in multiple spectral channels

gives additional coverage
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How does finite
sampling affect the

Image?



”

Fourier inversion leads to a “dirty image
The data sampled at locations {ug} is

F(u) = F(u Zéu—uk

The “synthesised image”/“dirty image” is
(o) = 7" [F(w)]
= l(o) x b(o)

where b(o) is the “dirty beam”

- [%: 5(u — u,?)] .
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Angular resolution depends on the maxi-
mum baseline

(u,v) coverage dirty beam
|U| < umax FWHMN1/UmaX
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Field of view depends on the density of
sampling

(u,Vv) coverage dirty image
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Deconvolution can ameliorate imperfec-
tions in the sampling

7z
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Must still meet minimum sampling criteria
to get an adequate image

Longest baselines Umax = 1/0min

Largest sampling "holes” Au < 1/0max
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Atmospheric seeing



Turbulent mixing of
existing gradients of
refractive index
causes random
wavefront
perturbations

© © 6

- ©

© ©| ©
ERgR IR i
IR RIS T

Incoming plane
wavefronts

Earth’s atmosphere

Turbulent eddies
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The spatial structure is fractal

Phase (ra&’aﬁg);

=] \S N N'o No'e)

~|
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The corrugations are dominated by low-
order spatial modes

v v
® ~ N
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We can define a characteristic spatial scale

Dy(r,7) = {|o(r + 1) = o(r))

Dy(r) = 6.88(r/rp)*/>
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Images are blurred on scales ~ \/ry

A/ro &~ Tarcsec for A =500nm, ro =10cm
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Temporal seeing can be modelled from as-
suming “frozen turbulence”

Dy(t) = (l6(r, ¥ +1) — o(r, 1)) = (t/10)*"

to = 0.314r9/v ~ milliseconds

https://share.streamlit.io/dbuscher/
megascreen/tests/demos/streamlit_
movie.py
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First-order effects on

Interferometers



The differential piston between telescopes
is hundreds of wavelengths

8 ao - T T T T T |
S % - .
= o 60 80m o, ¥ e .
&9 o o . o il vy 3 - ~ 6
s 5 Y , h‘f‘-" "\ LY T Y
S é 40 i \J' \*\ 5 ~ ’- Vil W
<= & f ¥ * ' '
= 20 ] I
50 100

time (seconds)

Visibility phase is “meaningless”
Visibility modulus is the only good observable
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We need the phase to make images

iT(Xv y)

i'IZ(X7 y)




Closure phase

IN(N — 1) object visibility phases ¢;;
N — 1 unknown phase perturbations g

Can solve for (N — 1)(N — 2) perturbation
-independent terms - “closure phases”
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Tel 1

Baseline 12

Atmospheric turbulence

Baseline/31

Tel 2

Baseline 23

£(3)

d(12) = 6(12) +£(1) — £(2)
D(23) = 0(23) + £(2) — £(3)
®(31) = 031) +£(3) — (1)

d(12) + B(23) + D31) = 0(12) + 0(23) + ¢(31)

83



Binary star example
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(Spectral) differential phase can retrieve
wavelength-dependent structure

\( instrumental nlelm/ error

source phase structure

Pnequem_y
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Higher-order effects



Fringes smear out if the exposure time is
too long

1.00

(ht*)

|| — Numerical result
-- Extended Maréchal| |
Random walk k

1.0
T/t
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The fringes distort if the aperture is too

large

(i

I

1.00
0.10p
0.01

— Numerical result
- Extended Maréchal

Random walk

0.10 1.00

D/ry

10.00
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Adaptive optics can correct the spatial fluc-
tuations

Distorted wavefront

Deformable mirr{\ from telescope

Wavefront
corrector
Beam splitter

Corrected
wavefront

Controller To interferometer

Wavefront sensor
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Tip/tilt correction is 90%
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AO allows you to use larger apertures

1.00

(I 1)

0.10

0.10 1.00 10.00
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Spatial filtering is “passive AQ”

Lens Lens

Corrugated Pinhole Smoothed
wavefront wavefront
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Single-mode fibres are perfect spatial fil-
ters

Lens Lens

I —

Corrugated Single-mode Undistorted
wavefront optical fibre wavefront
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AO increases light coupling

1.00f 8

Mean coupling

0.10¢ 8

0.10 1.00 10.00
D/r,



Fringe tracking is “piston AO”

Delay lines 1-3 Beamsplitters 1-3
_>—L: N
Beam 1 > LN > Science
Beam 2——»—{ _ +—>» rN—— beam
- combiner
»

T TTT

Control : Fringe
signals : tracker




Cophasing and coherencing

ldeally, we want to track the piston to < A to
“freeze” the fringe phase and have long

integrations (cophasing or coherent integration).

At low light levels, the fringe tracker fails

Can still use a “group delay” tracker for
“coherencing” — keep the fringe “envelope”
centred.
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Measurement noise

and data reduction



The degeneracy parameter of optical radi-
ation sources is tiny

Radio hv/RT < 0.5
Optical hv/RT 2 5

degeneracy parameter
=
o
NS

0.1 1.0 10.0
hv/kT
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Coherent optical amplifiers are useless so
we can'tsplit light between many baselines

Signal
Amplified output
“Vacuum port”
1 photon per mode

Linear amplifier

Typical radio signal >> 1 photon per mode
Typical optical signal << 0.001 photons per mode
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We need to detect un-amplified fringe in-
tensities

+V_T_
Light-sensitive semiconductor

Photon ~AAA

VaN

@ =

|

Photo-electron

Capacitor——

1

ADC

Amplifier

Computer

101



The detected fringe pattern is discrete and

noisy

40 1

N
o
!

Intensity i,

Pixel p
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We can model the detected interferogram
in terms of the noiseless fringe pattern A

1

pix

(Npnot + Re { Fe®™iP})
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The noise on the fringe parameters is the
sum of the noise on each pixel

Using a Discrete Fourier
Transform (DFT) to extract j;

Im

pix—
Bo= 2 ) e :
1) p F;

Fiy = Fi/+”if

p1x

nj = ) Z n, p—2misijp Re
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Low fringe visibility is more of a problem

than low flux

SNR(Fjj) =

In the photon-noise-dominated regime:

N 1 —
SNR(FU) =~ 5‘V,'j| Nphota
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There is a maximum SNR we can reach in a
single exposure

1.00
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o o«
z 4
2 0
3 o
2 >
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) o
2 2 1.0
0.10
T 0.1
0 1 10 100 1.0 10.0
vl Dir
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We need to average the results from many
exposures

Can have many 1000s of interferograms in a
few-minute observation

If we have a reliable source of phase data, can do
“coherent integration”, effectively increasing the
exposure time

Then do “incoherent integration” — average power
spectrum (|F|?) and bispectrum.
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Don't average the closure phase!
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N
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Imagingary
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The bispectrum (triple product)

Tpgr = T(Upq; Ugr) = F(Upq) F(Ugr)F(—Upq — Ugr)

arg(Tpgr) = Gpg + bqr + rp
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The fringe visibility depends on the seeing

0.7

97236 8/24/97 51 Peg Raw V A

HD 215510 Raw V? 4
0.68 | aw
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062

06 F 4

- fﬂfﬁ} |

054 - 4
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2

052 -

0.5
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We use measurements of stars with known
|V(uj)| to calibrate the transfer function

< 2> = <’7ij‘2> V(uy)l?

Assume that the transfer function <]7,-j\2> is

stable between observations of the target and
calibrator stars.

At mid-IR wavelengths, we can calibrate the
coherent flux F; rather than the visibility V;;
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It is best to bracket the target with calibra-
tors

| omicet
| gameri
7 alpcet
| omicet
gameri

4 alpcet
| omicet
- omicet
- gameri

-1 gameri

| alpcet

LI T
06 : :
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Interferometers In

practice



Interferometric facilities

NPOI: 6x12 cm collectors, max baseline 450 m
CHARA: 6x1m telescopes, max baseline 330m
VLTI: 4x8 m UTs + 4x1.8 m ATs, max baseline 200 m

MROI: 10x 1.4 m telescopes, max baseline 350 m
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Beam relay




Array layout
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Delay lines

Cat’s eye retroreflector
Beam from telescope,

A -
>

Beam to combiner

o

<Voice coil
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Beam combiners

Mono-mode

optical fibres Cryogenic enclosure

Beams from telescopes

Dispersing
optics
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Dispersed fringes




Aperture masking

‘g Mask at image of

primary mirror\ )

A -
v

Detector

A .

»
Telescope & Interference pattern
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We have built a “forward model” of an i

terferometric measurement

Model parameters

lsmmeu-ic or physical model

Sky brightness distribution
}deal interferometer
Object complex visibilities Piston errors
Phase-corrupted visibilities High-order wavefront errors
Amplitude-reduced visibilities
}eam combiner
Interferograms Photon, readout noise
Noisy interferograms

k}a{a reduction

Averaged power spectrum, bispectrum
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Now we just need to solve our inverse prob-
lem

1. Model our targets (YSOs etc)
2. Model our observations (ASPRO)
3. Observation and data reduction

4. Model-fitting & image reconstruction
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