VLTI Summer School 2021

Introduction to interferometry

David Buscher
2021-06-07

How to learn interferometry
The phase-coherent interferometer Making fringes From fringes to images
The atmosphere and quantum noise Interferometry in practice

The need for

interferometry

Science consists of solving inverse problems

Degeneracies mean that the inverse is not unique

Model space
Data space

We need to take measurements such that different models predict different data

Bayes' theorem formalises this:
$P($ model \mid data $) \propto P($ data \mid model $) P($ model $)$

Angular resolution is the sensitivity to structure on small spatial scales

The resolution of a conventional telescope is limited by diffraction

Below a given separation, two stars are indistinguishable from one brighter star

An ELT is not big enough

$d=39 \mathrm{~m}, \lambda=2.2 \mu \mathrm{~m} \rightarrow 1.22 \lambda / d=14$ milliarcsec

The Sun at 10 pc is 0.9 mas

The Earth forming at 150 pc is 6 mas

AGN dust tori are a few mas

We need measurements which are sensitive to structure on (sub-)mas scales

Making fringes

incoming beams

(c)
(b)
(a)

We can derive the interferometric measurement equation in three steps

The fringe pattern for 1 star

The fringe pattern for 2 stars

The fringe pattern for an arbitrary object

One star

An interferometer adds time-delayed light

 beams

In the optical we normally talk about Optical Path Difference (OPD)

$$
\tau_{\mathrm{ext}, 2}-\tau_{\mathrm{ext}, 1}=\mathrm{OPD}_{\mathrm{ext}} / \mathrm{c}=\mathrm{B} \cos \theta / \mathrm{C}
$$

A beam combiner allows us to sample a range of time delays

incoming beams

We represent light waves in terms of complex coefficients

$$
\begin{aligned}
E_{0} & \propto \operatorname{Re}\left[\Psi_{0} e^{-2 \pi \mathrm{i} \nu t}\right] \\
E_{1}(x) & \propto \operatorname{Re}\left[\Psi_{1}(x) e^{-2 \pi \mathrm{i} \nu t}\right] \\
E_{2}(x) & \propto \operatorname{Re}\left[\Psi_{2}(x) e^{-2 \pi \mathrm{i} \nu t}\right] \\
\Psi_{1}(x) & =\Psi_{0} e^{2 \pi \mathrm{i} \nu\left[\tau_{\mathrm{ext}, 1}+\tau_{\mathrm{int}, 1}+\tau_{\mathrm{BC}, 1}(x)\right]} \\
\Psi_{2}(x) & =\Psi_{0} e^{2 \pi \mathrm{i} \nu\left[\tau_{\mathrm{ext}, 2}+\tau_{\mathrm{int}, 2}+\tau_{\mathrm{BC}, 2}(x)\right]}
\end{aligned}
$$

The interference term depends on the phase difference of the beams

$$
\begin{aligned}
i(x)= & \epsilon_{0}\left\langle\left(E_{1}(x)+E_{2}(x)\right)^{2}\right\rangle \\
= & \left.\left.\langle | \Psi_{1}(x)\right|^{2}+\left|\Psi_{2}(x)\right|^{2}\right\rangle \\
& +2 \operatorname{Re}\left[\left\langle\Psi_{1}(x) \Psi_{2}^{*}(x)\right\rangle\right]
\end{aligned}
$$

The phase difference can be written in terms of delay differences

$$
\Psi_{1}(x) \Psi_{2}^{*}(x)=\left|\Psi_{0}\right|^{2} e^{2 \pi \mathrm{i} \nu\left[\tau_{12}+\tau_{\mathrm{BC}, 12}(x)\right]}
$$

where

$$
\begin{aligned}
\tau_{12} & =\left(\tau_{\mathrm{ext}, 1}-\tau_{\mathrm{ext}, 2}\right)+\left(\tau_{\mathrm{int}, 1}-\tau_{\mathrm{int}, 2}\right) \\
\tau_{\mathrm{BC}, 12}(x) & =\tau_{\mathrm{BC}, 1}(x)-\tau_{\mathrm{BC}, 2}(x)
\end{aligned}
$$

The phase of the sinusoidal fringe pattern depends on τ_{12}

$$
i(x)=2 F_{0}\left(1+\operatorname{Re}\left[e^{\mathrm{i} \phi_{1}} e^{2 \pi \mathrm{is} x}\right]\right)
$$

where

$$
\begin{aligned}
F_{0} & =\left|\psi_{0}\right|^{2} \\
\phi_{12} & =2 \pi \nu \tau_{12} \\
s & =\nu \tau_{B c, 12}(x) / x
\end{aligned}
$$

The phase of the fringes changes if the star

 movesA star at direction θ_{0} is at the phase centre if $\tau_{12}=0$. For a star offset by $\Delta \theta$ from the phase centre:

$$
\begin{aligned}
c \tau_{12} & =B \cos \left(\theta_{0}+\Delta \theta\right)-B \cos \theta_{0} \\
& \approx-\Delta \theta B \sin \theta_{0} \\
\Rightarrow \phi_{12} & =-2 \pi u \Delta \theta
\end{aligned}
$$

where

$$
u=B \sin \theta_{0} / \lambda
$$

Two stars

The fringe pattern depends on the angular

 offset and not just the intensities$$
\begin{aligned}
i(x) & =F_{a}\left(1+\operatorname{Re}\left[e^{2 \pi \mathrm{isx}}\right]\right)+F_{b}\left(1+\operatorname{Re}\left[e^{2 \pi i(\Delta \theta u+s x}\right]\right) \\
& =F_{a}+F_{b}+\operatorname{Re}\left[\left(F_{a}+F_{b} e^{2 \pi i \Delta \theta u}\right) e^{2 \pi \mathrm{isx}}\right]
\end{aligned}
$$

We are sensitive to source structure on small angular scales

Noticeable effect when $\Delta \theta \gtrsim 1 / u \approx \lambda / B$

This is the same as the resolution of a telescope of diameter $\sim B$.

If $B=100 \mathrm{~m}$ and $\lambda=500 \mathrm{~nm}$ then $\lambda / B \approx 1 \mathrm{mas}$

Arbitrary 2-D object

Vector formulation

To star

We use axes based on the tangent plane at

 the phase centre
NCP

For small fields of view, only u and v matter

$$
\begin{aligned}
\tau_{12} & =B_{12} \cdot \hat{S} / c-B_{12} \cdot \hat{S}_{0} / c, \\
& =B_{12} \cdot \boldsymbol{\sigma} / \mathrm{c} \quad \text { where } \boldsymbol{\sigma}=\hat{S}-\hat{S}_{0} \\
\Rightarrow \phi_{12} & =2 \pi u \cdot \boldsymbol{\sigma} \quad \text { where } u=B_{12} / \lambda \\
u \cdot \boldsymbol{\sigma} & =u l+\mathrm{vm}+n \mathrm{w} \\
n & \approx \frac{1}{2}\left(l^{2}+m^{2}\right) \ll|\boldsymbol{\sigma}| \quad \text { if } l, m \ll 1 \\
\Rightarrow u \cdot \boldsymbol{\sigma} & \approx u l+v m
\end{aligned}
$$

Hereafter write $u=(u, v)$ and $\sigma=(l, m)$

We sum the fringe patterns from all sources

$$
\begin{aligned}
i(x) & =\iint_{-\infty}^{\infty} l(\boldsymbol{\sigma})\left(1+\operatorname{Re}\left\{e^{-2 \pi i \boldsymbol{i} \cdot u} e^{2 \pi i s x}\right\}\right) d l d m \\
& =F(0)+\operatorname{Re}\left[F(u) e^{2 \pi i s x}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
F(u) & =\iint_{-\infty}^{\infty} I(\boldsymbol{\sigma}) e^{-2 \pi \mathrm{i} \cdot \cdot u} d l d m \\
\Rightarrow F(0) & =\iint_{-\infty}^{\infty} I(\boldsymbol{\sigma}) d l d m
\end{aligned}
$$

$F(u)$ weights the object $I(\sigma)$ with a sinusoidal "mask" and sums the result

Nomenclature

$F(u)$: coherent flux, correlated flux
$V(u) \equiv F(u) / F(0)$: object (complex) visibility
V_{12} : fringe (complex) visibility
|V(u)|: object visibility (modulus)
$\left|V_{12}\right|$: fringe contrast, fringe visibility (modulus)

Michelson fringe visibility

$$
|V|=0.1
$$

Coherence and fringes

Mutual intensity of two beams Ψ_{1} and Ψ_{2} :

$$
M_{12}=\left\langle\Psi_{1} \Psi_{2}^{*}\right\rangle
$$

Degree of coherence:

$$
C_{12}=\frac{M_{12}}{\sqrt{M_{11} M_{22}}}
$$

Interference measures cross-correlation:

$$
\begin{aligned}
i(x)= & \left.\left.\langle | \Psi_{1}(x)\right|^{2}+\left|\Psi_{2}(x)\right|^{2}\right\rangle \\
& +2 \operatorname{Re}\left[\left\langle\Psi_{1}(x) \Psi_{2}^{*}(x)\right\rangle\right]
\end{aligned}
$$

Polychromatic interferometry

The coherence length varies inversely with the bandwidth

A wide bandwidth can limit the field of view

From fringes to images

Fourier transforms

Can compose any function f from sine waves:

$$
f(x)=\iint_{-\infty}^{\infty} g(s) e^{2 \pi i s \cdot x} d s_{x} d s_{y}
$$

where coefficients are

$$
g(s)=\iint_{-\infty}^{\infty} f(x) e^{-2 \pi i s \cdot x} d x d y
$$

Fourier transform $g(s)=\mathcal{F}[f(x)]$
Inverse Fourier transform: $f(x)=\mathcal{F}^{-1}[g(s)]$

A fringe measurement measures a single Fourier component of the image

$$
F(u)=\iint_{-\infty}^{\infty} I(\boldsymbol{\sigma}) e^{-2 \pi \mathrm{i} \boldsymbol{\sigma} \cdot u} d l d m
$$

is equivalent to $F(u)=\mathcal{F}[I(\boldsymbol{\sigma})]$
If we measure $F(u) \forall u$ we can in principle invert this.
Better to first develop your Bayesian intuition: what models give what data?

Point source

$$
\begin{aligned}
& I(\boldsymbol{\sigma})
\end{aligned} \propto \delta\left(\boldsymbol{\sigma}-\boldsymbol{\sigma}_{0}\right)
$$

Binary star system

The binary star Capella (Hummel+ 1994)

801 nm

Uniform disc

Vega (Absil+ 2006)

Gaussian disc

Objects offset from the phase centre

Convolution theorem: $\mathcal{F}\{f * g\}=F G$ where $F(s)=\mathcal{F}\{f(x)\}$ and $G(s)=\mathcal{F}\{g(x)\}$, where

$$
\left(f_{1} * f_{2}\right)(x) \equiv \iint_{\text {All space }} f_{1}\left(x^{\prime}\right) f_{2}\left(x-x^{\prime}\right) d A
$$

$$
\begin{aligned}
f\left(x-x_{0}\right) & =f(x) * \delta\left(x-x_{0}\right) \\
\Rightarrow \mathcal{F}\left\{f\left(\boldsymbol{\sigma}-\boldsymbol{\sigma}_{0}\right)\right\} & =F e^{2 \pi i \mathrm{i} \cdot \boldsymbol{\sigma}_{0}}
\end{aligned}
$$

Rules of thumb

$V(0)=1$ and $|V(u)| \leq 1$
Significant deviations from $|V|=1$ ("resolved") when $B \gtrsim \lambda / \theta$

Sharp-edged structures show "ringing" sidelobes
Symmetric objects have real visibility functions
For all objects $V(-u)=V^{*}(u)$ (Hermitian symmetry)

How to sample the
 Fourier plane

We can change the baseline by moving the telescopes

Earth rotation is carbon-neutral telescope transportation

Multiple telescopes sample many (u,v) points

(1)
(2)
(3)
(4)

$$
N_{\text {bas }}=N_{\text {tel }}\left(N_{\text {tel }}-1\right) / 2
$$

We typically use multiple telescopes in tandem with Earth rotation

Observing in multiple spectral channels gives additional coverage

$$
\begin{gathered}
\text { How does finite } \\
\text { sampling affect the } \\
\text { image? }
\end{gathered}
$$

Fourier inversion leads to a "dirty image"

The data sampled at locations $\left\{u_{k}\right\}$ is

$$
\hat{F}(u)=F(u) \sum_{k} \delta\left(u-u_{k}\right)
$$

The "synthesised image"/"dirty image" is

$$
\begin{aligned}
\hat{I}(\sigma) & =\mathcal{F}^{-1}[\hat{F}(u)] \\
& =I(\boldsymbol{\sigma}) * b(\boldsymbol{\sigma})
\end{aligned}
$$

where $b(\boldsymbol{\sigma})$ is the "dirty beam"

$$
b(\boldsymbol{\sigma})=\mathcal{F}^{-1}\left[\sum_{k} \delta\left(u-u_{k}\right)\right] .
$$

Angular resolution depends on the maximum baseline

(u, v) coverage
$|u|<u_{\text {max }}$

dirty beam
FWHM $\sim 1 / u_{\text {max }}$

Field of view depends on the density of sampling

Deconvolution can ameliorate imperfections in the sampling

Must still meet minimum sampling criteria to get an adequate image

Longest baselines $u_{\max } \gtrsim 1 / \theta_{\text {min }}$

Largest sampling "holes" $\Delta u \lesssim 1 / \theta_{\max }$

Atmospheric seeing

Turbulent mixing of existing gradients of refractive index causes random wavefront perturbations

Incoming plane

wavefronts

Earth's atmosphere

Turbulent eddies
"Corrugated" wavefronts

The spatial structure is fractal

The corrugations are dominated by loworder spatial modes

We can define a characteristic spatial scale

$$
\begin{gathered}
\left.D_{\phi}\left(r, r^{\prime}\right) \equiv\langle | \phi\left(r^{\prime}+r\right)-\left.\phi\left(r^{\prime}\right)\right|^{2}\right\rangle \\
D_{\phi}(r)=6.88\left(r / r_{0}\right)^{5 / 3}
\end{gathered}
$$

Images are blurred on scales $\sim \lambda / r_{0}$

$\lambda / r_{0} \approx 1 \operatorname{arcsec}$ for $\lambda=500 \mathrm{~nm}, r_{0}=10 \mathrm{~cm}$

Temporal seeing can be modelled from assuming "frozen turbulence"

$$
\begin{gathered}
\left.D_{\phi}(t) \equiv\langle | \phi\left(r, t^{\prime}+t\right)-\left.\phi\left(r, t^{\prime}\right)\right|^{2}\right\rangle=\left(t / t_{0}\right)^{5 / 3} \\
t_{0}=0.314 r_{0} / v \sim \text { milliseconds }
\end{gathered}
$$

https://share.streamlit.io/dbuscher/ megascreen/tests/demos/streamlit_ movie.py

First-order effects on

interferometers

The differential piston between telescopes

 is hundreds of wavelengths

Visibility phase is "meaningless"
Visibility modulus is the only good observable

We need the phase to make images

$i_{1}(x, y)$

$i_{2}(x, y)$
$i_{12}(x, y)$

$i_{21}(x, y)$

Closure phase

$\frac{1}{2} N(N-1)$ object visibility phases $\phi_{i j}$
$N-1$ unknown phase perturbations ϵ_{j}
Can solve for $\frac{1}{2}(N-1)(N-2)$ perturbation -independent terms - "closure phases"

Binary star example

(Spectral) differential phase can retrieve wavelength-dependent structure

Higher-order effects

Fringes smear out if the exposure time is too long

The fringes distort if the aperture is too large

Adaptive optics can correct the spatial fluctuations

Tip/tilt correction is 90% of the battle

AO allows you to use larger apertures

Spatial filtering is "passive AO"

Single-mode fibres are perfect spatial filters

AO increases light coupling

Fringe tracking is "piston AO"

Cophasing and coherencing

Ideally, we want to track the piston to $\ll \lambda$ to "freeze" the fringe phase and have long integrations (cophasing or coherent integration).

At low light levels, the fringe tracker fails
Can still use a "group delay" tracker for
"coherencing" - keep the fringe "envelope" centred.

Measurement noise

and data reduction

The degeneracy parameter of optical radiation sources is tiny

Radio $h \nu / k T \lesssim 0.5$
Optical $h \nu / k T \gtrsim 5$

Coherent optical amplifiers are useless so we can't split light between many baselines

We need to detect un-amplified fringe intensities

The detected fringe pattern is discrete and noisy

We can model the detected interferogram in terms of the noiseless fringe pattern \wedge

$$
\begin{gathered}
\Lambda_{p}=\frac{1}{N_{\text {pix }}}\left(\bar{N}_{\text {phot }}+\operatorname{Re}\left\{F_{i j} e^{2 \pi \mathrm{~s}_{j i} p}\right\}\right) \\
i_{p}=\Lambda_{p}+n_{p}
\end{gathered}
$$

The noise on the fringe parameters is the sum of the noise on each pixel
Using a Discrete Fourier
Transform (DFT) to extract $F_{i j}$

$$
\begin{aligned}
& \hat{F}_{i j}=2 \sum_{p=0}^{N_{\mathrm{pix}}-1} i_{p} e^{-2 \pi \mathrm{is} s_{i j} p} \\
& \hat{F}_{i j}=F_{i j}+n_{i j} \\
& n_{i j}=2 \sum_{p=0}^{N_{\mathrm{pix}}-1} n_{p} e^{-2 \pi \mathrm{is} \mathrm{~s}_{j j} p}
\end{aligned}
$$

Low fringe visibility is more of a problem than low flux

$$
\operatorname{SNR}\left(\hat{F}_{i j}\right)=\frac{\left|\left\langle\hat{F}_{i j}\right\rangle\right|}{\sigma_{i j}}
$$

In the photon-noise-dominated regime:

$$
\operatorname{SNR}\left(\hat{F}_{\mathrm{ij}}\right) \approx \frac{1}{2}\left|V_{i j}\right| \sqrt{\bar{N}_{\text {phot }}},
$$

There is a maximum SNR we can reach in a

 single exposure

We need to average the results from many

exposures

Can have many 1000s of interferograms in a few-minute observation

If we have a reliable source of phase data, can do "coherent integration", effectively increasing the exposure time

Then do "incoherent integration" - average power spectrum $\left(|F|^{2}\right)$ and bispectrum.

Don't average the closure phase!

The bispectrum (triple product)

$$
\begin{gathered}
T_{p q r}=T\left(u_{p q}, u_{q r}\right)=F\left(u_{p q}\right) F\left(u_{q r}\right) F\left(-u_{p q}-u_{q r}\right) \\
\arg \left(T_{p q r}\right)=\phi_{p q}+\phi_{q r}+\phi_{r p}
\end{gathered}
$$

The fringe visibility depends on the seeing

We use measurements of stars with known

 $\left|V\left(u_{i j}\right)\right|$ to calibrate the transfer function$$
\left.\left.\left.\langle | \hat{v}_{i j}\right|^{2}\right\rangle=\left.\langle | \gamma_{i j}\right|^{2}\right\rangle\left|V\left(u_{i j}\right)\right|^{2}
$$

Assume that the transfer function $\left.\left.\langle | \gamma_{i j}\right|^{2}\right\rangle$ is stable between observations of the target and calibrator stars.
At mid-IR wavelengths, we can calibrate the coherent flux $F_{i j}$ rather than the visibility $V_{i j}$

It is best to bracket the target with calibra-

 tors

Interferometers in

practice

Interferometric facilities

NPOI: $6 \times 12 \mathrm{~cm}$ collectors, max baseline 450 m

CHARA: $6 \times 1 \mathrm{~m}$ telescopes, max baseline 330 m

VLTI: 4×8 m UTs + 4×1.8 m ATs, max baseline 200 m

MROI: 10×1.4 m telescopes, max baseline 350 m

Collectors

Beam relay

Array layout

Delay lines

Beam combiners

Dispersed fringes

Aperture masking

We have built a "forward model" of an interferometric measurement

Now we just need to solve our inverse prob-

 lem1. Model our targets (YSOs etc)
2. Model our observations (ASPRO)
3. Observation and data reduction
4. Model-fitting \& image reconstruction
