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How to learn interferometry
The phase-coherent interferometer

Making fringes
From fringes to images

The atmosphere and quantum noise
Interferometry in practice



The need for

interferometry



Science consists of solving inverse prob-
lems
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Degeneracies mean that the inverse is not
unique

Data spaceModel space

Degenerate
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We need to take measurements such that
different models predict different data

Bayes’ theorem formalises this:

P(model|data) ∝ P(data|model)P(model)
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Angular resolution is the sensitivity to
structure on small spatial scales
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The resolution of a conventional telescope
is limited by diffraction

Circular aperture

Screen

Lens

Wavefronts

d

Star

intensity

angular offset
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Below a given separation, two stars are in-
distinguishable from one brighter star

∆θ=2.0λ/d ∆θ=1.0λ/d ∆θ=0.5λ/d ∆θ=0.1λ/d
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An ELT is not big enough

d = 39m, λ = 2.2 µm → 1.22λ/d = 14milliarcsec
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The Sun at 10 pc is 0.9mas
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The Earth forming at 150pc is 6mas
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AGN dust tori are a few mas
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Weneedmeasurements which are sensitive
to structure on (sub-)mas scales
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Making fringes
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We can derive the interferometricmeasure-
ment equation in three steps

The fringe pattern for 1 star

The fringe pattern for 2 stars

The fringe pattern for an arbitrary object
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One star



An interferometer adds time-delayed light
beams

Detector

Beam combiner
Collector

Beam relay
       +
delay line
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In the optical we normally talk about
Optical Path Difference (OPD)

τext,2 − τext,1 = OPDext/c = B cos θ/c
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A beam combiner allows us to sample a
range of time delays
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We represent light waves in terms of com-
plex coefficients

E0 ∝Re
[
Ψ0e−2πiνt]

E1(x) ∝Re
[
Ψ1(x)e−2πiνt]

E2(x) ∝Re
[
Ψ2(x)e−2πiνt]

Ψ1(x) =Ψ0e2πiν[τext,1+τint,1+τBC,1(x)]

Ψ2(x) =Ψ0e2πiν[τext,2+τint,2+τBC,2(x)]
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The interference term depends on the
phase difference of the beams

i(x) =ϵ0
〈
(E1(x) + E2(x))2

〉
=
〈
|Ψ1(x)|2 + |Ψ2(x)|2

〉
+ 2Re [⟨Ψ1(x)Ψ∗

2(x)⟩]
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The phase difference can be written in
terms of delay differences

Ψ1(x)Ψ∗
2(x) = |Ψ0|2 e2πiν[τ12+τBC,12(x)]

where

τ12 = (τext,1 − τext,2) + (τint,1 − τint,2)

τBC,12(x) = τBC,1(x)− τBC,2(x).
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The phase of the sinusoidal fringe pattern
depends on τ12

i(x) = 2F0
(
1+ Re

[
eiϕ12e2πisx])

where

F0 = |Ψ0|2

ϕ12 =2πντ12
s =ντBC,12(x)/x
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The phase of the fringes changes if the star
moves
A star at direction θ0 is at the phase centre if τ12 = 0.
For a star offset by ∆θ from the phase centre:

cτ12 = B cos(θ0 +∆θ)− B cos θ0
≈ −∆θB sin θ0

⇒ ϕ12 = −2πu∆θ

where
u = B sin θ0/λ.
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Two stars
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The fringe pattern depends on the angular
offset and not just the intensities
i(x) = Fa

(
1+ Re

[
e2πisx])+ Fb

(
1+ Re

[
e2πi(∆θu+sx)

])
= Fa + Fb + Re

[(
Fa + Fbe2πi∆θu) e2πisx]

Real

Imaginary
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We are sensitive to source structure on
small angular scales

Noticeable effect when ∆θ ≳ 1/u ≈ λ/B

This is the same as the resolution of a telescope of
diameter ∼ B.

If B = 100m and λ = 500nm then λ/B ≈ 1mas
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Arbitrary 2-D object



Vector formulation

Collector 1 Collector 2

To star
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We use axes based on the tangent plane at
the phase centre

NCP

object

baseline
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For small fields of view, only u and vmatter

τ12 = B12 · Ŝ/c− B12 · Ŝ0/c,
= B12 · σ/c where σ = Ŝ− Ŝ0

⇒ ϕ12 = 2πu · σ where u = B12/λ
u · σ = ul+ vm+ nw

n ≈ 1
2(l

2 +m2) ≪ |σ| if l,m≪ 1

⇒ u · σ ≈ ul+ vm

Hereafter write u = (u, v) and σ = (l,m)
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We sum the fringe patterns fromall sources

i(x) =
∫∫ ∞

−∞
I(σ)

(
1+ Re

{
e−2πiσ·ue2πisx}) dl dm

= F(0) + Re
[
F(u)e2πisx]

where

F(u) =
∫∫ ∞

−∞
I(σ)e−2πiσ·u dl dm

⇒ F(0) =
∫∫ ∞

−∞
I(σ)dl dm
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F(u) weights the object I(σ) with a sinu-
soidal “mask” and sums the result
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2 0 2
uσ

I(
σ
)

40



41



Nomenclature

F(u): coherent flux, correlated flux

V(u) ≡ F(u)/F(0): object (complex) visibility

V12: fringe (complex) visibility

|V(u)|: object visibility (modulus)

|V12|: fringe contrast, fringe visibility (modulus)
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Michelson fringe visibility

|V|=1.0 |V|=0.5 |V|=0.1
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Coherence and fringes
Mutual intensity of two beams Ψ1 and Ψ2:

M12 = ⟨Ψ1Ψ
∗
2⟩

Degree of coherence:

C12 =
M12√
M11M22

.

Interference measures cross-correlation:
i(x) =

〈
|Ψ1(x)|2 + |Ψ2(x)|2

〉
+ 2Re [⟨Ψ1(x)Ψ∗

2(x)⟩]
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Polychromatic interferometry
i(
τ)

τ

i(
τ)
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The coherence length varies inversely with
the bandwidth

F
(u
,ν

)

i(
τ)

τ

F
(u
,ν

)

τ

i(
τ)
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Awide bandwidth can limit the field of view
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From fringes to images



Fourier transforms

Can compose any function f from sine waves:

f(x) =
∫∫ ∞

−∞
g(s)e2πis·x dsx dsy

where coefficients are

g(s) =
∫∫ ∞

−∞
f(x)e−2πis·x dx dy.

Fourier transform g(s) = F [f(x)]

Inverse Fourier transform: f(x) = F−1 [g(s)] 49



A fringe measurement measures a single
Fourier component of the image

F(u) =
∫∫ ∞

−∞
I(σ)e−2πiσ·u dl dm

is equivalent to F(u) = F [I(σ)]

If we measure F(u)∀u we can in principle invert this.

Better to first develop your Bayesian intuition: what
models give what data?
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Point source
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I(σ) ∝ δ(σ − σ0)

⇒ F(u) ∝ e2πiu·σ0
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Binary star system
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The binary star Capella (Hummel+ 1994)
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Uniform disc
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Vega (Absil+ 2006)
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Gaussian disc
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Objects offset from the phase centre

Convolution theorem: F {f ∗ g} = FG where
F(s) = F{f(x)} and G(s) = F{g(x)}, where

(f1 ∗ f2)(x) ≡
∫∫

All space
f1(x′)f2(x− x′)dA

f(x− x0) = f(x) ∗ δ(x− x0)
⇒ F {f(σ − σ0)} = Fe2πiu·σ0
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Rules of thumb

V(0) = 1 and |V(u)| ≤ 1

Significant deviations from |V| = 1 (“resolved”)
when B >∼ λ/θ

Sharp-edged structures show “ringing” sidelobes

Symmetric objects have real visibility functions

For all objects V(−u) = V∗(u) (Hermitian symmetry)
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How to sample the

Fourier plane



We can change the baseline by moving the
telescopes
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Earth rotation is carbon-neutral telescope
transportation

0
u

0v
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Multiple telescopes sample many (u, v)
points

1 2 3 4

41 2 3

3-4 1-2 2-3 2-4 1-3 1-4

1-2

2-3

3-4

1-3

2-4

1-4
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We typically use multiple telescopes in tan-
dem with Earth rotation

No. 1, 2009 IMAGING AND MODELING RAPIDLY ROTATING STARS 211
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Figure 1. Baseline coverages for α Cep and α Oph. The longest baselines in the observations are 251 m and 329 m for α Cep and α Oph, corresponding to resolutions
of 0.68 mas and 0.52 mas, respectively. The UV coverage can be obtained by dividing these two plots by corresponding wavelengths.

Table 2
Calibrator Diameters

Calibrator UD diameter (mas) Reference

α Sge 1.32 ± 0.02 Uniform-disk fit to PTI archive dataa

ζ Oph 0.51 ± 0.05 Hanbury Brown et al. (1974)
γ Ser 1.21 ± 0.05 Uniform-disk fit to PTI archive data
γ Lyr 0.74 ± 0.10 Leggett et al. (1986)
υ Peg 1.01 ± 0.04 Blackwell & Lynas-Gray (1994)
τ Aql 1.10 ± 0.01 Mérand et al. (2005, 2006)
29 Peg 1.0 ± 0.1 MIRC measurement
υ And 1.17 ± 0.02 A. F. Boden 2008, private communicationb

ζ Per 0.67 ± 0.03 getCalc

Notes.
a Available at http://mscweb.ipac.caltech.edu/mscdat-pti
b SED fit
c http://mscweb.ipac.caltech.edu/gcWeb/gcWeb.jsp

in Table 2. Corresponding errors of the data are estimated
by combining both the scatter of the data and calibration
errors.

3. APERTURE SYNTHESIS IMAGING

We employed the publicly available application “Markov–
Chain Imager for Optical Interferometry” (MACIM; Ireland
et al. 2006) to reconstruct images for α Cep and α Oph.
The application applies the Maximum Entropy Method (MEM;
Narayan & Nityananda 1986) widely used in radio synthesis
imaging, and has been validated on other test data (Lawson et al.
2006). Since the photosphere of a star has a sharp emission
cutoff at the edge, which is imprinted in the highest spatial
frequencies that cannot be observed, we constrain the field of
view of the images within an ellipse to avoid spreading out of
the flux by the MEM procedure at the edge of the star. This
constraint is appropriate for α Cep and α Oph due to their lack
of any circumstellar emission outside of their photospheres. The
details of this approach can be found in Monnier et al. (2007).
The ellipse prior is found by conducting MACIM imaging on a
grid of ∼400 different ellipses with uniform surface brightness,
spanning a range of possible sizes, axial ratios, and position
angles. To ensure the smoothness of the image, we also de-
weighted the high-resolution data with a Gaussian beam of

0.3 mas FHWM, an approach usually applied in radio synthesis
imaging. The image with the global maximum entropy is then
taken as the final result. We treated each wavelength channel as
providing a distinct set of (u, v) plane coverage, ignoring any
wavelength-dependence of the image itself. This assumption is
well justified for α Cep and α Oph since the brightness profiles
of their photospheres are almost identical in all channels in the
H band.

Figure 2 shows the reconstructed image of α Cep (χν
2 =

1.10). Its photosphere is well resolved and appears elongated
along the east-west direction. The bright region at the bottom
with Teff above 7000 K (left panel) is later identified close to
the pole and the dark belt below 6500 K is the equator—a direct
confirmation of the gravity-darkening effect. The image implies
the pole of α Cep is medium inclined. The very top of the image
becomes bright again since the photosphere is brighter toward
the poles. The right panel of Figure 2 shows the orientation of
α Cep based on the model in Section 4. It shows that the bright
spot in the image is in fact above the pole as the pole of α Cep
is limb-darkened. The squared visibilities, closure phases, and
triple amplitudes derived from the image are compared with the
data in Figures 3, 4, and 5.

Although we have tried intensively to reconstruct an image
for α Oph, we are unable to find a reliable solution for it. This
is because the brightness distribution of a stellar surface is
mainly imprinted in our closure phases. The closure phase is
only sensitive to asymmetric structures of the object, while a
symmetric object only gives either 0◦ or 180◦ closure phases.
The squared-visibilities of our data are less constraining due
to their relatively large errors. The near equator-on inclination
of α Oph (see Section 4.2) makes its brightness distribution
nearly symmetric, providing too few nonzero closure phase
signatures to constrain the image. Therefore, we could not
obtain a reliable solution for α Oph in the image reconstruction.
We have also pursued other imaging programs such as MIRA
(Thiébaut 2008), and obtained similar results in our preliminary
efforts (E. Thiébaut 2008, private communication). Thus, we
only present the model of α Oph in this paper. As we will see
in Section 4.2, the lack of nonzero closure phase signatures
of α Oph also brings similar issues to our modeling, causing
high degeneracy to the inclination and the gravity-darkening
coefficient.
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Observing in multiple spectral channels
gives additional coverage
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How does finite

sampling affect the

image?



Fourier inversion leads to a “dirty image”
The data sampled at locations {uk} is

F̂(u) = F(u)
∑
k

δ(u− uk)

The “synthesised image”/“dirty image” is
Î(σ) = F−1

[
F̂(u)

]
= I(σ) ∗ b(σ)

where b(σ) is the “dirty beam”

b(σ) = F−1

[∑
k

δ(u− uk)
]
.
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Angular resolution depends on the maxi-
mum baseline

(u, v) coverage
|u| < umax

dirty beam
FWHM ∼ 1/umax
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Field of view depends on the density of
sampling

(u, v) coverage dirty image
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Deconvolution can ameliorate imperfec-
tions in the sampling
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Must still meet minimum sampling criteria
to get an adequate image

Longest baselines umax >∼ 1/θmin

Largest sampling ”holes” ∆u <∼ 1/θmax
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Atmospheric seeing



Turbulent mixing of
existing gradients of
refractive index
causes random
wavefront
perturbations

Incoming plane
wavefronts

Earth’s atmosphere

Turbulent eddies

“Corrugated” 
wavefronts
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The spatial structure is fractal
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The corrugations are dominated by low-
order spatial modes

Z1 Z2 Z3

Z4 Z5 Z6

Z7 Z8 Z9

75



We can define a characteristic spatial scale

Dϕ(r, r′) ≡
〈
|ϕ(r′ + r)− ϕ(r′)|2

〉
Dϕ(r) = 6.88(r/r0)5/3
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Images are blurred on scales ∼ λ/r0

λ/r0 ≈ 1 arcsec for λ = 500nm, r0 = 10 cm
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Temporal seeing can be modelled from as-
suming “frozen turbulence”

Dϕ(t) ≡
〈
|ϕ(r, t′ + t)− ϕ(r, t′)|2

〉
= (t/t0)5/3

t0 = 0.314r0/v ∼ milliseconds

https://share.streamlit.io/dbuscher/
megascreen/tests/demos/streamlit_
movie.py
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First-order effects on

interferometers



The differential piston between telescopes
is hundreds of wavelengths

time (seconds)
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Visibility phase is “meaningless”
Visibility modulus is the only good observable
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We need the phase to make images

i1(x, y) i2(x, y)

i12(x, y) i21(x, y)
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Closure phase

1
2N(N− 1) object visibility phases ϕij

N− 1 unknown phase perturbations ϵj

Can solve for 1
2(N− 1)(N− 2) perturbation

-independent terms - “closure phases”
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Binary star example
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(Spectral) differential phase can retrieve
wavelength-dependent structure
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Higher-order effects



Fringes smear out if the exposure time is
too long

0.1 1.0 10.0
τ/t0
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1.00

〈 |γ|
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Numerical result
Extended Maréchal
Random walk
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The fringes distort if the aperture is too
large

0.10 1.00 10.00
D/r0
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Numerical result
Extended Maréchal
Random walk
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Adaptive optics can correct the spatial fluc-
tuations

Deformable mirror

Wavefront
corrector

Controller

Wavefront sensor

To interferometer

Corrected
wavefront

Beam splitter

Distorted wavefront
from telescope
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Tip/tilt correction is 90% of the battle
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AO allows you to use larger apertures
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Spatial filtering is “passive AO”

Corrugated
wavefront

Smoothed
wavefront

Pinhole

LensLens
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Single-mode fibres are perfect spatial fil-
ters

Corrugated
wavefront

Undistorted
wavefront

LensLens

Single-mode
optical fibre
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AO increases light coupling
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Fringe tracking is “piston AO”

Beamsplitters 1-3Delay lines 1-3

Beam 1

Beam 2

Beam 3

Science
beam

combiner

Fringe
tracker

Control
signals
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Cophasing and coherencing

Ideally, we want to track the piston to≪ λ to
“freeze” the fringe phase and have long
integrations (cophasing or coherent integration).

At low light levels, the fringe tracker fails

Can still use a “group delay” tracker for
“coherencing” — keep the fringe “envelope”
centred.
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Measurement noise

and data reduction



The degeneracy parameter of optical radi-
ation sources is tiny

Radio hν/kT <∼ 0.5
Optical hν/kT >∼ 5
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Coherent optical amplifiers are useless so
we can’t split light betweenmany baselines
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We need to detect un-amplified fringe in-
tensities

Capacitor

Light-sensitive semiconductor

Photon

+V

Amplifier

Photo-electron

ComputerADC
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The detected fringe pattern is discrete and
noisy
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We can model the detected interferogram
in terms of the noiseless fringe pattern Λ

Λp =
1
Npix

(
Nphot + Re

{
Fije2πisijp

})
ip = Λp + np
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The noise on the fringe parameters is the
sum of the noise on each pixel
Using a Discrete Fourier
Transform (DFT) to extract Fij

F̂ij = 2
Npix−1∑
p=0

ipe−2πisijp

F̂ij = Fij + nij

nij = 2
Npix−1∑
p=0

npe−2πisijp Re

Im
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Low fringe visibility is more of a problem
than low flux

SNR(F̂ij) =

∣∣∣〈F̂ij〉∣∣∣
σij

In the photon-noise-dominated regime:

SNR(F̂ij) ≈
1
2|Vij|

√
Nphot,
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There is a maximum SNR we can reach in a
single exposure
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We need to average the results from many
exposures

Can have many 1000s of interferograms in a
few-minute observation

If we have a reliable source of phase data, can do
“coherent integration”, effectively increasing the
exposure time

Then do “incoherent integration” — average power
spectrum (|F|2) and bispectrum.
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Don’t average the closure phase!
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The bispectrum (triple product)

Tpqr = T(upq,uqr) = F(upq)F(uqr)F(−upq − uqr)

arg(Tpqr) = ϕpq + ϕqr + ϕrp
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The fringe visibility depends on the seeing

110



We use measurements of stars with known
|V(uij)| to calibrate the transfer function

〈∣∣∣V̂ij∣∣∣2〉 =
〈∣∣γij∣∣2〉 |V(uij)|2

Assume that the transfer function
〈∣∣γij∣∣2〉 is

stable between observations of the target and
calibrator stars.
At mid-IR wavelengths, we can calibrate the
coherent flux Fij rather than the visibility Vij
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It is best to bracket the target with calibra-
tors
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Interferometers in

practice



Interferometric facilities

NPOI: 6×12 cm collectors, max baseline 450m

CHARA: 6×1m telescopes, max baseline 330m

VLTI: 4×8m UTs + 4×1.8m ATs, max baseline 200m

MROI: 10×1.4m telescopes, max baseline 350m
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Collectors

115



Beam relay
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Array layout
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Delay lines
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Beam combiners
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Cryogenic enclosure
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Dispersed fringes

Table 2
Image of the detector (left) and cut along one spectral channel (right)

One beam lit
pi

k ¼ F ibi
k

ik ¼ F iai
k

Two beams lit
pi

k ¼ F ibi
k

ik ¼ F iai
k þ F jaj

k þ
ffiffiffiffiffiffiffiffiffi
ai

kaj
k

q
Cij

BRe½F ij
c eið2pak f ijþ/ij

s þUij
BÞ&

All pairs of beams lit
pi

k ¼ F ibi
k

ik ¼
PN tel

i F iai
k þ

PN tel
i<j

ffiffiffiffiffiffiffiffiffi
ai

kaj
k

q
Cij

BRe½F ij
c eið2pak f ijþ/ij

s þUij
BÞ&

Below each plot are given equations ruling photometric (when illuminated) and interferometric channels. From top to bottom: one, two and all beams lit.
Note that the X-axis of the detector image is the pixel axis (spatial coding) and the Y-axis is the wavelength axis.

686 E. Tatulli, G. Duvert / New Astronomy Reviews 51 (2007) 682–696
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Aperture masking

Telescope Interference pattern

Mask at image of
primary mirror Detector
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We have built a “forward model” of an in-
terferometric measurement
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Nowwe just need to solve our inverse prob-
lem

1. Model our targets (YSOs etc)

2. Model our observations (ASPRO)

3. Observation and data reduction

4. Model-fitting & image reconstruction
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