

## Introduction to model-fitting

#### Michel Tallon, Isabelle Tallon-Bosc, Eric Thiébaut CRAL, Lyon France

M. Tallon, I. Tallon-Bosc, Eric Thiébaut

10th VLTI summer school - virtual - June 7-18, 2021

1





- 1. Elements on model-fitting theory
  - understand a few concepts
  - understand the assumptions
  - getting useful hints for the practice
- 2. Digression on the correlations of data
- 3. LITpro software
  - short presentation of the main features
- 4. Adventure of model-fitting
  - examples and hints



## **Elements on model-fitting theory**

- understand the concepts
- understand the assumptions
- getting hints useful for the practice



### **Model fitting actors**

- What we have in hand
  - interferometric data (here OIFITS) and uncertainties on data
    - OI\_VIS2 squared visibility amplitude
    - OI\_T3 triple product (amplitude and phase)
    - OI\_VIS complex visibility (amplitude and phase)
  - other data :
    - OI\_FLUX calibrated or uncalibrated spectrum (OIFITS2)
    - absolute photometry, etc.
  - priors: all possible models of object
- (m(x))

a

- What we want
  - identity the observed object with a model m(x)
  - estimate object parameters x, and uncertainties on the parameters
  - easy (
- What we need
  - tools for model-fitting
  - know what we are doing (no black magic !)



M. Tallon, I. Tallon-Bosc, Eric Thiébaut

10th VLTI summer school — virtual — June 7-18, 2021



#### Model fitting principle





### Criterion for the best parameters

• *best* parameters maximize the probability of the data (*knowing the model*)

$$x_{\text{best}} = \arg \max_{x} \operatorname{Pdf}(d \mid m(x))$$

• where

| d    | data (random quantities, known statistics)        |
|------|---------------------------------------------------|
| x    | parameters                                        |
| m(x) | model (of data): ~ <i>expected values of data</i> |

- number of parameters < number of data
  - difference from image reconstruction  $\Rightarrow x_{\text{best}} =$

$$\mathbf{x}_{\text{best}} = \arg \max_{\mathbf{x}} \operatorname{Pdf}(\mathbf{m}(\mathbf{x}))$$

- priors are subjective
  - we have strong prior: the model of the object!
  - fundamental difference from image reconstruction

d



#### assumption: Gaussian statistics

• data have Gaussian statistics:

$$\operatorname{Pdf}(\boldsymbol{d} \mid \boldsymbol{m}(\boldsymbol{x})) = \frac{\exp\left(-\frac{1}{2} \boldsymbol{r}^{\mathrm{T}} \cdot \boldsymbol{C}_{\boldsymbol{r}}^{-1} \cdot \boldsymbol{r}\right)}{\sqrt{(2\pi)^{N_{\text{data}}} \det\left(\boldsymbol{C}_{\boldsymbol{r}}\right)}}$$

• where:

$$r = d - m(x)$$
 residuals  

$$\mathbf{C}_{r} = \langle \boldsymbol{r}.\boldsymbol{r}^{\mathrm{T}} \rangle - \langle \boldsymbol{r} \rangle.\langle \boldsymbol{r} \rangle^{\mathrm{T}}$$
 covariance matrix of residuals

• maximize Pdf ⇔ minimize argument of the Gaussian

$$\mathbf{x}_{\text{best}} = \arg\min_{\mathbf{x}} \left[ d - m(\mathbf{x}) \right]^{\mathrm{T}} \cdot \mathbf{C}_{r}^{-1} \cdot \left[ d - m(\mathbf{x}) \right]$$



# assumption: data statistically independent

• C<sub>r</sub> is a diagonal matrix:

$$\mathbf{x}_{\text{best}} = \arg\min_{\mathbf{x}} \left[ \mathbf{d} - \mathbf{m}(\mathbf{x}) \right]^{\text{T}} \cdot \mathbf{C}_{\mathbf{r}}^{-1} \cdot \left[ \mathbf{d} - \mathbf{m}(\mathbf{x}) \right]$$
$$= \arg\min_{\mathbf{x}} \sum_{i=1}^{N_{\text{data}}} \left( \frac{d_i - m_i(\mathbf{x})}{\sigma_i} \right)^2$$



• thus we need to minimize  $\chi^2(\mathbf{x})$ :

$$\chi^{2}(\mathbf{x}) = \sum_{i=1}^{N_{\text{data}}} \left( \frac{d_{i} - m_{i}(\mathbf{x})}{\sigma_{i}} \right)^{2} = \sum_{i=1}^{N_{\text{data}}} \frac{r_{i}^{2}(\mathbf{x})}{\sigma_{i}^{2}} = \sum_{i=1}^{N_{\text{data}}} e_{i}^{2}(\mathbf{x})$$

*a.k.a* non-linear weighted least squares

where  $e_i(x)$  normalized residual: random variable with standard normal distribution

 $=>\chi^2$  law

- Independency in real world ?
  - calibrator
    - normalization by incoherent flux





 $e_i(\mathbf{x}_{\text{best}})$  : standard normal distribution  $\mathcal{N}(0,1)$ 

assuming model is good !

number of degrees of freedom:  $N_{\text{free}} = N_{\text{data}} - N_{\text{param}}$ expected value:  $E\{\chi^2(\mathbf{x}_{\text{best}})\} = N_{\text{free}}$ variance:  $\text{Var}\{\chi^2(\mathbf{x}_{\text{hest}})\} = 2 N_{\text{free}}$ 



M. Tallon, I. Tallon-Bosc, Eric Thiébaut

10th VLTI summer school — virtual — June 7-18, 2021





reduced 
$$\chi^2$$
:  $\chi^2_r \equiv \frac{\chi^2}{N_{\text{free}}}$ 

number of degrees of freedom:  $N_{\text{free}} = N_{\text{data}} - N_{\text{param}}$ expected value:  $E\{\chi_r^2(\boldsymbol{x}_{\text{best}})\} = 1$ variance:  $\operatorname{Var}\{\chi_r^2(\boldsymbol{x}_{\text{hest}})\} = 2 / N_{\text{free}}$ 

assuming model is good !



- statistics is very sharp !
  - confidence level not very useful
- in practice, statistics cannot be used to accept or rule out a model
  - modeling errors may be high
  - noise level may be badly estimated
- can be used to compare two models:

$$\frac{\chi^2[\boldsymbol{m}_1]}{N_1}\longleftrightarrow \frac{\chi^2[\boldsymbol{m}_2]}{N_2}$$

keep in mind var. of  $\chi^2$ 

M. Tallon, I. Tallon-Bosc, Eric Thiébaut

10th VLTI summer school — virtual — June 7-18, 2021



### reduced $\chi^2$ : model comparison

Compare  $\chi_r^2$  for different models, relatively to the standard deviation of the  $\chi_r^2$  distribution  $N_{\text{free}} = N_{\text{data}} - N_{\text{param}}$  $E \{ \chi_r^2(\boldsymbol{x}_{\text{best}}) \} = 1$  $Var \{ \chi_r^2(\boldsymbol{x}_{\text{best}}) \} = 2 / N_{\text{free}}$ 



10th VLTI summer school - virtual - June 7-18, 2021



• We have seen : 
$$x_{\text{best}} = \arg \min_{x} \left[ d - m(x) \right]^{\text{T}} \cdot \mathbf{C}_{r}^{-1} \cdot \left[ d - m(x) \right]$$
  
 $r = d - m(x)$   
 $\mathbf{C}_{r} = \langle r.r^{\text{T}} \rangle - \langle r \rangle \cdot \langle r \rangle^{\text{T}} = \mathbf{C}_{d}$   
 $\Longrightarrow \mathbf{C}_{x}$ ?

- The diagonal of  $C_x$  gives the incertainties of the parameters x.
- Off-diagonal terms gives the correlations between the parameters
  - e.g. parameters fully coupled => some features on the object cannot be determined.



• We have seen : 
$$x_{\text{best}} = \arg \min_{x} \left[ d - m(x) \right]^{\text{T}} \cdot \mathbf{C}_{r}^{-1} \cdot \left[ d - m(x) \right]$$
  
 $r = d - m(x)$   
 $\mathbf{C}_{r} = \langle r.r^{\text{T}} \rangle - \langle r \rangle \cdot \langle r \rangle^{\text{T}} = \mathbf{C}_{d}$   
 $\Longrightarrow \mathbf{C}_{x}$ ?

- If a linear model:  $m(x) = \mathbf{H}.x$  (parameters x and modeled data m(x))  $x_{\text{best}} = (\mathbf{H}^{\mathrm{T}}.\mathbf{C}_{r}^{-1}.\mathbf{H})^{-1}\mathbf{H}^{\mathrm{T}}.\mathbf{C}_{r}^{-1}.d$  (weighted least squares)  $\Longrightarrow \mathbf{C}_{x_{\text{best}}} = (\mathbf{H}^{\mathrm{T}}.\mathbf{C}_{r}^{-1}.\mathbf{H})^{-1}$
- Correlation matrix:  $\Gamma_{i,j} = \frac{C_{i,j}}{\sigma_i \sigma_j}$



• But the model *m*(*x*) is highly non-linear ! => linearisation...

$$m(\mathbf{x}) \approx m(\mathbf{x}_{\text{best}}) + \left[\frac{\partial m}{\partial \mathbf{x}}(\mathbf{x}_{\text{best}})\right](\mathbf{x} - \mathbf{x}_{\text{best}})$$
$$\mathbf{H} = \frac{\partial m}{\partial \mathbf{x}}(\mathbf{x}_{\text{best}}) , \text{ i.e. } H_{i,j} = \frac{\partial m_i}{\partial x_j}(\mathbf{x}_{\text{best}})$$
$$\mathbf{C}_{\mathbf{x}_{\text{best}}} \approx (\mathbf{H}^{\mathrm{T}} \cdot \mathbf{C}_r^{-1} \cdot \mathbf{H})^{-1}$$

• Relation between errors on data and errors on parameters

$$\mathbf{C}_{\boldsymbol{x}_{\text{best}}} \approx \left[ \left[ \frac{\partial \boldsymbol{m}}{\partial \boldsymbol{x}}(\boldsymbol{x}_{\text{best}}) \right]^{\mathrm{T}} \cdot \mathbf{C}_{\boldsymbol{r}}^{-1} \cdot \left[ \frac{\partial \boldsymbol{m}}{\partial \boldsymbol{x}}(\boldsymbol{x}_{\text{best}}) \right] \right]^{-1}$$

assuming model is good !

- Reminder:
  - assume modeled data are the expected value of data (i.e. the fitted model is good)
  - assume gaussian statistics
    - assume first order expansion is a good approximation
    - this only translates the statistical errors from data to the parameters



- General theorem of Cramér-Rao lower bound
- $\mathbf{O}_{\mathbf{x}} \geq \left[ \nabla_{\mathbf{x}} \nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}) \right]^{-1} \qquad \text{with log-likelihood:}$

$$\mathcal{L}(\boldsymbol{x}) = -\log \operatorname{Pdf}(\boldsymbol{d} \mid \boldsymbol{m}(\boldsymbol{x}))$$

• We come back to  $\chi^2$  using Gaussian assumption:

$$\mathcal{L}(\boldsymbol{x}) = \frac{1}{2} \begin{bmatrix} \boldsymbol{d} - \boldsymbol{m}(\boldsymbol{x}) \end{bmatrix}^{\mathrm{T}} \cdot \mathbf{C}_{r}^{-1} \cdot \begin{bmatrix} \boldsymbol{d} - \boldsymbol{m}(\boldsymbol{x}) \end{bmatrix} + \mathrm{Cte}$$

$$= \frac{1}{2} \chi^{2}(\boldsymbol{x}) + \mathrm{Cte}$$

$$\alpha \chi^{2}(\boldsymbol{x})$$

$$\int \mathbf{v} = \frac{1}{\alpha \frac{\partial^{2}}{\partial x^{2}} \chi^{2}(\boldsymbol{x})}$$

$$\int \mathbf{v} = \frac{1}{\alpha \frac{\partial^{2}}{\partial x^{2}} \chi^{2}(\boldsymbol{x})}$$

$$\int \mathbf{v} = \frac{1}{\alpha \frac{\partial^{2}}{\partial x^{2}} \chi^{2}(\boldsymbol{x})}$$



#### **Errors on fitted parameters: rescaling**

- The model is not so good (assumption) :
  - $\chi^2$  is bad (>>  $N_{\text{free}}$ )
  - errors on parameters may be good (only statistics) !

$$\chi^2(\boldsymbol{x}_{\text{best}}) = \sum_{i=1}^{N_{\text{data}}} \frac{r_i^2(\boldsymbol{x}_{\text{best}})}{\sigma_i^2} \gg N_{\text{free}}$$

we look for  $\alpha$  such that:

$$\sum_{i=1}^{N_{\text{data}}} \frac{r_i^2(\boldsymbol{x}_{\text{best}})}{(\alpha \ \sigma_i)^2} = N_{\text{free}}$$

$$\Rightarrow \quad \alpha = \sqrt{\frac{\chi^2(\boldsymbol{x}_{\text{best}})}{N_{\text{free}}}} = \sqrt{\chi_r^2(\boldsymbol{x}_{\text{best}})}$$
$$\Rightarrow \quad \mathbf{C}_{\boldsymbol{x}_{\text{best}}} \approx \alpha^2 \left[ \left[ \frac{\partial \boldsymbol{m}}{\partial \boldsymbol{x}}(\boldsymbol{x}_{\text{best}}) \right]^{\text{T}} \cdot \mathbf{C}_r^{-1} \cdot \left[ \frac{\partial \boldsymbol{m}}{\partial \boldsymbol{x}}(\boldsymbol{x}_{\text{best}}) \right] \right]^{-1}$$





### **Errors on fitted parameters: rescaling**

- The model is not so good (assumption):
  - $\chi^2$  is bad (>>  $N_{\rm free}$ )
  - errors on parameters may be good (only statistics) !

$$\chi^2(\boldsymbol{x}_{\text{best}}) = \sum_{i=1}^{N_{\text{data}}} \frac{r_i^2(\boldsymbol{x}_{\text{best}})}{\sigma_i^2} \gg N_{\text{free}}$$

- Errors on parameters could increase when the model does not fit !
- How ?
  - with  $\chi^2$  statistics





## Rescaling using $\chi^2$ statistics

- The model is not so good (assumption): •
  - $\chi^2$  is bad (>>  $N_{\text{free}}$ )
  - errors on parameters may be good (only statistics) !

$$\chi^2(\boldsymbol{x}_{\text{best}}) = \sum_{i=1}^{N_{\text{data}}} \frac{r_i^2(\boldsymbol{x}_{\text{best}})}{\sigma_i^2} \gg N_{\text{free}}$$

we look for

$$\alpha \text{ for } \alpha \text{ such that:} \qquad \sum_{i=1}^{N_{\text{data}}} \frac{r_i^2(\boldsymbol{x}_{\text{best}})}{(\alpha \sigma_i)^2} = N_{\text{free}}$$
$$\alpha = \sqrt{\frac{\chi^2(\boldsymbol{x}_{\text{best}})}{N_{\text{free}}}} = \sqrt{\chi_r^2(\boldsymbol{x}_{\text{best}})}$$

$$\Rightarrow \mathbf{C}_{\mathbf{x}_{\text{best}}} \approx \alpha^2 \left[ \left[ \frac{\partial \mathbf{m}}{\partial \mathbf{x}}(\mathbf{x}_{\text{best}}) \right]^{\mathrm{T}} \cdot \mathbf{C}_{\mathbf{r}}^{-1} \cdot \left[ \frac{\partial \mathbf{m}}{\partial \mathbf{x}}(\mathbf{x}_{\text{best}}) \right] \right]^{-1}$$



 $\Rightarrow$ 

#### Model fitting principle



CRAL



## **Outline of the optimization**

- Needs
  - Minimize (iteratively!)  $\chi^2(\mathbf{x})$  (sum of squares)
  - Non-linear, non-convex
- Local optimization with Newton method
  - step from a local expansion at second order
    - need of gradients (Jacobian matrix)
    - need of second derivatives (Hessian matrix)
  - but step may be too long
    - outside region where quadratic approximation is valid
- Control of the length of the step
  - add a constrain that deforms the cost function
- Levenberg-Marquardt algorithm
  - minimize a sum of squares
  - only need gradients
    - finite differences are ok
  - Hessian is approximated
    - we only keep product of derivatives

Newton step may be too long



#### => We are looking for a local minimum



## Local optimization with Newton method

Second order expansion of the "cost function" we want to minimize  $\bullet$ 

$$f(\boldsymbol{x} + \delta \boldsymbol{x}) = f(\boldsymbol{x}) + \delta \boldsymbol{x}^{\mathrm{T}} \cdot \boldsymbol{g}(\boldsymbol{x}) + \frac{1}{2} \delta \boldsymbol{x}^{\mathrm{T}} \cdot \mathbf{H}(\boldsymbol{x}) \cdot \delta \boldsymbol{x} + o(||\delta \boldsymbol{x}||^{2})$$

where

$$g(\mathbf{x}) \equiv \nabla f(\mathbf{x}) \qquad g_i(\mathbf{x}) = \frac{\partial f(\mathbf{x})}{\partial x_i} \qquad \text{(gradient)}$$
$$\mathbf{H}(\mathbf{x}) \equiv \nabla \nabla f(\mathbf{x}) \qquad H_{i,j}(\mathbf{x}) = \frac{\partial f(\mathbf{x})}{\partial x_i \partial x_j} \qquad \text{(a.k.a. Hessian matrix)}$$

Local quadratic approximation around *x*. ullet

$$f(\mathbf{x} + \delta \mathbf{x}) - f(\mathbf{x}) \approx q(\delta \mathbf{x}) \equiv \delta \mathbf{x}^{\mathrm{T}} \cdot \mathbf{g}(\mathbf{x}) + \frac{1}{2} \delta \mathbf{x}^{\mathrm{T}} \cdot \mathbf{H}(\mathbf{x}) \cdot \delta \mathbf{x}$$

Optimal step

$$\delta \boldsymbol{x}_{\text{quad}} = \arg\min_{\delta \boldsymbol{x}} q(\delta \boldsymbol{x}) = -\mathbf{H}(\boldsymbol{x})^{-1} \cdot \boldsymbol{g}(\boldsymbol{x})$$

+ Method to prevent too large steps •

 $g(x) \equiv$ 

- at each step, reduce the "*trust region*" if quadratic approx is not good



#### Levenberg-Marquardt method

• Same ideas, but made specific to  $\chi^2(x)$  function

$$f(\mathbf{x}) = \chi^2(\mathbf{x}) = \sum_{i=1}^{N_{\text{data}}} e_i^2(\mathbf{x}) \quad \text{with} \quad e_i(\mathbf{x}) = \frac{d_i - m_i(\mathbf{x})}{\sigma_i}$$

• Expressions of gradient and Hessian matrix

$$g_{k}(\boldsymbol{x}) = \frac{\partial f}{\partial x_{k}}(\boldsymbol{x}) = 2 \sum_{i=1}^{N_{\text{data}}} \frac{\partial e_{i}(\boldsymbol{x})}{\partial x_{k}} e_{i}(\boldsymbol{x})$$
$$H_{k,l}(\boldsymbol{x}) = \frac{\partial f(\boldsymbol{x})}{\partial x_{k} \partial x_{l}} = 2 \sum_{i=1}^{N_{\text{data}}} \frac{\partial e_{i}(\boldsymbol{x})}{\partial x_{k}} \frac{\partial e_{i}(\boldsymbol{x})}{\partial x_{l}} + 2 \sum_{i=1}^{N_{\text{data}}} \frac{\partial e_{i}(\boldsymbol{x})}{\partial x_{k} \partial x_{l}} e_{i}(\boldsymbol{x})$$

• + Approximation of Hessian matrix

$$H_{k,l}(\boldsymbol{x}) \approx 2 \sum_{i=1}^{N_{\text{data}}} \frac{\partial e_i(\boldsymbol{x})}{\partial x_k} \frac{\partial e_i(\boldsymbol{x})}{\partial x_l}$$

- + Method to prevent too large steps...
- + Method to take bounds into account...



#### Summary on theory

- OI-FITS data
  - with errors on data
- model of object ↔ model of data
- assumption of Gaussian statistics of residuals
- assumption of statistical independency of data
  - not really true in real world
- $\chi^2$  law
  - assume fitted model is good
  - sharp statistics
  - use reduced  $\chi^2$  for comparing two models on same data
- errors on parameters
  - estimated from errors on data, rescaled for systematic errors
  - correlations of parameters are estimated (and they must be)
- Optimization
  - Local minimization
  - Need of gradients only (finite differences is ok, **but beware at parameter scales**)



## **Digression on correlations of data**



#### **Appearance of independence**



- simulated data
- model is perfect
- model is outside the error bars (1 sigma) for 32% of the data



- easier to compare data with various error bars
- show the true weight of data

#### Beware : only one realization here !

M. Tallon, I. Tallon-Bosc, Eric Thiébaut

10th VLTI summer school – virtual – June 7-18, 2021



## Data with adjacent correlations: 50%





- average of adjacent points
- => 50% correlation coefficient, only between adjacent points.
- Similar effect as spectral correlations in real data
- more alignments of successive points
- less dispersion of residuals

Beware : only one realization !



### Data with adjacent correlations: 70%



20 ××

20

- correlation coefficient:
  - 70% between adjacent points.
  - -25% with next points
- similar effect as (more) spectral correlations in real data
- yet more alignments of successive points
- less dispersion of residuals

Beware : only one realization !



#### Data with global correlations: 70%



- 70% correlation between any points => more correlations
- Similar effect as noise on normalization (incoherent flux, calibrator)
- Less dispersion of residuals

Beware : only one realization !



#### **Examples on real data**





#### **Summary on correlation**

- Several ways to get correlated data
- When assuming independent data, correlations make  $\chi^2$  smaller
- Thus don't trust  $\chi^2$ , confidence level, etc.
  - can be used to compare different models (reduced  $\chi^2$ ) or assess the progress of the fit.
  - difficult to use to accept or rule out a model.



## LITpro model fitting software for optical interferometry

CRAL: M.Tallon, I. Tallon-Bosc, F. Soulez

IPAG: G. Mella, H. Beust, L. Bourgès, G. Duvert

CRAL, Lyon France — IPAG, Grenoble, France

M. Tallon, I. Tallon-Bosc, Eric Thiébaut

10th VLTI summer school - virtual - June 7-18, 2021



## What is LITpro ?

- Parametric model fitting software for interferometry
  - Conceived and developed up-to-now at CRAL in Lyon
  - Graphical User Interface developed at JMMC (Jean-Marie Mariotti Center)
  - Maintained and improved by the "model-fitting" group at JMMC (several labs in France)
- Aim: "exploit the scientific potential of existing interferometers", e.g. VLTI
- Use of OIFITS standard for data
- Complementary to image reconstruction
  - Sparse (u,v) coverage
  - Model fitting extracts measured quantities
  - Image reconstruction may help to identify models
  - Fitted model as a first guess for image reconstruction



## Leading requirements of LITpro

- Accessible to "general users" + flexible for "advanced users"
  - Opposite needs:
    - General users want simplicity (stepping stone)
    - Advanced users want a powerful tool (pioneering work)
  - Exchanges:
    - general users  $-(needs) \rightarrow advanced users$
    - general users <---(training)--- advanced users
  - Progress must benefit to everybody (share experiences)
- Concentrate on the model of the object
  - Easy implementation of new models.
  - Only need to compute the Fourier transform of the object specific intensity on given coordinates  $(u, v, \lambda, t)$



## Leading requirements $\Rightarrow$ implementation

- Accessible to astronomers + flexible for advanced users
  - flexible  $\Rightarrow$  high level language (*Yorick*)
    - easy modifications and adds in the software
    - "expert layer"
  - accessible  $\Rightarrow$  GUI
    - new abilities exposed once they are validated in the "expert" layer
- Concentrate on the model of the object
  - From Fourier transform of the object:
    - Modeled data (interferometric, spectroscopic, photometry, ...)
    - Images
  - LITpro also provides
    - Modeling builder (with GUI or filling a form)
    - Models of data
    - Fitter "engine"
    - Tools for analysis

M. Tallon, I. Tallon-Bosc, Eric Thiébaut

10th VLTI summer school - virtual - June 7-18, 2021



#### Types of data

- OIFITS
  - Squared visibilities (VIS2)
  - Complex visibilities (VISAMP, VISPHI)
  - Bispectrum (T3AMP, T3PHI)
- Others
  - Spectral Energy Distribution (dispersed fringes mode)
  - Photometry (see example)



- ...



• Through the GUI



#### **Fitting process**

- Levenberg-Marquardt algorithm (modified)
  - Combined with a Trust Region method
  - Bounds on the parameters
  - Partial derivatives of the model by finite differences
- Coming improvement...
  - Genetic fitter (global minimum)
  - Interface with OImaging (image reconstruction)
  - Other fitters (for global search)
  - Improved algebra for building object models

\_ …



#### Implementation of the GUI

| 📉 ModelFitti    | ng V1.   | 0.11.beta                                                                                                  |                                    |  |  |  |  |  |
|-----------------|----------|------------------------------------------------------------------------------------------------------------|------------------------------------|--|--|--|--|--|
| File Edit Ad    | vanced   | Help                                                                                                       |                                    |  |  |  |  |  |
| New model       | Ctrl-N   |                                                                                                            |                                    |  |  |  |  |  |
| Load model      | Ctrl-L   | Settings panel                                                                                             |                                    |  |  |  |  |  |
| Save model      | Ctrl-S   | Oifile list                                                                                                |                                    |  |  |  |  |  |
| Quit            | Ctrl-Q   | File[/home/mfgui/SPIE08/Obj1.fits]                                                                         | File[/home/mfgui/SPIE08/Obj1.fits] |  |  |  |  |  |
|                 |          | File[/home/mfgui/SPIE08/Obj1Second.fits]                                                                   |                                    |  |  |  |  |  |
|                 |          | Load oifiles                                                                                               |                                    |  |  |  |  |  |
|                 |          | Target list                                                                                                |                                    |  |  |  |  |  |
|                 |          | Target[BSC1948]<br>Target[TARGET]                                                                          |                                    |  |  |  |  |  |
|                 |          | Add new target BSC1948                                                                                     | emove                              |  |  |  |  |  |
|                 |          | Fitter setup                                                                                               |                                    |  |  |  |  |  |
|                 |          | standard                                                                                                   | -                                  |  |  |  |  |  |
|                 |          | User info:                                                                                                 |                                    |  |  |  |  |  |
|                 |          | Created on Fri Jun 20 10:20:05 CEST 2008 by ModelFitting GUI rev. 1.0.11.beta<br>i can place some comments |                                    |  |  |  |  |  |
| R               | un nt    |                                                                                                            |                                    |  |  |  |  |  |
| Status : New mo | odel rea | dy for modifications                                                                                       |                                    |  |  |  |  |  |

- Implemented in JAVA
  - Web service
  - Links with other services (JMMC)
    - Virtual Observatory
    - Data explorer
    - User feedback
    - ...
- GUI just tells "expert layer" (*Yorick*) what to do
- First public release: October 2009



#### Work in progress

- LITpro
  - First public release Octobre 2009
- High in the list for near future
  - Easy implementation of "user models"
  - Search for global minimum of  $\chi^2$
  - Read spectrum in OIFITS2
  - Functions for multichromatic modeling (e.g. dynamics)
  - Cooperation between Image reconstruction and Model fitting



## **Adventure of model fitting**

- Local minimum
  - example of an uniform disk
- Observe your data... the Guru way



- useful for initial guess (local minimum)
- Degeneracies
  - on the total energy
- Example of a "heterogeneous" model-fitting



#### **Beware of local minima !**



- local minima exists even for a uniform disk, depending on data
- what to do ?
  - change first guess
  - cuts in  $\chi^2$  sub-spaces
  - use bounds
  - do not forget the low frequencies (or just confirm what we already know...)

M. Tallon, I. Tallon-Bosc, Eric Thiébaut

10th VLTI summer school — virtual — June 7-18, 2021



#### **Observe your data !**



Modulation = binary (or >2 components)



#### **Observe your data !**



- Starting from a good first guess may be decisive -

M. Tallon, I. Tallon-Bosc, Eric Thiébaut

10th VLTI summer school - virtual - June 7-18, 2021



#### Binary with what ?

44



M. Tallon, I. Tallon-Bosc, Eric Thiébaut

10th VLTI summer school - virtual - June 7-18, 2021



#### Size of various object shapes



- $\Delta u$  : width at half maximum (rad<sup>-1</sup>)
- typical FWHM of the object : fwhm [mas]  $\sim 10^8 / \Delta u$
- gaussian is the smallest : fwhm [mas] ~ 0.6 x 10<sup>8</sup> / Δu





**Degeneracy on total energy** 

- this degeneracy does not change  $\chi^2$
- huge errors because of no curvature of  $\chi^2(\mathbf{x}_{best})$  for i1+i2
- this prevents reading the values of i1 and i2



..

.

#### Degeneracy on total energy: a solution

• FAQ:

..

- We could construct a normalized model !
- Yes, but we want to combine all sorts of functions...
- We could combine normalized functions !
- Not always possible ! Ex: disk with constant amplitude (spot on a star)
- When total energy is not fixed by the data, we add this constraint:

$$\chi^2_{\star}(\boldsymbol{x}) = \chi^2(\boldsymbol{x}) + N_d \left( \frac{\sum_i \Delta \lambda_i \ \widetilde{O}(\boldsymbol{x}, \boldsymbol{u}, \lambda_i, \dots) \Big|_{\boldsymbol{u}=0}}{\sum_i \Delta \lambda_i} - 1 \right)^2$$

This drives total energy to unity

- But the added term MUST BE ZERO at the end of the fit !
  - If not:  $\chi^2$  is changed and quantities are wrong !
- Other degeneracies in practice
  - translation of the map (unless phase reference)
  - symmetries if no phase



#### **Degeneracy on total energy: solved**

Final values for fitted parameters and standard deviation: i1 = 0.83203 +/- 0.0812 i2 = 0.16797 +/- 0.0164 x = -6.6657 +/- 0.00441 mas y = 20.08 +/- 0.00631 mas

Chi2: initial= 7.376e+04 - final= 1983 - sigma= 14.2127 reduced Chi2: initial= 730.3 - final= 19.63 - sigma= 0.14072 Number of degrees of freedom = 101

--- Correlation matrix --i2 i1 х У i10.00021 0.00058 1 1 i2 1 -0.0011 -0.0029 1 x 0.00021 -0.0011 -0.441 0.00058 -0.0029 -0.44 v 1

.





#### Example: chromatic model + heterogeneous data / 1

Perrin et al, A&A 426, 279, 2004

 $I(\lambda, \theta) = B(\lambda, T_{\star}) \exp(-\tau(\lambda)/\cos(\theta))$  $+B(\lambda, T_{\text{layer}}) \left[1 - \exp(-\tau(\lambda)/\cos(\theta))\right]$ 

for  $\sin(\theta) \leq \emptyset_{\star} / \emptyset_{\text{layer}}$  and:

 $I(\lambda, \theta) = B(\lambda, T_{\text{layer}}) \left[ 1 - \exp(-2\tau(\lambda)/\cos(\theta)) \right]$ 

- Why this example in particular ?
  - Fitting procedure is difficult
    - Need to improve procedures for "general users" (accessible ?)
    - How LITpro performs ?
  - Fitting interferometric + photometric data
    - Assess how it can help the fitting process



Perrin et al, A&A 426, 279, 2004

- squared visibilities : 4 sub-bands in K band (IOTA)
- magnitudes : J, H, K, L bands (Whitelock et al 2000)
- Difficulty: T<sub>\*</sub> and T<sub>L</sub> coupled (no constrain on total flux from interferometric data)

M. Tallon, I. Tallon-Bosc, Eric Thiébaut

10th VLTI summer school — virtual — June 7-18, 2021





## Perrin et al. fitting procedure

- 1)  $(R_*,R_L)$  from gridding
  - fit all other parameters from fixed sampled values (R<sub>\*</sub>,R<sub>L</sub>)
  - arbitrary initial values of other parameters
  - =>  $(R_*, R_L)$  fixed
- 2)  $(T_*, T_L)$  from gridding + intersection with K photometry
  - No use of the other bandwidths
- 3) Fit the 4 optical depths from fixed other parameters
- 4) Compare/check photometry with other bandwidths: J, H, L.



## Simultaneous fitting of all the data





- 1) Overall size of the object ?
  - Radius of uniform disk: 18 mas
- 2) Overall temperature for this disk size ?
  - For an uniform disk: 1540K
- 3) Fit from this initial values
  - $R_*=18 \text{ mas}, T_*=T_L=1540 \text{ K}$
  - Initial values of optical depths set to zero => uniform disk

•

May be useful (and reassuring) to use physical arguments for the first guess...



#### **Comparison of results**

|                    |                               |            | Fit with relative               |         |                 |                |       |            |                |         |  |  |
|--------------------|-------------------------------|------------|---------------------------------|---------|-----------------|----------------|-------|------------|----------------|---------|--|--|
| Parameter          | Perri                         | n et al.   | Simultaneo                      | ous fit | photor          | netry          |       | Fit with   |                |         |  |  |
| $R_{\star}$ (mas)  | 10.94                         | $\pm 0.85$ | $11 \pm 0.$                     | 13      | 11 ±            | 0.19           | _ /   | relative   | e photon       | netrv.  |  |  |
| $R_{\rm L}$ (mas)  | 25.00                         | $\pm 0.17$ | $25.4 \pm 0$                    | .16     | 25.4 ±          | 0.18           |       | like the   | iseD ai        | iven hv |  |  |
| $T_{\star}$ (K)    | (K) $3856 \pm 119$            |            | ) $3856 \pm 119$ $3694 \pm 113$ |         | 113             | 3778 ± 163     |       |            | an antical     |         |  |  |
| $T_{\rm L}$ (K)    | $T_{\rm L}$ (K) 1598 ± 24     |            | $1613 \pm 35$                   |         | 1681 ± 174      |                |       | an oplical |                |         |  |  |
| $	au_{2.03}$       | $\tau_{2.03}$ 1.19 ± 0.01     |            | $1 \pm 0.14$ 0                  |         | $0.9 \pm$       | $0.9 \pm 0.35$ |       |            | interferometer |         |  |  |
| $	au_{2.15}$       | $\tau_{2.15}$ $0.51 \pm 0.01$ |            | $0.42 \pm 0$                    | .08     | $0.36 \pm 0.17$ |                |       |            |                |         |  |  |
| $	au_{2.22}$       | $\tau_{2.22}$ $0.33 \pm 0.01$ |            | $0.27 \pm 0$                    | .05     | $0.23 \pm 0.11$ |                |       |            |                |         |  |  |
| $	au_{2.39}$       | 1.37                          | $\pm 0.01$ | $1.2 \pm 0.1$                   | .13     | $1.08 \pm$      | 0.32           |       |            |                |         |  |  |
| $\gamma$           |                               | _          | _                               |         | $0.9 \pm 0.2$   |                | _     |            |                |         |  |  |
|                    |                               |            |                                 |         |                 |                |       |            |                |         |  |  |
| Correlation matrix |                               |            |                                 |         |                 |                |       |            |                |         |  |  |
|                    |                               | R_1        | Rs_ratio                        | T_1     | T_s             | tau1           | tau2  | tau3       | tau4           |         |  |  |
|                    | R_1                           | 1          | -0.66                           | -0.36   | 0.14            | 0.21           | 0.17  | 0.16       | 0.13           |         |  |  |
| Rs_ratio -0.6      |                               | -0.66      | 1                               | 0.71    | -0.6            | -0.67          | -0.67 | -0.66      | -0.62          |         |  |  |
|                    | T_1                           | -0.36      | 0.71                            | 1       | -0.74           | -0.94          | -0.93 | -0.93      | -0.92          |         |  |  |
|                    | T_s                           | 0.14       | -0.6                            | -0.74   | 1               | 0.91           | 0.91  | 0.92       | 0.92           | •       |  |  |
|                    | tau1                          | 0.21       | -0.67                           | -0.94   | 0.91            | 1              | 0.99  | 0.99       | 0.99           |         |  |  |
|                    | tau2                          | 0.17       | -0.67                           | -0.93   | 0.91            | 0.99           | 1     | 0.99       | 0.99           |         |  |  |
|                    | tau3                          | 0.16       | -0.66                           | -0.93   | 0.92            | 0.99           | 0.99  | 1          | 0.99           |         |  |  |
|                    | tau4                          | 0.13       | -0.62                           | -0.92   | 0.92            | 0.99           | 0.99  | 0.99       | 1              |         |  |  |

M. Tallon, I. Tallon-Bosc, Eric Thiébaut

10th VLTI summer school - virtual - June 7-18, 2021



#### **Conclusions on the adventure**

- Local minima even with uniform disk
  - cuts in  $\chi^2$  space
  - change first guess
  - check  $\chi_r^2$  if variations are significant
- Model-fitting algorithm has no brain (yet!)
  - use yours: look carefully at the data: (u,v) coverage, baselines
- Degeneracies may appear
  - check covariances of parameters
  - check ON/OFF normalization of total energy
- Quality of the fit / model
  - $-\chi^2$
  - understand errors *and correlations* on parameters
  - various plots



## **Ready for the practice?**



M. Tallon, I. Tallon-Bosc, Eric Thiébaut

10th VLTI summer school - virtual - June 7-18, 2021



## Your road map: 5 (+1) exercises

- 1. Fit of a simple model on one file (Arcturus)
  - explore the software
  - easy fits, easy problem
- 2. Fit with parameter sharing on several files (Arcturus)
  - more evolved model
- 3. Fit with degeneracies (binary)
  - explain them !
- 4. Fit on AMBER data
  - you are alone (almost)
- 5. Fit of a star + environment with chromatic artefacts
- 6. ... additional optional exercises