Astrometric Methods

Sabine Reffert
Landessternwarte Heidelberg, Germany

Amongst others, this talk covers:

- Relative vs. Absolute Astrometry
- Ground vs. Space
- single Telescope vs. Interferometer

What is Astrometry?

- Oldest subfield of Science (note: not just Astronomy!)
- Astrometry is about measuring positions of objects
- ... as a function of time
- ... with ultrahigh precision
- Astrometry is also about establishing a suitable coordinate system for those measurements

Astrometry is the basis of Astronomy

THE ASTRONOMICAL PYRAMID

ILLUSTRATING THE INTERDEPENDENCE OF THE VARIOUS AREAS OF STUDY

GET RACK TO EASICS -- sUPPORT ASTROMEIRY
circulated ca. 1974 by Ron Probst at UVa

Why is it so difficult?

- Measuring positions sounds easy!
- Possible even without instruments:

(1) It's difficult, because...

...everything on the sky moves, no fixed reference point!

(2) It's difficult, because...

... those motions can be quite complicated!

... and that was just the simplest case ...

- if it's a binary or a star with a planet, the motion would look like this:

(3) It's difficult, because...

 motion of the Hyades over 60000 years
credit: M. Perryman \& J. De Bruijne

- required precision: milli- or micro-arcseconds
- 1 mas corresponds to the growth of a human hair in 10 seconds as viewed from a distance of about 10 m !

... those motions are tiny!

(4) It's difficult, because...

Earth Rotation

CREDIT: C.J.HAMILTON

... the Earth (or a satellite) will move, too!

(5) It's difficult, because...

we are trying to measure tiny angles from the surface of a spinning gyroscope!
... the Earth axis will not be fixed, either!

Putting it all together almost makes it look impossible:

observing this
r from this

CREDIT: D. ELLISON, JPL/NASA

Can it work? - YES!!!

How do we make it work?

1. everything on the sky moves
--> establish a local or global reference system
(sometimes, relative astrometry in a small field is enough)
2. motions are tiny
--> clever measurement techniques
(e.g. transit circles, space astrometry, interferometry)
3. Earth moves
--> meaure Earth movement with high precision and remove (VLBI, lunar laser ranging, etc.)

Transit (Meridian) Circles

- basic astrometric instrument for centuries!
- the transit (upper culmination) of star is measured:
right ascension is equal to sidereal time during transit of the meridian
declination is given by latitude of the observer plus/minus the (measured) zenith distance

CREDIT: J. KOVALEVSKY, MODERN ASTROMETRY
remember: the local meridian is the great circle passing through north and the celestial pole!

Relative Astrometry with a Single Telescope

- classical approach
- with a single telescope, one repeatedly takes an image of the interesting region over the course of years
- works with photographic plates or CCDs
- measure position of a target star as a function of time in the local reference frame of surrounding (background) stars
- often, target is much closer than reference stars, so proper motion and parallax will be measurable

Data Reduction

- take image
- flat-field, remove bias and bad pixels
- label your reference stars and measure their positions!

Simple Centroiding

- a critical step in the data reduction is the precise measurement of the position of each object on the frame, i.e. the centroid of the image
- sometimes, if PSF is not symmetric, an elliptical Gaussian fit might not be good enough

- intensity distribution
-_ Gaussian Fit

Sophisticated Centroiding

Pixel Scale and Field of View (FOV)

- pixel scale: usually the precision of a measurement will scale with the pixel scale
- good centroiding algorithm will measure the centroid to about $1 / 50$ of a pixel
- at the same time, the FOV should be large to contain many not too faint reference stars

CTIO 0.9m (RECONS)	FOV: 8.6^{\prime}	$401 \mathrm{mas} /$ pixel	8.0 mas
FORS UT1 8.2 m	FOV: 3.3^{\prime}	$100 \mathrm{mas} /$ pixel	2.0 mas
Palomar 5m (STEPS)	FOV: 2^{\prime}	$61 \mathrm{mas} /$ pixel	1.2 mas

roughly achievable single measurement precision

Atmospheric Image Motion

- biggest complication on the ground: atmospheric image motion (turbulence etc.)
- typical atmospheric noise: 1 mas
- correlation timescale of order only 1 second
\longrightarrow can be overcome by taking many observations in a row and averaging
if more than 1 second in between images, atmospheric noise is uncorrelated and improves as sqrt(\dagger)

> 1 image - 1 mas accuracy 100 images -0.1 mas accuracy

Differential Chromatic Refraction (DCR)

- refraction itself is not a problem, as long as it's the same for all stars (remember, we only do relative astrometry)
- but if it's different for individual stars, it matters!
- differential chromatic refraction depends on the color of the star \rightarrow need to correct for that
- need temperature, pressure, humidity, and star color
- easier to correct for smaller bandpass
-> use narrow filter, if possible
- also, size of DCR wavelength dependent (smaller in red than in the blue)
- depending on the particulars of the observing program, DCR is often the limiting factor in for ground-based astrometry!

Plate Solutions

- next, we want to combine all our measurements over several epochs of observations
- in order to do that, we have to correct for possible variations in the focus and the CCD orientation (translation, rotation etc.)
- sometimes, coordinates will also depend on magnitude (magnitude equation)
- this is achieved with a plate solution, where certain parameters depending on the relative CCD orientation are solved in a large global solution of all frames

Example for a Plate Solution

$$
\begin{aligned}
& \xi=A x+B y+C \\
& \eta=D x+E y+F
\end{aligned}
$$

ξ, η : coordinates after transformation A, B, C, D, E, F : plate constants

A, E: scale (focus)
B, D: field rotation
C, F: translation

Note: this model does not include higher order terms dependent e.g. on distance from center of field (radial distortion), magnitude etc.

Finally: Relative Astrometry

- now, we have fully reduced everything on a common reference frame and can combine all measurements:

x measurements
_ model based on relative proper motion and relative parallax
note also the additional constraints set by the timing of the measurements!

From Relative to Absolute Astrometry

- if desired, one can finally try to convert relative astrometry into absolute astrometry
- this step is usually rather uncertain, and one might wish not to do it
- requires outside knowledge about reference frame objects, e.g. photometric or spectroscopic parallaxes, or statistical assumptions about the reference stars (e.g., random proper motions)

The Multichannel Astrometric Photometer

- completely different approach to relative astrometry, using a fine ruling and a mask with one photomultiplier per star
- Gatewood, Allegheny Observatory (Pittsburgh)
- grid is moved over the star field, gives 1-dim relative positions of stars in field
- accuracy achieved is around 1 mas

Principle of Hipparcos \& Gaia

- this is absolute astrometry now!
- survey missions scanning the whole sky and tying all measurements together into a common absolute reference frame
- totally different concept from relative astrometry with single telescope
- TDI mode (time delayed integration): exposure time is synchronized with satellite spin rate
- measurement is essentially a timing measurement (compare to transit circles!)

One strip with one Wave Front Sensor (WFS) and two Basic Angle Monitoring (BAM) CCDs

Two strips of Sky Mapper (SM) CCDs. The first one sees the stars coming from the first telescope, the second one sees the stars coming from the second telescope

Nine strips for Astrometric measurements. In the ninth strip, the second WFS is implemented ,

0,930 m

Two strips for, respectively, blue and red photometric measurements

Three strips of four CCDs for Radial
Velocity Spectrometer (RVS) measurements. The CCDs are operated in a three-lines binned mode, one CCD of the first strip excepted.

ก
$\stackrel{\square}{\square}$

RV
\square

Gaia

 Focal
Gaia Scanning Law

COPYRIGHT: ESA
CREDIT: F. MIGNARD
Gaia will be operated from around L2, staying out of the Earth shadow for at least 6 years

Spinning Satellite

- scans the sky continuously
- constant angle to the Sun
- two fields of view! (106.5 deg)
- scannning speed is 60"/sec
-> 6 hours/great circle
- great circles about 1 deg apart
- on average, each star is observed 70 times over 5 years

Measurement Principle

one region observed in several scans

Hipparcos Data Reduction Steps

1. Great Circle Reduction

estimating the relative positions of all stars in one great circle (typically 2000) using the primary observables (for Hipparcos intensities and phases of a signal modulated with a grid) as well as attitude information
strong closure condition exists (circle must add up to 360 deg!)

2. Sphere Solution

interconnection and locking
combining data from a larger number of great circles (typically a few months), the zero points of the relative positions on each great circle can be estimated, turning them into absolute, but still one-dimensional positions

3. Astrometric Catalog

modelling all absolute positions for one star (typically about 100 1-dim observations) in terms of all five astrometric parameters - iteration required!

Hipparcos Reference System

- this procedure allows Hipparcos to establish its own reference system
- the zero point for that reference system is arbitrary, but if you know the position of just one star you know all others
- Hipparcos system is linked to extragalactic reference frame (ICRF, defined by the positions of several hundred extragalactic radio sources) through auxiliary, groundbased observations of a handful of quasars
- the axes of the two systems are aligned to about 0.6 mas, and relative rotation of the two systems is less than 0.25 mas/year

Single Star Interferometry

d: delay
measured
B: baseline
measured using
known star
positions
α : position
to be determined

CREDIT: R. GEISLER

$$
d=B \sin (\alpha)
$$

Dual Star Interferometry: PRIMA

CREDIT: R. GEISLER

$$
d=B \sin (\alpha) \rightarrow \Delta d=B \sin (\Delta \alpha)
$$

PRIMA

- with PRIMA, one can measure 1-dim relative star positions with an accuracy of about 10 microarcseconds
- large baselines help, have to be calibrated with baseline calibration stars
- stars have to be located within the isoplanatic patch (10-20" in K-band)
- large effort to select suitable target and reference stars (magnitude limitations)
- many measurements over a long time baseline needed to be scientifically useful

Space Interferometry Misson: SIM Planetquest

- phase-referenced interferometry, just like PRIMA
- however, SIM does absolute astrometry by establishing its own reference frame
- it will repeatedly observe a grid of several thousand stars, into which all other measurements are tied

global grid

local grid

Astrometric Methods Overview

_ relative astrometry
_ absolute astrometry

Collection of Astrometric Measurement Principles

- Timing Methods
- Transit Circles
- Scanning Satellites (Hipparcos, Gaia)
- Imaging
- measuring image centroids (many ground-based projects)
- Grid/Ruling
- using a fine ruling or a grid (Hipparcos, MAP)
- Interferometry
- using the resolution of a wavelength to make exact position measurements (PRIMA, SIM)

Summary

This talk addressed the questions ...

- ... why astrometry is complicated (remember the movies from the beginning!)
- ... how positions can be measured precisely
(relative vs. absolute astrometry, ground vs. space, single telescope vs. dual telescopes)

PRIMA Astrometric Data Reduction

Sabine Reffert
Landessternwarte Heidelberg, Germany

This talk explains:

- the various astrometric effects which can be present in relative astrometric data, at mirco-arcsecond accuracy
- how to take those unwanted things out of the data!

Differential Delays

- for the following, it is enough to think of the differential delays $\Delta \mathrm{d}$ which we measure as equivalent to a projected angular separation between two stars on the sky
- more precisely, we do not determine the angular separation, but the separation vector $\Delta \vec{s}$:

$$
\begin{aligned}
& \Delta \vec{s}=\vec{s}_{2}-\vec{s}_{1} \\
& \quad \Delta d=\Delta \vec{s} \cdot \vec{B}
\end{aligned}
$$

\vec{B} : baseline vector

Rotating Baseline

- the differential delay is recorded during up to one hour
- of course, the baseline, projected on the sky, will rotate during that time
- when the differential delays are averaged, this rotation has to be taken into account:

$$
\begin{aligned}
\Delta d\left(t_{0}\right) & =\Delta \vec{s} \cdot \vec{B}\left(t_{0}\right) \\
\Delta d\left(t_{i}\right) & =\Delta \vec{s} \cdot \vec{B}\left(t_{i}\right)
\end{aligned}
$$

the effect can become quite large:
over 1 second, baseline rotates by 15 arcseconds compare directly to measurement accuracy of 10 micro-arcsecond!

Measurement Accuracy

we want to measure angular separation with an accuracy of 10 micro-arcseconds
$\Delta \vec{s}$ is of order $10^{\prime \prime} \approx 5 \cdot 10^{-5}$ radians
\vec{B} is of order $100-200 \mathrm{~m}$
Δd is thus of order 1 cm
if we measure the differential delay with 5 nm precision, ie. with $5 \mathrm{~nm} / 1 \mathrm{~cm}=5 \cdot 10^{-7}$ relative precision,
the angular separation will be accurate to
10 arcseconds $\cdot 5 \cdot 10^{-7}=5$ micro-arcseconds!

$$
\Delta d=\Delta \vec{s} \cdot \vec{B}
$$

Astrometric Effects

- the effects which we have to remove in the course of the data reduction are the following:
- aberration
- light time delay
- relativistic light deflection
- annual and diurnal parallax
- epoch transformations (proper motion etc.)
- as we have just seen, those corrections to the differential delays should be accurate to better than 1 mas

Observed Directions

s: observed unit direction vector
n : unit tangent vector to the light ray at $t=t_{\text {obs }}$
σ : unit direction of propagation at $\dagger=-\infty$
k : unit coordinate vector from source to observer
I: unit vector from barycenter to observer

observed: s
 want: I

Observed Directions

S
H aberration

- gravitational
light deflection
σ

finite source distance
k

I

Aberration

- aberration is caused by relative velocity of source and observer and the finite speed of light
- during the light travel time, the relative positions between observer and source change, and the light seems to be coming from a different direction than when it was emitted
- Newtonian theory: annual and diurnal aberration, due to the orbital motion of the Earth around the barycenter and Earth rotation, respectively
- relativistic theory: distinction no longer possible

Yearly Aberration

The size of the absolute effect is $20.5^{\prime \prime}$ maximum:

$$
a_{\text {year }}=k_{\text {year }} \cdot \sin \gamma
$$

where $k_{\text {year }}=v / c$ is the yearly aberration constant and y is the angle between the velocity of the Earth and the direction of the light coming from the star

How big is the relative effect?

$$
\Delta a_{\text {year }}=k_{\text {year }} \cdot\left(\sin \gamma_{1}-\sin \gamma_{2}\right)
$$

for a maximum assumed separation of target and reference star of $30^{\prime \prime}$, relative aberration can reach the oder of 3 mas and needs to be corrected for!
(6 mas over half a year, and 1.1μ as over half an hour)

Daily Aberration

The size of the daily effect is:

$$
a_{\text {day }}=k_{\text {day }} \cdot \sin \gamma
$$

where $k_{\text {day }}=0.32^{\prime \prime} \cos \phi$ is the daily aberration constant (ϕ is the latitude of the position of Earth) and γ is the angle between the velocity of the Earth and the direction of the light coming from the star

How big is the relative effect?

$$
\Delta a_{\text {day }}=k_{\text {day }} \cdot\left(\sin \gamma_{1}-\sin \gamma_{2}\right)
$$

for a maximum assumed separation of target and reference star of $30^{\prime \prime}$, relative daily aberration can reach 42μ as over one day, and 5.5μ as over half an hour!

Relativistic Aberration

Precise derivation needs to take into account relativistic addition of velocities:

$$
\sin \Delta \theta_{1}=\frac{(v / c) \sin \theta_{1}+1 / 2(v / c)^{2} \sin 2 \theta_{1} /\left(1+\gamma^{-1}\right)}{1+(v / c) \cos \theta_{1}} \quad \begin{aligned}
& \gamma=\sqrt{1-v^{2} / c^{2}} \\
& c: \text { speed of light }
\end{aligned}
$$

This is the correction of the direction to one of the stars due to aberration. The third order time is of the order micro-arcseconds.

$\overrightarrow{s_{1}}{ }^{\prime}$ true direction
$\overrightarrow{s_{1}}$ apparent (observed) direction
\vec{v} velocity of Earth
θ_{1} angle between ${\overrightarrow{s_{1}}}^{\prime}$ and $\overrightarrow{s_{1}}$
$\Delta \theta_{1}$ angle between ${\overrightarrow{s_{1}}}^{\prime}$ and \vec{v}

Light Time Delay

Because the distance of the two stars to us is changing by a different amount (difference in radial velocities), the light from the two stars was emitted at different times, and this time difference will change over time.
This, together with proper motion, results in a steady change of the observed angular separation.

Time delay is typically of the order of hours to years.
The resulting change in angular separation, depending on the proper motion, would typically be about 10-100 $\mu \mathrm{as}$, and of the order of 100 mas for the most extreme assumptions.

Size of Light Time Delay: Example

$\Delta \mathrm{V}_{\text {rad }}=50 \mathrm{~km} / \mathrm{s}, \Delta \mathrm{T}=5$ years
\Rightarrow After 5 years, the two stars are $8 \cdot 10^{9} \mathrm{~km}$ further apart than before. This corresponds to a light travel time of about 7 hours.
$\Delta \mu=500 \mathrm{mas} / \mathrm{yr}$
\Rightarrow In 7 hours, one star travels 400μ as with respect to the other. This is the change of their angular separation over 5 years due to light time delay.

Light travel time can also be thought of as an aberration component caused by the proper motion of the star.

Light Time Delay: Precise Formula

correction for one star:

$$
\Delta \vec{s}_{1}=\left(f_{1}-1\right) \overrightarrow{s_{1}}-f_{1} \zeta_{1}(t) \Delta T_{1} \vec{s}_{1}-f_{1} \vec{\mu}_{1}(t) \Delta T_{1}
$$

with:
$\Delta \vec{s}_{1}$: change in position due to light time delay
\vec{s}_{1} : apparent (observed) direction of star 1
f_{1} : f-factor, close to 1 , explained later
ζ_{1} : radial velocity of star 1 in proper motion units
ΔT_{1} : light travel time difference for star 1
μ_{1} : proper motion of star 1

Light Time Delay: Precise Formula

correction in angular separation:

$$
\begin{aligned}
\Delta \vec{s}^{\prime}= & \Delta \vec{s}+\left(f_{2}-1\right) \overrightarrow{s_{2}}-f_{2} \zeta_{2}(t) \Delta T_{2} \vec{s}_{2}-f_{2} \vec{\mu}_{2}(t) \Delta T_{2} \\
& -\left(f_{1}-1\right) \overrightarrow{s_{1}}+f_{1} \zeta_{1}(t) \Delta T_{1} \vec{s}_{1}+f_{1} \vec{\mu}_{1}(t) \Delta T_{1} \\
\approx & \Delta \vec{s}+f_{1} \vec{\mu}_{1}(t) \Delta T_{1}-f_{2} \vec{\mu}_{2}(t) \Delta T_{2}
\end{aligned}
$$

the approximation reflects our earlier simple size considerations for light time delay to be dependent on proper motion and and light travel time difference!

Gravitational Light Deflection

Light is deflected in gravitational fields, and thus we have to correct observed positions if the observation is taking place close to a massive object.

The light is always deflected towards the massive body.

Gravitational Light Deflection

The general formula for relativistic light deflection is:

Ф: angle by which light is deflected M_{0}, R_{0} : mass and distance of massive object
$G, c: \quad$ gravitational constant, speed of light
ψ : angular separation between star and massive object as seen from observatory

Gravitational Light Deflection

Examples for the absolute effect in the grazing case:
symmetric mass distribution

Sun

Jupiter

Mars
$1.75^{\prime \prime}$
$1 \mu \mathrm{as}$
$240 \mu \mathrm{as}$
$0.2 \mu \mathrm{as}$

The differential effect is of course always much smaller!

Gravitational Light Deflection

For completeness, here is the formula for the differential effect:

$$
\Delta \vec{s}^{\prime}=\Delta \vec{s}+\phi_{2} \cdot \frac{\vec{s}_{2}-\vec{s}_{\circ}}{\left|\vec{s}_{2}-\vec{s}_{\circ}\right|}-\phi_{1} \cdot \frac{\vec{s}_{1}-\vec{s}_{\circ}}{\left|\vec{s}_{1}-\vec{s}_{\circ}\right|}
$$

Φ_{1}, Φ_{2} : absolute light deflection for star 1/2
$\Delta \vec{s}$: apprent angular separation
$\Delta \vec{s}^{\prime}$: corrected angular separation
$\Delta \vec{s}_{0}$: direction unit vector to massive body

For the Sun, the differential effect is always smaller than about 10 uas for typical PRIMA observations. For Jupiter, the differential effect reaches 10 has for separations around 1 deg.

Gravitational Light Deflection

Note that in order to precisely correct for the (differential) effect of gravitational light deflection, one needs accurate solar system body ephemerides!

This is usually available for the larger solar system bodies (planets and biggest satellites), but for minor bodies this is not always the case.

In unlucky circumstances, one could observe very close to a very small solar system body and not notice! This would introduce astrometric noise at the level of typically 1 has or less.

Parallax

 distance $[p c]=1000 /$ parallax [mas]

Diurnal Parallax

there even is a montly parallax due to the Moon!

Correcting for Parallax

Easiest to get rid of all parallaxes at the same time by using precise Earth ephemerides:

$$
\vec{r}=\vec{r}_{\mathrm{top}}+\vec{r}_{E}
$$

$\vec{r}_{\text {top }}$ is the observed, topocentric position,
 \vec{r}_{E} is the precise position of the Earth with respect to the solar system barycenter, and \vec{r} is the barycentric position which we want to calculate (as if we had observed from the solar system barycenter)

$$
\vec{r}=\rho\left(\begin{array}{c}
\cos \alpha \cos \delta \\
\sin \alpha \cos \delta \\
\sin \delta
\end{array}\right)
$$

α : right ascenscion
δ : declination
ρ : distance

Parallax Formula

Inserting everything into the simple equation from before, one gets for the corrections to be applied to right ascension, declination and distance:

$$
\begin{aligned}
\Delta \alpha \cos \delta & =\frac{x_{E}}{\rho} \sin \alpha-\frac{y_{E}}{\rho} \cos \alpha \\
\Delta \delta & =\left(\frac{x_{E}}{\rho} \cos \alpha+\frac{y_{E}}{\rho} \sin \alpha\right) \sin \delta-\frac{z_{E}}{\rho} \cos \delta \\
\Delta \rho & =-x_{E} \cos \alpha \cos \delta-y_{E} \sin \alpha \cos \delta+z_{E} \sin \delta
\end{aligned}
$$

Parallax Correction

in Angular Separation

Inserting the corrections for both stars, one gets:

$$
\Delta \vec{s}^{\prime}=\Delta \vec{s}+\left(\begin{array}{c}
-\Delta \alpha_{2} \sin \alpha_{2} \cos \delta_{2}-\Delta \delta_{2} \cos \alpha_{2} \sin \delta_{2}+\Delta \alpha_{1} \sin \alpha_{1} \cos \delta_{1}+\Delta \delta_{1} \cos \alpha_{1} \sin \delta_{1} \\
\Delta \alpha_{2} \cos \alpha_{2} \cos \delta_{2}-\Delta \delta_{2} \sin \alpha_{2} \sin \delta_{2}-\Delta \alpha_{1} \cos \alpha_{1} \cos \delta_{1}+\Delta \delta_{1} \sin \alpha_{1} \sin \delta_{1} \\
\Delta \delta_{2} \cos \delta_{2}-\Delta \delta_{1} \cos \delta_{1}
\end{array}\right)
$$

$\Delta \vec{s}$ observed angular separation
$\Delta \vec{s}^{\prime}$ angular separation corrected for parallax

Epoch Transformations

most obvious influence is the proper motion: due to relative proper motion of the two stars, angular separation will change
proper motion is a huge effect:
for nearby stars, it can reach 5000 mas/year, corresponding to about $10 \mu \mathrm{as} / \mathrm{minute}$!

for PRIMA, proper motion is thus easily noticeable over the course of a half hour observation!

Epoch Transformations

but the angular separation will also change due to radial velocity:
think of it as projection effect:
because the star at a later time is observed at a differenct position and different distance, its total space motion vector is projected differently on radial and tangential directions

space velocity vector

Epoch Transformations

if the barycentric coordinate vector to a star at time to is $\Delta \vec{s}_{0}$, at some other time t it will be

$$
\vec{s}(t)=\left[\vec{s}_{0}\left(1+\zeta_{0}\left(t-t_{0}\right)\right)+\vec{\mu}_{0}\left(t-t_{0}\right)\right] f
$$

where ζ_{0} is the radial velocity (in proper motion units) and $\vec{\mu}_{0}$ is the proper motion vector, both at time to
f is the so-called f-factor from before; it's a normalization factor, so that the result is a unit vector; its value is usually close to 1

Epoch Transformations

for the change in angular separation, we obtain by just plugging in the formula from before:

$$
\begin{aligned}
\Delta \vec{s}^{\prime}= & \vec{s}_{2}^{\prime}-\vec{s}_{1}^{\prime} \\
= & \Delta \vec{s}+\vec{s}_{2}\left(t_{0}\right)\left(f_{2}-1\right)+\vec{s}_{2}\left(t_{0}\right) f_{2} \zeta_{2}\left(t_{0}\right)\left(t-t_{0}\right)+\vec{\mu}_{2}\left(t_{0}\right) f_{2}\left(t-t_{0}\right) \\
& \quad-\vec{s}_{1}\left(t_{0}\right)\left(f_{1}-1\right)-\vec{s}_{1}\left(t_{0}\right) f_{1} \zeta_{1}\left(t_{0}\right)\left(t-t_{0}\right)-\vec{\mu}_{1}\left(t_{0}\right) f_{1}\left(t-t_{0}\right)
\end{aligned}
$$

with: $\Delta \vec{s}$ observed angular separation
$\Delta \vec{s}^{\prime}$ angular separation transformed to another epoch
includes corrections for perspective acceleration!

Epoch Transformations

In order to apply the epoch transformations correctly, we need very accurate parallaxes, proper motions and radial velocities (micro-arcsecond accuracy).

Fortunately, we need only the relative quantities with high accuracy, so that we can (and have to) determine those quantities directly from our PRIMA observations.

This means that we will need a lot of observations to determine all these parameters, and our data reduction will improve over time.

Correction for Rotating Baseline

$$
\Delta d=\Delta \vec{s} \cdot \vec{B}=|\Delta s| \cdot|B| \cdot \cos \theta
$$

highly time-dependent: angle θ due to Earth rotation, orbital motion, precession, nutation, polar motion
(|B| constant, $|\Delta \mathrm{s}|$ constant after astrometric corrections)
in order to correct for the rotating baseline, we need very precise models for the Earth rotation, as provided by the IERS (International Earth Rotation Service) based on VLBI measurements of polar motion etc.

Calculating the Rotated Baseline Vector

baseline vector \vec{B} needs to be converted from Earth-fixed system (ITRS) to space-fixed system (ICRS):

$$
[I C R S]=\mathcal{Q}(t) \mathcal{R}(t) \mathcal{W}(t)[I T R S]
$$

$Q(t), R(t)$ and $W(t)$ are the following rotation matrices:

$$
\begin{aligned}
\mathcal{Q}(t) & =\mathcal{R}_{3}(-E) \mathcal{R}_{2}(-d) \mathcal{R}_{3}(E) \mathcal{R}_{3}(s) \\
\mathcal{R}(t) & =\mathcal{R}_{3}(-\theta) \\
\mathcal{W}(t) & =\mathcal{R}_{3}\left(-s^{\prime}\right) \mathcal{R}_{2}\left(x_{p}\right) \mathcal{R}_{1}\left(y_{p}\right)
\end{aligned}
$$

E, d: coordinates of CIP in ICRS
s: position of CEO on equator of CIP
θ : Earth rotation angle
s^{\prime} : position of TEO on equator of CIP
x_{p}, y_{p} : coordinate of CIP in ITRS (polar motion)

CIP: Celestial Intermediate Pole R_{1}, R_{2}, R_{3} : rotation matrices around the 3 spatial directions

Take-Away Message

Reduction of Astrometric Data at the micro-arcsecond level tedious at times, but it can be done if you have all the required accurate auxiliary data:
\# accurate Earth position and velocity aberration, parallax, baseline rotation
\leftrightarrow micro-arcsecond relative parallax, proper motio from fit to data epoch transformations
\# absolute positions, proper motions, radial velocity, parallax parallax, epoch transformations, light time delay, all other corrections

ش ephemerides of solar system bodies relativistic light deflection

Literature:

good introductory book
Fundamentals of Astrometry
Kovalevsky \& Seidelmann, Cambridge University Press, 2004

Hipparcos Catalogue
epoch transformations
Vol 1: Introduction and Guide to the Data, ESA, 1997

A Practical Relativistic Model for Microarcsecond Astrometry
in Space
S. Klioner, AJ 125, 1580, 2003 application to GAIA

Microarcsecond Astrometry and Beyond...

Sabine Reffert
Landessternwarte Heidelberg, Germany

If you your astrometric measurement accuracy was better than 1 micro-arcsecond:

- Which additional steps in the data reduction would you have to take?
- Which additional phenomena would be present in your data?

Recap: Astrometric Effects

	absolute	differential
aberration	$20.5^{\prime \prime}$	3 mas
light time delay	typically $10-100$ uas, extreme 100 mas	same as absolute
gravitational light deflection	$1.75^{\prime \prime}$	typically 10 uas
parallax	772 mas	same as absolute
epoch transformations	up to $10^{\prime \prime} /$ year	same as absolute

Sub-Microarcsecond Data Reduction

For sub-mircoarcsecond accuracy, all needed input parameters would have to be of adequate precision:
\leftrightarrows positions, parallaxes, proper motions
\& Earth position and velocity
ش ephemerides of solar system bodies
The reduction steps would be the same as before.
The formulae for light time delay, parallax and epoch transformations are geometrically exact.
The formulae for aberration and gravitational light deflection had to be used in their relativistic forms already for microarcsecond astrometry.

Additional Astrometric Effects?

YES!

But before we get to those effects, consider the following:

Data $=$ Signal + Noise

Whether to call something a scientifically interesting astrometric signal or disturbing astrometric noise entirely depends on the measurement accuracy and the questions you ask. E.g., proper motion could either be an interesting quantity to measure in its own right, or disturbing when you look for the much smaller astrometric signature of a planet.

Additional Astrometric Effects

ش galactic orbits \rightarrow secular aberration
ش non-stationary gravitational potential
\leadsto lumpiness of gravitational potential
\sharp stellar surface structure
\leadsto gravitational waves
ش ...?

Galactocentric Acceleration

- stars in the Galaxy move on orbits around the galactic center
- circular velocity of Sun about $v=200-220 \mathrm{~km} / \mathrm{s}$, distance $r=8.5 \mathrm{kpc}$ from center
-> needs 250 Myears for one orbit, has made ≈ 20 orbits
- galactocentric acceleration $a=v^{2} / r$ for Sun is about $0.2 \mathrm{~nm} / \mathrm{s}^{2}$ or $6 \mathrm{~mm} / \mathrm{s} / \mathrm{yr}$
- Sounds small, but which effects does that introduce?

Galactocentric Acceleration

- barycenter of solar system is zero-point of our coordinate system
- if there is acceleration, it will lead to an apparent proper motion of quasars and other distant objects of the order of $4 \mu a s / y r$, independent of distance:

Galactocentric Acceleration

- it could also be viewed as secular aberration, because it is caused by an (unmodeled) motion of the observer
- alternatively, one could think about using a different coordinate system (with the center of the Galaxy as origin instead of the Sun)
- would required precise knowledge of velocity of Sun and its galactocentric distance

Signal or Noise?

Galactocentric Acceleration

- there is also a component due to peculiar motion of the Sun with respect to the local standard of rest (LSR)
- however, this motion is about $20 \mathrm{~km} / \mathrm{s}$, a factor 10 smaller than the circular velocity
- becomes relevant at sub-microarcsecond astrometric accuracy

Non-stationary Gravitational Potential

- on average the gravitational field of the Galaxy is constant, but on smaller scales, it is variable because objects move
- because light is bent in gravitational fields, this gives rise to a small random gravitational light deflection effect
- introduces astrometric jitter, similar to atmospheric seeing
- Sazhin (1996) estimates the astrometric jitter to have a characteristic amplitude of 1-2 μ as and a characteristic time scale of tens of years, but there are outliers with much larger astrometric jitter
astrometric catalogs at microarcsecond level have to be revised every 10-30 years!!!

Lumpiness of Gravitational Potential

- the gravitational potential is not smooth; there is structure stemming from spiral arms, molecular clouds, clusters, and possibly black holes
- they will all slightly change the apparent direction to a star through light bending
- examplel: Taurus cloud at 140 pc , assume mass of $2 \cdot 10^{5} \mathrm{M} \odot$
-> bends light by an additional 0.1μ as maximum
- example2: assume black hole at 10-100 pc, mass of 100 Mఠ
-> bends light by microarcseconds

difficult to correct for, introduces sub-microarcsecond astrometric jitter

Stellar Surface Structure

solar granulation

Stars have spots, plages, and granulation. This all introduces shifts in their photocenters.
rotating Sun

CREDIT: NASA

CREDIT: MSFC/NASA
sunspot with boiling granulation

Pulsation Patterns

$m=-4 p$-mode oscillation

CREDIT: R.H.D. TOWNSEND

Pulsations can also induce shifts in the photocenter of a star!
various non-radial pulation patterns

Typical Sizes of Astrometric Jitter

for a distance of 10 pc	lower limit (only from granulation)	upper limit (photometric variability)
early main-sequence	$0.03 \mu \mathrm{as}$	$12 \mu \mathrm{as}$
mid-late main-sequence	$0.01 \mu \mathrm{as}$	$1-3 \mu \mathrm{as}$
K giants	$5 \mu \mathrm{as}$	$20-50 \mu \mathrm{as}$
F supergiants	$10 \mu \mathrm{as}$	$0.4-2$ mas
M supergiants	$30-300 \mu \mathrm{as}$	10 mas

Simulations of Granulation

simulated red giant granulation

simulated astrometric jitter

at 10 pc , the amplitude is about $50 \mu \mathrm{as}$

Gravitational Waves

gravitational wave emitted by a rotating binary

CREDIT: K. THORNE (CALTECH), T. CARNAHAN (NASA GSFC)

- gravitational waves are periodic fluctuations in the curvature of spacetime
- so far only indirect confirmation of the existence of gravitational waves
- gravitational waves are emitted if a not spherically symmetric mass distribution is accelerated

Gravitational Waves

- gravitational waves passing over a telescope will cause a time-variable shift in the position of an observed object, i.e. an apparent proper motion
- angular displacement is of order h, the magnitude of the gravitational wave at the telescope
- observed coherently, for all sources on the sky
- current constraints on gravitational wave energy come from Big Bang nucleosynthesis and millisecond pulsar timing
- based on those, expected proper motions are smaller than $0.1 \mu a s / y r$ and $0.002 \mu a s / y r$, respectively

Gravitational Waves

- however, let's assume GAIA will measure 1 billion objects with an accuracy of $100 \mu \mathrm{~s} / \mathrm{yr}$, i.e. it would be sensitive to systematic motions of the order of 3 nano-arcsec
- this would place the tightest limit on gravitational wave energy ever obtained, at least in the follwing frequency band:
- if astrometric measurements are taken over a number of years T, one is sensitive to gravitational wave frequencies of $10^{-8}-10^{-11} \mathrm{~Hz}(1 / \mathrm{T})$
- so it's totally possible (although not likely)that GAIA will not only set the tightest limit, but for the first time detect gravitational waves directly

Summary: Size of Additional Effects

	astrometric jitter
galactic orbits	$4 \mu \mathrm{as} / \mathrm{yr}$
non-stationary gravitational potential	$\approx 1-2 \mu \mathrm{as}$
lumpiness of gravitational potential	$<1 \mu \mathrm{as}$
stellar surface structure	$0.01 \mu \mathrm{~ms}-10 \mathrm{mas}$
gravitational waves	$<0.1 \mu \mathrm{\mu as} / \mathrm{yr}$
$\ldots . . ? ? ?$	$? ? ?$

Astrometry: Practical Session

Sabine Reffert
Landessternwarte Heidelberg, Germany

In this session, you will:

- learn how to describe the photocenter motion of a star with an unseen companion
- fit an astrometric model to simulated, 2-dim astrometric measurements
- play a little bit with the program to get a feeling for the various effects and relevant numbers

Modeling Photocenter Motion

Assume that you have all 7 orbital parameters describing binary orbital motion:

- period P
- periastron time To
- eccentricity e
- longitude of periastron ω
- semi-major axis al

- inclination i
- ascending node Ω

How can you calculate $x(t)$ and $y(t)$ for all times, describing the photocenter motion?

Plane of Orbit and Tangential Plane

Kepler Equation

the first step is to solve the Kepler equation to determine the true anomaly:

$$
M=\frac{2 \pi t}{P}
$$

M: mean anomaly
transcendental
Kepler Equation

$$
M=E-e \cdot \sin E \quad \mathrm{E}: \text { eccentric anomaly }
$$

$$
\tan \frac{\nu}{2}=\sqrt{\frac{1+e}{1-e}} \cdot \tan \frac{E}{2}
$$

v: true anomaly

Elliptical Orbit

Kepler Equation

from the eccentric anomaly, one can calculate the timedependent factors $f_{x}(t)$ and $f_{y}(t)$:

$$
\begin{aligned}
f_{x}(t) & =\cos E-e \\
f_{y}(t) & =\sqrt{1-e^{2}} \cdot \sin E
\end{aligned}
$$

now, the position $x(t)$ and $y(t)$ can be derived from:

$$
\begin{aligned}
x(t) & =B \cdot f_{x}(t)+G \cdot f_{y}(t) \\
y(t) & =A \cdot f_{x}(t)+F \cdot f_{y}(t)
\end{aligned}
$$

A, B, F and G are the Thiele-Innes constants

Thiele-Innes Constants

the Thiele-Innes constants are just another parameterization of the orbital parameters a, ω, i, and Ω :

$$
\begin{aligned}
& A=a(\cos \omega \cos \Omega-\sin \omega \sin \Omega \cos i) \\
& B=a(\cos \omega \sin \Omega+\sin \omega \cos \Omega \cos i) \\
& F=a(-\sin \omega \cos \Omega-\cos \omega \sin \Omega \cos i) \\
& G=a(-\sin \omega \sin \Omega+\cos \omega \cos \Omega \cos i)
\end{aligned}
$$

the unit of A, B, F and G is the same as those of a, which could be either [AU] or [mas]

Simulation \& Fitting Program

program simulates 2-d astrometric measurements including proper motion, parallax and orbital motion and errors, then tries to fit for the relevant 12 parameters

Simulation \& Fitting Program

start program with
idl> go
you can modify parameters in the program 'go.pro' in the section 'set input parameters'
alternatively, you can run the program with an input file: idl> go,'epseri'
which will read input data from 'epseri.input'.
You can add additional input files as you wish.

But before it will work...

... you have to finish writing 'get_thiele_innes.pro'!
$A=a(\cos \omega \cos \Omega-\sin \omega \sin \Omega \cos i)$
$B=a(\cos \omega \sin \Omega+\sin \omega \cos \Omega \cos i)$
$F=a(-\sin \omega \cos \Omega-\cos \omega \sin \Omega \cos i)$
$G=a(-\sin \omega \sin \Omega+\cos \omega \cos \Omega \cos i)$

Summary of Exercises

1. Finish writing thiele_innes.pro!
2. How many measurements do you need to get masses to a few percent, with reasonable accuracy (default)?
3. How accurate do 50 measurements of \in Eri have to be to get masses to a few percent?
4. How accurate can you get the mass when you observe only half an orbit? Does it help to make those measurements more precise?
5. How good do the starting values have to be? I.e., are there many local minima?
6. How big would the astrometric signature of Jupiter around the Sun be when viewed from a distance of 10pc?
