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• Relative vs. Absolute Astrometry
• Ground vs. Space
• single Telescope vs. Interferometer

Amongst others, this talk covers:
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What is Astrometry?

• Oldest subfield of Science                               
(note: not just Astronomy!)

• Astrometry is about measuring positions of objects

• ... as a function of time

• ... with ultrahigh precision

• Astrometry is also about establishing a suitable 
coordinate system for those measurements              
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Astrometry is the basis of Astronomy

circulated ca. 1974 by 
Ron Probst at UVa
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Why is it so difficult?
• Measuring positions sounds easy!

• Possible even without instruments:
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(1) It’s difficult, because...

...everything on the sky moves, no fixed reference point! 

shown: proper motion
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(2) It’s difficult, because...

... those motions can be quite complicated!

proper motion

+ =
parallax
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... and that was just the simplest case ...

• if it’s a binary or a star with a planet, the 
motion would look like this:

+

+
=proper motion parallax

orbital motion
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(3) It’s difficult, because...

... those motions are tiny!

credit: M. Perryman & J. De Bruijne

• required precision:     
milli- or  micro-arcseconds

• 1 mas corresponds to the 
growth of a human hair in 
10 seconds as viewed from 
a distance of about 10m!

motion of the Hyades over 60 000 years
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(4) It’s difficult, because...

... the Earth (or a satellite) will move, too!

credit: C.J.Hamilton

Earth Rotation
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(5) It’s difficult, because...

... the Earth axis will not be fixed, either!

R: Rotation
P: Precession
N: Nutation

we are trying to measure
tiny angles from the surface of 

a spinning gyroscope!
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Putting it all together almost 
makes it look impossible:

Can it work? - YES!!!

credit: D. Ellison, JPL/NASA

observing this

from this
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How do we make it work?

1. everything on the sky moves 
--> establish a local or global reference system                
(sometimes, relative astrometry in a small field is enough)

2.motions are tiny   
--> clever measurement techniques                                     
(e.g. transit circles, space astrometry, interferometry)                             

3.Earth moves 
--> meaure Earth movement with high precision and remove       
(VLBI, lunar laser ranging, etc.)
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Transit (Meridian) Circles
• basic astrometric instrument for 

centuries!

• the transit (upper culmination) of 
star is measured:

right ascension is equal to 
sidereal time during transit of 
the meridian

declination is given by latitude of 
the observer plus/minus the 
(measured) zenith distance

remember: the local meridian is the great circle 
passing through north and the celestial pole!

credit: J. Kovalevsky, 
Modern Astrometry
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Relative Astrometry with a Single Telescope

• classical approach

• with a single telescope, one repeatedly takes an 
image of the interesting region over the course of 
years

• works with photographic plates or CCDs

• measure position of a target star as a function of 
time in the local reference frame of surrounding 
(background) stars

• often, target is much closer than reference stars, so 
proper motion and parallax will be measurable
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Data Reduction

• take image

• flat-field, remove 
bias and bad pixels

• label your reference 
stars and measure 
their positions!

TWA 1 with SUSI2/NTT

credit: B. Sturm
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Simple Centroiding

• a critical step in the data 
reduction is the precise 
measurement of the 
position of each object 
on the frame, i.e. the 
centroid of the image

• sometimes, if PSF is not 
symmetric, an elliptical 
Gaussian fit might not be 
good enough

intensity distribution

Gaussian Fit
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Sophisticated  Centroiding

the STEPS 
Survey does 
something more 
sophisticated

Credit: Stuart Shaklan
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Pixel Scale and Field of View (FOV)

• pixel scale: usually the precision of a measurement will 
scale with the pixel scale

• good centroiding algorithm will measure the centroid to 
about 1/50 of a pixel

• at the same time, the FOV should be large to contain 
many not too faint reference stars

CTIO 0.9m
(RECONS) FOV: 8.6’ 401 mas/pixel 8.0 mas

FORS UT1 8.2m FOV: 3.3’ 100 mas/pixel 2.0 mas

Palomar 5m (STEPS) FOV: 2’ 61 mas/pixel 1.2 mas

1/50

roughly achievable single measurement precision
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Atmospheric Image Motion

• biggest complication on the ground:                       
atmospheric image motion (turbulence etc.)

• typical atmospheric noise: 1 mas

• correlation timescale of order only 1 second

can be overcome by taking many observations in a 
row and averaging
if more than 1 second in between images, 
atmospheric noise is uncorrelated and improves as
sqrt(t)

1 image - 1 mas accuracy
100 images - 0.1 mas accuracy
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Differential Chromatic Refraction (DCR)
• refraction itself is not a problem, as long as it’s the same for 

all stars (remember, we only do relative astrometry)

• but if it’s different for individual stars, it matters!

• differential chromatic refraction depends on the color of the 
star      -> need to correct for that

• need temperature, pressure, humidity, and star color

• easier to correct for smaller bandpass                               
-> use narrow filter, if possible

• also, size of DCR wavelength dependent                                 
(smaller in red than in the blue)

• depending on the particulars of the observing program, DCR 
is often the limiting factor in for ground-based astrometry!
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Plate Solutions

• next, we want to combine all our measurements over 
several epochs of observations

• in order to do that, we have to correct for possible 
variations in the focus and the CCD orientation (translation, 
rotation etc.)

• sometimes, coordinates will also depend on magnitude     
(magnitude equation)

• this is achieved with a plate solution, where certain 
parameters depending on the relative CCD orientation are 
solved in a large global solution of all frames
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Example for a Plate Solution

ξ  =  Ax + By + C
η =  Dx + Ey + F

ξ, η: coordinates after transformation
A, B, C, D, E, F: plate constants

A, E: scale (focus)
B, D: field rotation
C, F: translation

Note: this model does not include 
higher order terms dependent e.g. 
on distance from center of field 
(radial distortion), magnitude etc.
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Finally: Relative Astrometry

• now, we have fully reduced everything on a common 
reference frame and can combine all measurements:

x    measurements

          model based on  
relative proper motion   
and relative parallax

credit: B. Sturm

note also the additional 
constraints set by the 
timing of the 
measurements!
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 From Relative to Absolute Astrometry

• if desired, one can finally try to convert relative 
astrometry into absolute astrometry

• this step is usually rather uncertain, and one might wish 
not to do it

• requires outside knowledge about reference frame objects, 
e.g. photometric or spectroscopic parallaxes, or statistical 
assumptions about the reference stars (e.g., random proper 
motions)
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 The Multichannel Astrometric Photometer
• completely different 

approach to relative 
astrometry, using a fine 
ruling and a mask with one 
photomultiplier per star

• Gatewood, Allegheny 
Observatory (Pittsburgh)

• grid is moved over the 
star field, gives 1-dim 
relative positions of stars 
in field

• accuracy achieved is 
around 1 mas

copyright: 
J. Kovalevsky, 

Modern Astrometry
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Principle of Hipparcos & Gaia

• this is absolute astrometry now!

• survey missions scanning the whole sky and tying all 
measurements together into a common absolute reference 
frame

• totally different concept from relative astrometry with 
single telescope

• TDI mode (time delayed integration):                      
exposure time is synchronized with satellite spin rate

• measurement is essentially a timing measurement           
(compare to transit circles!)

Copyright: EADS Astrium
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Gaia 
Focal 
Plane

Copyright:
EADS Astrium
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Gaia Scanning Law

Copyright: ESA
Credit: f. Mignard

Gaia will be operated from around L2, 
staying out of the Earth shadow for at least 6 years
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Spinning Satellite
• scans the sky 

continuously

• constant angle to 
the Sun

• two fields of view! 
(106.5 deg)

• scannning speed is 
60”/sec                 
-> 6 hours/great circle

• great circles about    
1 deg apart

• on average, each star 
is observed 70 times 
over 5 years

Copyright: ESA
Credit: K. O’Flaherty
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Measurement Principle

Copyright: ESA
Credit: M. Perryman

one region observed in several scans
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Hipparcos Data Reduction Steps
1. Great Circle Reduction

estimating the relative positions of all stars in one great circle (typically 
2000) using the primary observables (for Hipparcos intensities and phases of 
a signal modulated with a grid) as well as attitude information

strong closure condition exists (circle must add up to 360 deg!)

2.Sphere Solution
interconnection and locking

combining data from a larger number of great circles (typically a few 
months), the zero points of the relative positions on each great circle can be 
estimated, turning them into absolute, but still one-dimensional positions

3.Astrometric Catalog
modelling all absolute positions for one star (typically about 100 1-dim 
observations) in terms of all five astrometric parameters - iteration required!

(very similar for Gaia)
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Hipparcos Reference System

• this procedure allows Hipparcos to establish its own 
reference system

• the zero point for that reference system is arbitrary, but 
if you know the position of just one star you know all 
others

• Hipparcos system is linked to extragalactic reference frame 
(ICRF, defined by the positions of several hundred 
extragalactic radio sources) through auxiliary, ground-
based observations of a handful of quasars 

• the axes of the two systems are aligned to about 0.6 mas, 
and relative rotation of the two systems is less than 0.25 
mas/year
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Single Star Interferometry

Credit: R. Geisler

one star 
observed with 
two telescopes

α

d = B sin(α)

d

B

d: delay
measured

B: baseline
measured using 
known star 
positions

α: position
to be determined
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Dual Star Interferometry: PRIMA

Credit: R. Geisler

d = B sin(α)

Δd: differential 
delay
measured

B: baseline
measured using 
known star 
positions

Δα: relative 
position
to be determined

B

Δα

Δd = B sin(Δα)

two stars 
observed with 
two telescopes 
each

Credit: R. Geisler
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PRIMA

• with PRIMA, one can measure 1-dim relative star positions 
with an accuracy of about 10 microarcseconds

• large baselines help, have to be calibrated with baseline 
calibration stars

• stars have to be located within the isoplanatic patch 
(10-20” in K-band)

• large effort to select suitable target and reference stars 
(magnitude limitations)

• many measurements over a long time baseline needed to 
be scientifically useful
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Space Interferometry Misson: 
SIM Planetquest

• phase-referenced interferometry, just like PRIMA

• however, SIM does absolute astrometry by establishing its 
own reference frame

• it will repeatedly observe a grid of several thousand stars, 
into which all other measurements are tied 

global grid
local grid

Credit: NASA
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Astrometric Methods Overview

Ground Space

Single 
Telescope

Dual
Telescopes

transit circles
imaging

interferometry 
(e.g. NPOI)

MAP

Hipparcos

Gaia

PRIMA

PHASES
SIM/SIM

relative astrometry
absolute astrometry

accuracy

1 mas

1 μas

37



Collection of Astrometric 
Measurement Principles

• Timing Methods

- Transit Circles
- Scanning Satellites (Hipparcos, Gaia)

• Imaging

- measuring image centroids (many ground-based projects)

• Grid/Ruling

- using a fine ruling or a grid (Hipparcos, MAP)

• Interferometry

- using the resolution of a wavelength to make exact 
position measurements (PRIMA, SIM)
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Summary

• ... why astrometry is complicated                   
(remember the movies from the beginning!)

• ... how positions can be measured precisely                 
(relative vs. absolute astrometry, ground vs. space, single 
telescope vs. dual telescopes)

This talk addressed the questions ...
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PRIMA Astrometric Data Reduction 

Sabine Reffert
Landessternwarte Heidelberg, Germany

• the various astrometric effects which can be 
present in relative astrometric data, at 
mirco-arcsecond accuracy

• how to take those unwanted things out of 
the data!

This talk explains:
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Differential Delays
• for the following, it is enough to think of the 

differential delays Δd which we measure as 
equivalent to a projected angular separation between 
two stars on the sky

• more precisely, we do not determine the angular 
separation, but the separation vector      :∆!s

∆!s = !s2 − !s1
∆!s

!s1

!s2

Observer

!B : baseline vector

∆d = ∆!s · !B
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Rotating Baseline
• the differential delay is recorded during up to one hour

• of course, the baseline, projected on the sky, will rotate during that time

• when the differential delays are averaged, this rotation has to be taken 
into account:4 Astrometric Data-Reduction SoftwareDesign VLT-TRE-AOS-15752-0003

Figure 1.1: Illustration of Earth orientation and the effect of the changing baseline orientation in
the barycentric coordinate system. The true separation between a target and a reference star pair is
shown as the vector !ρ. The direction annotated with !B0 is the baseline orientation at some time t0
to which the level 0 data will be averaged; the angle between this baseline orientation and the actual
separation vector of the star pair is θ0. At some other time ti (earlier or later than t0), the baseline
will have rotated to the direction indicated by !Bi, forming an angle θi with the star pair separation
vector. Our measured quantities are the differential delays ∆δ0 and ∆δi, which correspond to the
size of the vectors shown in the directions of the baseline orientations.

We assume we have a measured (differential) delay ∆δi which was measured at time ti, and, as many
others, it will contribute to the measurement of the (differential) delay at time t0. t0 would be the
averaged time of all N individual (differential) delays which contribute to this level 1 data point:

t0 =
N∑

i=1

ti

This does not take measurement errors into account, but it is not anticipated that those would vary
widely in the course of the one or several seconds during which those individual delays are measured.
If individual weights are desired at some point later, these could be easily considered in the usual
way in the averaging process. Note in particular that t0 is not the middle of the 1 second interval
considered if there were gaps during which no data were taken; only those ti which contribute to the
final differential delay are considered.

The averaging for the absolute and differential delays is very similar. We will write down the equa-
tions just for the differential delay first, and then indicate how this will also work for the absolute
delay.

∆d(t0) = ∆!s · !B(t0)

∆d(ti) = ∆!s · !B(ti)

 the effect can become quite large:
over 1 second, baseline rotates by 15 arcseconds

compare directly to measurement accuracy of 10 micro-arcsecond!  
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Measurement Accuracy
we want to measure angular separation with an 
accuracy of 10 micro-arcseconds

      is of order 10” ≈ 5・10-5 radians

      is of order 100-200m
      is thus of order 1cm

if we measure the differential delay with 5nm precision, 
i.e. with 5nm/1cm = 5・10-7 relative precision, 

the angular separation will be accurate to 
10 arcseconds・5・10-7 = 5 micro-arcseconds!

∆!s

!B
∆d

accurate to 10 μas
10”

∆d = ∆!s · !B
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Astrometric Effects

• the effects which we have to remove in the course of the 
data reduction are the following:

- aberration

- light time delay

- relativistic light deflection

- annual and diurnal parallax

- epoch transformations (proper motion etc.)

• as we have just seen, those corrections to the differential 
delays should be accurate to better than 1 μas
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Observed Directions

Coupling of the finite distance to the source and the gravi-
tational light deflection in the gravitational field of the solar
system.—This step converts r into the unit BCRS vector k
going from the source to the observer (note that, as dis-
cussed below, this step should be combined with the pre-
vious one for sources situated within the solar system).

Parallax.—This step converts k into the unit vector l
going from the barycenter of the solar system to the source.

Proper motion.—This step provides a reasonable param-
eterization of the time dependence of l caused by the motion
of the source with respect to the BCRS.

All these steps will be specified in detail in the following sec-
tions. However, let us first clarify the question of timescales
that should be used in the model. There are four timescales
that appear:

1. Proper time of the observer (satellite), !o;
2. Proper time of the ith tracking station, ! (i)station;
3. Coordinate time t = TCB of the BCRS [alterna-

tively, a scaled version of TCB called TDB can be used:
TDB = (1 ! LB)TCB, with the current best estimate of
the scaling constant LB " (1.55051976772 # 10!8) $
(2 # 10!17) (Irwin & Fukushima 1999; IAU 2001)]; and

4. Coordinate time T = TCG of the GCRS [alterna-
tively, a scaled version of TCG called TT can be used:
TT = (1 ! LG)TCG, LG % 6.969290134 # 10!10 being a
defining constant (IAU 2001)].

It is clear that the observational data (e.g., in the case of the
scanning satellites such as Hipparcos, GAIA, and DIVA,

these are the projections of the vector s on a local reference
system of the satellite that rotates together with the satellite)
are parameterized by the proper time of the satellite !o. It is
also clear that the final catalog containing positions, paral-
laxes, and proper motions of the sources relative to the
BCRS should be parameterized by TCB. The other two
timescales (proper times of the tracking stations ! (i)station and
TCG) are used exclusively for orbit determination.

The transformation between the proper time of the satel-
lite !o and TCB can be done by integrating the equation

d!o
dt

¼ 1! 1

c2

!
1

2
_xx2o þ wðxoÞ

"
þOðc!4Þ ; ð1Þ

where xo and _xxo are the BCRS position and velocity of the
satellite and w(xo) is the gravitational potential of the solar
system, which can be approximated by

wðxoÞ "
X

A

GMA

roAj j
ð2Þ

with roA = xo ! xA,MA the mass of body A, and xA = xA(t)
its barycentric position. Both higher order multipole
moments of all the bodies and additional relativistic terms
are neglected in equation (2). The transformation between
the proper time of a tracking station and TCG can be per-
formed in a similar way. The transformation between TCG
and TCB is given by IAU Resolutions B1.3 (general post-
Newtonian expression) and B1.5 (an expression for an accu-
racy of 5 # 10!18 in rate and 0.2 ps in the amplitude of peri-
odic effects) in IAU (2001). There are several analytical
and numerical formulae for the position-independent part
of the transformation (see, e.g., Fukushima 1995; Irwin &
Fukushima 1999; references therein).

Although the use of the relativistic timescales described
above is indispensable from the theoretical and conceptual
points of view, from a purely practical point of view consid-
erations of accuracy can be used here to simplify the model.
However, this depends on the particular parameters of the
mission and will be not analyzed here. In the following, it is
assumed that the observed directions s are given together
with the corresponding epochs of observation to on the
TCB scale.

4. MOTION OF THE SATELLITE

It is well known that in order to compute the Newtonian
aberration with an accuracy of 1 las, one needs to know the
velocity of the observer with an accuracy of *10!3 m s!1

(see, e.g., ESA 2000). This is a rather stringent requirement,
and special care must be taken to attain such accuracy.
Modeling of the satellite’s motion with such accuracy is a
difficult task involving complicated equations of motion
that take into account various nonrelativistic (Newtonian
N-body force, radiation pressure, active satellite thrusters,
etc.) and relativistic effects. Here a general recipe concerning
the relativistic part of the modeling will be given. Both the
nonrelativistic parts of the model and a detailed study of
the relativistic effects in the satellite’s motion are beyond the
scope of the present paper.

In the relativistic model of positional observations devel-
oped in the following sections, it is assumed that the obser-
vations are performed from a space station or an Earth
satellite whose position xo relative to the BCRS is known

Fig. 3.—Five principal vectors used in the model: s, n, r, k, and l. See text
for further details.

1584 KLIONER Vol. 125

s: observed unit direction vector
n: unit tangent vector to the light
   ray at t = tobs 
σ: unit direction of propagation at
    t = -∞
k: unit coordinate vector from
   source to observer
l: unit vector from barycenter to 
   observer

observed: s
want: l

Credit: S. Klioner
AJ 125, 1580, 2300
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Observed Directions

Coupling of the finite distance to the source and the gravi-
tational light deflection in the gravitational field of the solar
system.—This step converts r into the unit BCRS vector k
going from the source to the observer (note that, as dis-
cussed below, this step should be combined with the pre-
vious one for sources situated within the solar system).

Parallax.—This step converts k into the unit vector l
going from the barycenter of the solar system to the source.

Proper motion.—This step provides a reasonable param-
eterization of the time dependence of l caused by the motion
of the source with respect to the BCRS.

All these steps will be specified in detail in the following sec-
tions. However, let us first clarify the question of timescales
that should be used in the model. There are four timescales
that appear:

1. Proper time of the observer (satellite), !o;
2. Proper time of the ith tracking station, ! (i)station;
3. Coordinate time t = TCB of the BCRS [alterna-

tively, a scaled version of TCB called TDB can be used:
TDB = (1 ! LB)TCB, with the current best estimate of
the scaling constant LB " (1.55051976772 # 10!8) $
(2 # 10!17) (Irwin & Fukushima 1999; IAU 2001)]; and

4. Coordinate time T = TCG of the GCRS [alterna-
tively, a scaled version of TCG called TT can be used:
TT = (1 ! LG)TCG, LG % 6.969290134 # 10!10 being a
defining constant (IAU 2001)].

It is clear that the observational data (e.g., in the case of the
scanning satellites such as Hipparcos, GAIA, and DIVA,

these are the projections of the vector s on a local reference
system of the satellite that rotates together with the satellite)
are parameterized by the proper time of the satellite !o. It is
also clear that the final catalog containing positions, paral-
laxes, and proper motions of the sources relative to the
BCRS should be parameterized by TCB. The other two
timescales (proper times of the tracking stations ! (i)station and
TCG) are used exclusively for orbit determination.

The transformation between the proper time of the satel-
lite !o and TCB can be done by integrating the equation

d!o
dt

¼ 1! 1

c2

!
1

2
_xx2o þ wðxoÞ

"
þOðc!4Þ ; ð1Þ

where xo and _xxo are the BCRS position and velocity of the
satellite and w(xo) is the gravitational potential of the solar
system, which can be approximated by

wðxoÞ "
X

A

GMA

roAj j
ð2Þ

with roA = xo ! xA,MA the mass of body A, and xA = xA(t)
its barycentric position. Both higher order multipole
moments of all the bodies and additional relativistic terms
are neglected in equation (2). The transformation between
the proper time of a tracking station and TCG can be per-
formed in a similar way. The transformation between TCG
and TCB is given by IAU Resolutions B1.3 (general post-
Newtonian expression) and B1.5 (an expression for an accu-
racy of 5 # 10!18 in rate and 0.2 ps in the amplitude of peri-
odic effects) in IAU (2001). There are several analytical
and numerical formulae for the position-independent part
of the transformation (see, e.g., Fukushima 1995; Irwin &
Fukushima 1999; references therein).

Although the use of the relativistic timescales described
above is indispensable from the theoretical and conceptual
points of view, from a purely practical point of view consid-
erations of accuracy can be used here to simplify the model.
However, this depends on the particular parameters of the
mission and will be not analyzed here. In the following, it is
assumed that the observed directions s are given together
with the corresponding epochs of observation to on the
TCB scale.

4. MOTION OF THE SATELLITE

It is well known that in order to compute the Newtonian
aberration with an accuracy of 1 las, one needs to know the
velocity of the observer with an accuracy of *10!3 m s!1

(see, e.g., ESA 2000). This is a rather stringent requirement,
and special care must be taken to attain such accuracy.
Modeling of the satellite’s motion with such accuracy is a
difficult task involving complicated equations of motion
that take into account various nonrelativistic (Newtonian
N-body force, radiation pressure, active satellite thrusters,
etc.) and relativistic effects. Here a general recipe concerning
the relativistic part of the modeling will be given. Both the
nonrelativistic parts of the model and a detailed study of
the relativistic effects in the satellite’s motion are beyond the
scope of the present paper.

In the relativistic model of positional observations devel-
oped in the following sections, it is assumed that the obser-
vations are performed from a space station or an Earth
satellite whose position xo relative to the BCRS is known

Fig. 3.—Five principal vectors used in the model: s, n, r, k, and l. See text
for further details.

1584 KLIONER Vol. 125

Credit: S. Klioner
AJ 125, 1580, 2300

S

n

σ

k

l

aberration

gravitational 
light deflection

finite source
distance

parallax,
proper motion
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Aberration
• aberration is caused by relative velocity                        

of source and observer and the finite                     
speed of light

• during the light travel time, the relative positions   
between observer and source change, and the light seems 
to be coming from a different direction than when it was 
emitted

• Newtonian theory: annual and diurnal aberration, due to 
the orbital motion of the Earth around the barycenter and 
Earth rotation, respectively

• relativistic theory: distinction no longer possible

moving Earth

!v

true direction

observed direction

☂
☂
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Yearly Aberration
The size of the absolute effect is 20.5” maximum:
             
        
where kyear = v/c is the yearly aberration constant and ɣ is the 
angle between the velocity of the Earth and the direction of the 
light coming from the star

How big is the relative effect?

for a maximum assumed separation of target and reference star of 
30”, relative aberration can reach the oder of 3 mas and needs to 
be corrected for! 
(6 mas over half a year, and 1.1 μas over half an hour)

ayear = kyear · sin γ

∆ayear = kyear · (sin γ1 − sin γ2)

accurate to 10 μas
10”
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Daily Aberration
The size of the daily effect is:

        
where kday = 0.32”cos ɸ  is the daily aberration constant  (ɸ is 
the latitude of the position of Earth) and ɣ is the angle between 
the velocity of the Earth and the direction of the light coming 
from the star

How big is the relative effect?

for a maximum assumed separation of target and reference star 
of 30”, relative daily aberration can reach 42 μas over one day, 
and 5.5 μas over half an hour!

accurate to 10 μas
10”

aday = kday · sin γ

∆aday = kday · (sin γ1 − sin γ2)
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Relativistic Aberration

Precise derivation needs to take into account relativistic addition of 
velocities:

accurate to 10 μas
10”

sin∆θ1 =
(v/c) sin θ1 + 1/2(v/c)2 sin 2θ1/(1 + γ−1)

1 + (v/c) cos θ1

=
v

c
sin θ1 −

1
4

(v

c

)2
sin 2θ1 +

1
4

(v

c

)3
sin 2θ1 cos θ1 + ...

This is the correction of the direction to one of the stars due to 
aberration. The third order time is of the order micro-arcseconds.

!v

!s1

!s1
′

θ1

∆θ1

true direction
apparent (observed) direction
velocity of Earth
angle between      and 
angle between      and ∆θ1

θ1

!s1
′

!s1
′

!s1
′

!s1

!s1

!v

!v

γ =
√

1− v2/c2

c : speed of light
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Light Time Delay
Because the distance of the two stars to us is changing by a 
different amount (difference in radial velocities), the light from the 
two stars was emitted at different times, and this time difference
will change over time. 
This, together with proper motion, results in a steady change of the
observed angular separation.

accurate to 10 μas
10”

Time delay is typically of the order of hours to years.
The resulting change in angular separation, depending on the proper 
motion, would typically be about 10-100 μas, and of the order of 
100 mas for the most extreme assumptions.
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Size of Light Time Delay: Example

ΔVrad = 50 km/s, ΔT = 5 years

➡ After 5 years, the two stars are 8・109 km further apart than 

before. This corresponds to a light travel time of about 7 hours.

Δμ = 500 mas/yr

➡ In 7 hours, one star travels 400 μas with respect to the other. 
This is the change of their angular separation over 5 years due 
to light time delay.

Light travel time can also be thought of as an aberration 
component caused by the proper motion of the star.
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Light Time Delay: Precise Formula
correction for one star:

∆!s1 = (f1 − 1)!s1 − f1ζ1(t)∆T1!s1 − f1!µ1(t)∆T1

with:

     : change in position due to light time delay
     : apparent (observed) direction of star 1
 f1  : f-factor, close to 1, explained later
 ζ1  : radial velocity of star 1 in proper motion units
ΔT1 : light travel time difference for star 1
 μ1  : proper motion of star 1

!s1

∆!s1
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Light Time Delay: Precise Formula

correction in angular separation:

∆!s ′ = ∆!s + (f2 − 1)!s2 − f2ζ2(t)∆T2!s2 − f2!µ2(t)∆T2

−(f1 − 1)!s1 + f1ζ1(t)∆T1!s1 + f1!µ1(t)∆T1

≈ ∆!s + f1!µ1(t)∆T1 − f2!µ2(t)∆T2

the approximation reflects our earlier simple size considerations 
for light time delay to be dependent on proper motion and 
and light travel time difference!
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Gravitational Light Deflection

The light is always deflected towards the massive body.

observer

true position

apparent positionmassive body

ψ

Φ

Light is deflected in gravitational fields, and thus we have to 
correct observed positions if the observation is taking place 
close to a massive object.
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Gravitational Light Deflection

The general formula for relativistic light deflection is:

  Φ:      angle by which light is deflected
M0, R0:  mass and distance of massive object
 G, c:    gravitational constant, speed of light
  ψ:     angular separation between star and massive object as      
          seen from observatory

φ = 2GM◦
c2R◦

· cot ψ/2
4 mas for the Sun
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Gravitational Light Deflection

Examples for the absolute effect
in the grazing case:

symmetric
mass distribution

quadrupole 
moment

Sun 1.75”  1 μas

Jupiter 16 mas 240 μas

Mars 0.1 mas 0.2 μas

The differential effect is of course always much smaller!
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Gravitational Light Deflection
For completeness, here is the formula for the differential effect:

∆!s ′ = ∆!s + φ2 · !s2−!s◦
|!s2−!s◦| − φ1 · !s1−!s◦

|!s1−!s◦|

∆!s
!s1

!s2

Observer

Φ1, Φ2: absolute light deflection for star 1/2
       : apprent angular separation
       : corrected angular separation
       : direction unit vector to massive body
∆!s ′
∆!s

∆!s0

For the Sun, the differential effect is always smaller than about
10 μas for typical PRIMA observations. For Jupiter, the 
differential effect reaches 10 μas for separations around 1 deg.
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Gravitational Light Deflection

Note that in order to precisely correct for the (differential) 
effect of gravitational light deflection, one needs accurate
solar system body ephemerides!

This is usually available for the larger solar system bodies
(planets and biggest satellites), but for minor bodies this
is not always the case.

In unlucky circumstances, one could observe very close to a 
very small solar system body and not notice! This would 
introduce astrometric noise at the level of typically
1 μas or less.

accurate to 10 μas
10”
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Parallax

Annual Parallax:
caused by the change in viewing 
angle as the Earth goes around 
the Sun

parallax of most nearby star,
α Cen, is about 772 mas
(distance is 1.3 pc)

background stars

Observer
on Earth

distance [pc] = 1000 / parallax [mas]

(due to definition of the parsec)
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Diurnal Parallax

Diurnal (daily) Parallax:
caused by the daily rotation of 
the Earth

daily parallax of α Cen is 33 μas
(note that it’s changing fast,
 66 μas over half a day!)

daily parallax = annual parallax * REarth/AU

background stars

Observer
on Earth

there even is a montly parallax due to the Moon!
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Correcting for Parallax 
Easiest to get rid of all parallaxes at the same time 
by using precise Earth ephemerides:

!r = !rtop + !rE

     is the observed, topocentric position,
     is the precise position of the Earth with 
respect to the solar system barycenter, 
and     is the barycentric position which we want to 
calculate (as if we had observed from the solar 
system barycenter)

!rE

!rtop

!r

!r
!rtop

!rE

!r = ρ




cos α cos δ
sinα cos δ

sin δ




α: right ascenscion
δ: declination
ρ: distance
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Parallax Formula

Inserting everything into the simple equation from 
before, one gets for the corrections to be
applied to right ascension, declination
and distance:

!r
!rtop

!rE

∆α cos δ =
xE

ρ
sinα− yE

ρ
cos α

∆δ =
(

xE

ρ
cos α +

yE

ρ
sinα

)
sin δ − zE

ρ
cos δ

∆ρ = −xE cos α cos δ − yE sinα cos δ + zE sin δ

!rE =




xE

yE

zE




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Parallax Correction 
in Angular Separation  

Inserting the corrections for both stars, one gets:

Astrometric Data-Reduction SoftwareDesign VLT-TRE-AOS-15752-0003 17

1.13.2 WBS Task 1

TBD.

1.14 Dispersion

1.14.1 Description

TBD.

1.14.2 WBS Task 1

TBD.

1.15 Astrometric Corrections

The new vector is

∆!s ′ = ∆!s +




−∆α2 sin α2 cos δ2 −∆δ2 cos α2 sin δ2 + ∆α1 sin α1 cos δ1 + ∆δ1 cos α1 sin δ1

∆α2 cos α2 cos δ2 −∆δ2 sin α2 sin δ2 −∆α1 cos α1 cos δ1 + ∆δ1 sin α1 sin δ1

∆δ2 cos δ2 −∆δ1 cos δ1



 .

(1.61)

oOo

∆!s
!s1

!s2

Observer

∆!s ′
∆!s observed angular separation

angular separation
corrected for parallax
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Epoch Transformations
most obvious influence is the proper motion:
due to relative proper motion of the two stars,
angular separation will change

proper motion is a huge effect: 
for nearby stars, it can reach 5000 mas/year, corresponding 
to about 10 μas/minute! 

accurate to 10 μas
10”

Observer

∆!s

radial velocity
proper motion for PRIMA, proper motion 

is thus easily noticeable over 
the course of a half hour 
observation!
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Epoch Transformations
but the angular separation will also change due to 
radial velocity:

think of it as projection effect:
because the star at a later time is observed at a differenct 
position and different distance, its total space motion vector 
is projected differently on radial and tangential directions

accurate to 10 μas
10”

Observer

radial velocity
proper motion

space velocity vector

Observer

radial velocity

proper motion

space velocity vector

some time later same space velocity,
but different distance,

proper motion and 
radial velocity!
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Epoch Transformations accurate to 10 μas
10”

if the barycentric coordinate vector to a star at time t0

is      , at some other time t it will be∆!s0

!s(t) = [!s0(1 + ζ0(t− t0)) + !µ0(t− t0)]f

where      is the radial velocity (in proper motion units)
and      is the proper motion vector, both at time t0

ζ0

!µ0

f is the so-called f-factor from before;
it’s a normalization factor, so that the result is a unit vector;
its value is usually close to 1

68



Epoch Transformations accurate to 10 μas
10”

for the change in angular separation, we obtain by just 
plugging in the formula from before:

∆!s ′ = !s ′
2 − !s ′

1

= ∆!s + !s2(t0)(f2 − 1) + !s2(t0)f2ζ2(t0)(t− t0) + !µ2(t0)f2(t− t0)
− !s1(t0)(f1 − 1)− !s1(t0)f1ζ1(t0)(t− t0)− !µ1(t0)f1(t− t0)

∆!s ′
∆!s observed angular separation

angular separation 
transformed to another epoch

with:

includes corrections for perspective acceleration!
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Epoch Transformations accurate to 10 μas
10”

In order to apply the epoch transformations correctly,
we need very accurate parallaxes, proper motions and
radial velocities (micro-arcsecond accuracy).

Fortunately, we need only the relative quantities with high 
accuracy, so that we can (and have to) determine those 
quantities directly from our PRIMA observations.

This means that we will need a lot of observations to 
determine all these parameters, and our data reduction will 
improve over time.
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Correction for Rotating Baseline4 Astrometric Data-Reduction SoftwareDesign VLT-TRE-AOS-15752-0003

Figure 1.1: Illustration of Earth orientation and the effect of the changing baseline orientation in
the barycentric coordinate system. The true separation between a target and a reference star pair is
shown as the vector !ρ. The direction annotated with !B0 is the baseline orientation at some time t0
to which the level 0 data will be averaged; the angle between this baseline orientation and the actual
separation vector of the star pair is θ0. At some other time ti (earlier or later than t0), the baseline
will have rotated to the direction indicated by !Bi, forming an angle θi with the star pair separation
vector. Our measured quantities are the differential delays ∆δ0 and ∆δi, which correspond to the
size of the vectors shown in the directions of the baseline orientations.

We assume we have a measured (differential) delay ∆δi which was measured at time ti, and, as many
others, it will contribute to the measurement of the (differential) delay at time t0. t0 would be the
averaged time of all N individual (differential) delays which contribute to this level 1 data point:

t0 =
N∑

i=1

ti

This does not take measurement errors into account, but it is not anticipated that those would vary
widely in the course of the one or several seconds during which those individual delays are measured.
If individual weights are desired at some point later, these could be easily considered in the usual
way in the averaging process. Note in particular that t0 is not the middle of the 1 second interval
considered if there were gaps during which no data were taken; only those ti which contribute to the
final differential delay are considered.

The averaging for the absolute and differential delays is very similar. We will write down the equa-
tions just for the differential delay first, and then indicate how this will also work for the absolute
delay.

highly time-dependent: angle θ
due to Earth rotation, orbital motion, precession, 

nutation, polar motion
(|B| constant, |Δs| constant after astrometric corrections)

∆d = ∆!s · !B = |∆s| · |B| · cos θ

in order to correct for the rotating baseline, we need very 
precise models for the Earth rotation, as provided by the IERS
(International Earth Rotation Service) based on VLBI 
measurements of polar motion etc.
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Calculating the Rotated Baseline Vector 
baseline vector     needs to be converted from Earth-fixed 
system (ITRS) to space-fixed system (ICRS):

!B

[ICRS] = Q(t)R(t)W(t)[ITRS]

Q(t), R(t) and W(t) are the following rotation matrices:

Q(t) = R3(−E)R2(−d)R3(E)R3(s)
R(t) = R3(−θ)
W(t) = R3(−s ′)R2(xp)R1(yp)

E, d: coordinates of CIP in ICRS
s: position of CEO on equator of CIP
θ: Earth rotation angle
s’: position of TEO on equator of CIP
xp, yp: coordinate of CIP in ITRS (polar motion)

CIP: Celestial Intermediate Pole
R1, R2, R3: rotation matrices 
around the 3 spatial directions
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Take-Away Message

Reduction of Astrometric Data at the micro-arcsecond level
tedious at times, but it can be done if you have all the 
required accurate auxiliary data:

accurate Earth position and velocity                       
aberration, parallax, baseline rotation
micro-arcsecond relative parallax, proper motion          
epoch transformations
absolute positions, proper motions, radial velocity, parallax   
parallax, epoch transformations, light time delay,           
all other corrections
ephemerides of solar system bodies                             
relativistic light deflection

can be obtained
from fit to data
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accurate to 10 μas
10”

Fundamentals of Astrometry
Kovalevsky & Seidelmann, Cambridge  University Press, 2004

Hipparcos Catalogue
Vol 1: Introduction and Guide to the Data, ESA, 1997

A Practical Relativistic Model for Microarcsecond Astrometry
in Space
S. Klioner, AJ 125, 1580, 2003

Literature:

good introductory book

epoch transformations

application to GAIA

74



75



Microarcsecond Astrometry
and Beyond...

Sabine Reffert
Landessternwarte Heidelberg, Germany

If you your astrometric measurement accuracy
was better than 1 micro-arcsecond:

- Which additional steps in the data reduction would you have to take?
- Which additional phenomena would be present in your data?
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Recap: Astrometric Effects
absolute differential

aberration 20.5” 3 mas

light time delay typically 10-100 μas,
extreme 100 mas same as absolute

gravitational light deflection 1.75” typically 10 μas

parallax 772 mas same as absolute

epoch transformations up to 10”/year same as absolute
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Sub-Microarcsecond Data Reduction 
For sub-mircoarcsecond accuracy, all needed input
parameters would have to be of adequate precision:

positions, parallaxes, proper motions 
Earth position and velocity
ephemerides of solar system bodies                            

The reduction steps would be the same as before.
The formulae for light time delay, parallax and epoch 
transformations are geometrically exact.
The formulae for aberration and gravitational light 
deflection had to be used in their relativistic forms 
already for microarcsecond astrometry.
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Additional Astrometric Effects?

But before we get to those effects, consider the following:

YES!

Data = Signal + Noise
Whether to call something a scientifically interesting 
astrometric signal or disturbing astrometric noise entirely 
depends on the measurement accuracy and the questions
you ask. E.g., proper motion could either be an interesting 
quantity to measure in its own right, or disturbing when you 
look for the much smaller astrometric signature of a planet.
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Additional Astrometric Effects

galactic orbits -> secular aberration

non-stationary gravitational potential

lumpiness of gravitational potential

stellar surface structure

gravitational waves

...?
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Galactocentric Acceleration

• stars in the Galaxy move on orbits around the galactic 
center 

• circular velocity of Sun about v=200-220 km/s,            
distance r=8.5 kpc from center                                                                 
-> needs 250 Myears for one orbit, has made ≈20 orbits

• galactocentric acceleration a=v2/r for Sun is about           
0.2 nm/s2  or  6 mm/s/yr

• Sounds small, but which                                        
effects does that introduce?

r 220 km/sa
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Galactocentric Acceleration
• barycenter of solar system is zero-point of our coordinate 

system
• if there is acceleration, it will lead to an apparent proper 

motion of quasars and other distant objects of the order 
of 4 μas/yr, independent of distance:

Kopeikin & Makarov,
2006, AJ 131, 1471
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Galactocentric Acceleration

• it could also be viewed as secular aberration, because it is 
caused by an (unmodeled) motion of the observer

• alternatively, one could think about using a different 
coordinate system (with the center of the Galaxy as origin 
instead of the Sun)

• would required precise knowledge                               
of velocity of Sun and its                                           
galactocentric distance

r
220 km/sa

Signal or Noise?
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Galactocentric Acceleration

• there is also a component due to peculiar motion of the 
Sun with respect to the local standard of rest (LSR)

• however, this motion is about 20 km/s, a factor 10 smaller 
than the circular velocity

• becomes relevant at sub-microarcsecond astrometric 
accuracy 

r
20 km/s

a 220 km/s
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Non-stationary Gravitational Potential
• on average the gravitational field of the Galaxy is constant, 

but on smaller scales, it is variable because objects move

• because light is bent in gravitational fields, this gives rise 
to a small random gravitational light deflection effect

• introduces astrometric jitter, similar to atmospheric seeing

• Sazhin (1996) estimates the astrometric jitter to have a 
characteristic amplitude of 1-2 μas and a characteristic 
time scale of tens of years, but there are outliers with 
much larger astrometric jitter

Sazhin 1996, Astronomy  Letters 22, 573

astrometric catalogs at microarcsecond level 
have to be revised every 10-30 years!!!
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Lumpiness of Gravitational Potential
• the gravitational potential is not smooth; there is structure 

stemming from spiral arms, molecular clouds, clusters, and 
possibly black holes

• they will all slightly change the apparent direction to a star 
through light bending

• example1: Taurus cloud at 140 pc, assume mass of 2・105 M⨀  

-> bends light by an additional 0.1 μas maximum

• example2: assume black hole at 10-100 pc, mass of 100 M⨀     
-> bends light by microarcseconds

difficult to correct for, 
introduces sub-microarcsecond astrometric jitter
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Stellar Surface Structure

Credit: 
Peter Sütterlin,

DOT Team, SIU

sunspot with boiling granulation

rotating Sun

Credit: NASA

solar granulation

Credit: 
MSFC/NASA

Stars have spots, plages,
and granulation. This all
introduces shifts in their

photocenters.

87



Pulsation Patterns

various non-radial pulation patterns

m=-4 p-mode oscillation

Credit: R.H.D. Townsend

Credit: E.J. Kennelly

l=3, m=0 l=10, m=2 l=3, m=3

l=10, m=0 l=10, m=6 l=10, m=10

Pulsations can also induce shifts
in the photocenter of a star!
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Typical Sizes of Astrometric Jitter

Eriksson & Lindegren,  A&A 476, 1389, 2007

for a distance of 10 pc lower limit
(only from granulation)

upper limit
(photometric variability)

early main-sequence 0.03 μas 12 μas

mid-late main-sequence 0.01 μas 1-3 μas

 K giants 5 μas 20-50 μas

F supergiants 10 μas 0.4-2 mas

M supergiants 30-300 μas 10 mas
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Simulations of Granulation

Svensson & Ludwig, ESA SP-560, 979, 2005
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!t=105 sec

simulated red giant granulation simulated astrometric jitter

at 10 pc, the amplitude is about 50 μas
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Gravitational Waves

Credit: K. Thorne (Caltech), T. Carnahan (NASA GSFC) 

gravitational wave emitted
 by a rotating binary

• gravitational waves are 
periodic fluctuations in 
the curvature of 
spacetime

• so far only indirect 
confirmation of the 
existence of gravitational 
waves

• gravitational waves are 
emitted if a not 
spherically symmetric 
mass distribution is 
accelerated
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Gravitational Waves

• gravitational waves passing over a telescope will cause a 
time-variable shift in the position of an observed object, i.e. 
an apparent proper motion

• angular displacement is of order h, the magnitude of the 
gravitational wave at the telescope

• observed coherently, for all sources on the sky

• current constraints on gravitational wave energy come from 
Big Bang nucleosynthesis and millisecond pulsar timing

• based on those, expected proper motions are smaller than  
0.1 μas/yr and 0.002 μas/yr, respectively
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Gravitational Waves
• however, let’s assume GAIA will measure 1 billion objects 

with an accuracy of 100 μas/yr, i.e. it would be sensitive 
to systematic motions of the order of 3 nano-arcsec

• this would place the tightest limit on gravitational wave 
energy ever obtained, at least in the follwing frequency 
band:

• if astrometric measurements are taken over a number of 
years T, one is sensitive to gravitational wave frequencies 
of 10-8 - 10-11 Hz (1/T)

• so it’s totally possible (although not likely)that GAIA will 
not only set the tightest limit, but for the first time 
detect gravitational waves directly 
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Summary: Size of Additional Effects

astrometric jitter

galactic orbits 4 μas/yr

non-stationary gravitational potential ≈ 1-2 μas

lumpiness of gravitational potential < 1 μas

stellar surface structure 0.01 μas - 10 mas

gravitational waves < 0.1 μas/yr

.....??? ???
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Astrometry: Practical Session

Sabine Reffert
Landessternwarte Heidelberg, Germany

• learn how to describe the photocenter motion of 
a star with an unseen companion

• fit an astrometric model to simulated, 2-dim 
astrometric measurements

• play a little bit with the program to get a feeling 
for the various effects and relevant numbers

In this session, you will:
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Modeling Photocenter Motion
Assume that you have all 7 orbital parameters describing 
binary orbital motion:

- period P

- periastron time T0

- eccentricity e

- longitude of periastron ω

- semi-major axis a1

- inclination i

- ascending node Ω

x(t)

y(t)

How can you calculate x(t) and 
y(t) for all times, describing 
the photocenter motion?
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Plane of Orbit and Tangential Plane

i

ωΩ

Credit: W.D. Heintz
‘Double Stars’, dordrecht

ω: longitude of periastron

i: inclination i

Ω: ascending node

= tangential plane
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Kepler Equation

the first step is to solve the Kepler equation to determine 
the true anomaly:

M =
2πt

P
M: mean anomaly

M = E − e · sinE E: eccentric anomaly

tan
ν

2
=

√
1 + e

1− e
· tan

E

2
ν: true anomaly

transcendental 
Kepler Equation
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Elliptical Orbit

Credit: W.D. Heintz
‘Double Stars’, dordrecht

circle with radius a

elliptical orbit

νE

E: elliptical anomaly

ν: true anomaly

a: semi-major axis

e: eccentricity
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Kepler Equation

from the eccentric anomaly, one can calculate the time-
dependent factors fx(t) and fy(t):

fx(t) = cosE − e

fy(t) =
√

1− e2 · sinE

now, the position x(t) and y(t) can be derived from:

x(t) = B · fx(t) + G · fy(t)
y(t) = A · fx(t) + F · fy(t)

A, B, F and G are the Thiele-Innes constants
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Thiele-Innes Constants

the Thiele-Innes constants are just another 
parameterization of the orbital parameters a, ω, i, and Ω:

A = a(cos ω cos Ω− sinω sinΩ cos i)
B = a(cos ω sinΩ + sinω cos Ω cos i)
F = a(− sinω cos Ω− cos ω sinΩ cos i)
G = a(− sinω sinΩ + cos ω cos Ω cos i)

the unit of A, B, F and G is the same as those of a,
which could be either [AU] or [mas]
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Simulation & Fitting Program

program simulates 2-d astrometric measurements including 
proper motion, parallax and orbital motion and errors,
then tries to fit for the relevant 12 parameters
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Simulation & Fitting Program

start program with 
              idl> go
you can modify parameters in the program ‘go.pro’ in the 
section ‘set input parameters’

alternatively, you can run the program with an input file:
              idl> go,’epseri’
which will read input data from ‘epseri.input’. 
You can add additional input files as you wish.
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But before it will work...

... you have to finish writing ‘get_thiele_innes.pro’!

A = a(cos ω cos Ω− sinω sinΩ cos i)
B = a(cos ω sinΩ + sinω cos Ω cos i)
F = a(− sinω cos Ω− cos ω sinΩ cos i)
G = a(− sinω sinΩ + cos ω cos Ω cos i)
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Summary of Exercises
1. Finish writing thiele_innes.pro!

2. How many measurements do you need to get masses           
to a few percent, with reasonable accuracy (default)?

3. How accurate do 50 measurements of ε Eri have to be 
to get masses to a few percent?

4. How accurate can you get the mass when you observe 
only half an orbit? Does it help to make those 
measurements more precise?

5. How good do the starting values have to be? I.e., are 
there many local minima?

6. How big would the astrometric signature of Jupiter 
around the Sun be when viewed from a distance of 10pc?
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