

NPOI and MROI

David Buscher University of Cambridge

Interferometry is opening up access to a unique discovery space

You want to use the best instrument to do your science

Van Boekel et al (2004).

There is a confusing "array" of interferometers to choose from

You can increase your ability to choose the right interferometer by understanding the <u>why</u> and the <u>how</u> of 2 arrays

NPOI

A key science motivation for NPOI and MROI is the ability to make <u>true images</u>

Parametric imaging

Model-independent imaging

Model-independent imaging allows us to tell if our models are wrong

SED of IRC+10216: spherically symmetric model (Ivezic & Elitzur, 1996)

Actual distribution of 2 micron flux (Tuthill et al, 2000)

Modelfitting becomes <u>degenerate</u> if our models are complex

We need to be able to make images rapidly

Imaging needs many telescopes

4 telescopes

6 telescopes

8 telescopes

We need to get significant amounts of phase information

To do useful imaging, we must work with low visibilities

Baseline bootstrapping makes use of a chain of short baselines to find fringes on long baselines

The Navy Prototype Optical Interferometer is essentially two co-located arrays

Wide-angle astrometry requires the baselines to be continuously monitored

The 2 (3) imaging siderostats are movable to give a baselines 19-79(99)m

The beam combiner provides all 15 baselines from a 6-element array

"Self-phase-referencing" allows <u>complex</u> <u>visibilities</u> to be measured

Imaging is used for a variety of stellar astrophysics

Wide-angle astrometry at the 16mas level has been achieved

To use NPOI contact Don Hutter at USNO Flagstaff

- Wavelengths 450-950nm
- Limiting magnitude V=6.1
- In the next few years:
 - Beam compressors increasing aperture to 35cm
 - Keck outriggers?
 - Baselines to 472m?

MROI combines <u>imaging</u> with the <u>sensitivity</u> to access the really interesting classes of target

We only collect a few photons per exposure on faint sources

We cannot simply use large telescopes: AO needs photons for the wavefront sensor

Dual-star systems require nearby bright reference sources

Most interferometers throw away >95% of the photons they collect

Group-delay tracking can track sources 10 times fainter than conventional phase tracking

The MRO Interferometer is being built by a partnership between NMT and Cambridge

With 10 relocatable telescopes, MROI will have unequalled imaging capability

Instantaneuous (u,v) coverage

Array layout

The array is scalable to access both large and small scales

The beam train is optimized for maximum throughput

The delay line can switch between any two stars in the sky in less than three minutes

The group-delay fringe tracker does nearest-neighbour bootstrapping

The science combiner is optimised for signal-to-noise in "speckle mode"

The unit telescopes are due to arrive in early 2010

A phased deployment is envisaged

the faith and the

MROI will be the first interferometer able to image dozens of AGN

Potential Targets vs H magnitude

