## Inner regions of young stellar objects revealed by optical long baseline interferometry

### **Fabien Malbet**



### Laboratoire d'Astrophysique de Grenoble

University of Grenoble / CNRS

### VLTI Summer School - Keszthely 2 June 2008

## Outline

#### Introduction

- Physical conditions in the inner regions of YSOs
- Need for very high angular resolution
- Physical processes

### Infrared interferometry

- Principles and observables
- Instruments available for inner regions studies
- Elements of bibliography

### Inner disk physics

- Sizes of circumstellar structures
- Constraints on disk structure (T, z,...)
- Dust mineralogy
- Gas/dust connection

### Other AU-scale phenomena

- Outflows and winds
- Magnetosphere
- Binaries and multiple systems

### Future prospects

# INTRODUCTION

- Formation of stars, disks and planets
- Physical conditions in the inner regions of YSOs
- Need for very high angular resolution
- Physical processes

## Formation of stars, disks and planets



## Formation of stars, disks and planets



## Formation of stars, disks and planets



## Physical conditions in the close environment of young stellar objects



### Physical phenomena

- Keplerian accretion disk: gas + dust
- Stars from K to B spectral types (4000K to 10000K)
- Strong outflowing wind
- Companions
- Magnetophere
- Protoplanets

### Physical conditions

- Radius ranging from 0.1 AU to 10 AU
- Temperature ranging from 150 K to 4000 K
- Velocity ranging from 10 km/s to few 100 km/s

### At 150 pc (Taurus), this corresponds to : $1\mu m \le \lambda \le 20\mu m$ and spatial scales between 0.5 et 70 mas

## Instrumental requirements

Wavelength domain

Temperature ranges  $\rightarrow \lambda \sim 1$  to 20 µm:

Angular resolution

**Spatial scales** 

| 1.22 λ/D | 0.1 AU | 1AU   | 5AU   | 10AU   |
|----------|--------|-------|-------|--------|
| 75pc     | 1.5mas | 15mas | 70mas | 150mas |
| 150pc    | 0.7mas | 7mas  | 30mas | 70mas  |
| 450pc    | 0.2mas | 2mas  | 10mas | 20mas  |

## Instrumental requirements

Wavelength domain

Temperature ranges  $\rightarrow \lambda \sim 1$  to 20 µm:

Angular resolution

**Spatial scales** 

| 1.22 λ/D | 0.1 AU | 1AU          | 5AUial te | 10AU            |
|----------|--------|--------------|-----------|-----------------|
| 75pc     | 1.5mas | 15mas        | 70mas     | escope          |
| 150pc    | 0.7mas | Tras<br>Eron | 30mas     | tivenas<br>Opt. |
| 450pc    | 0.2mas | 2mas "et     | 10mas     | 20mas S         |



VLTI Summer school 2008 - Inner regions of YSOs revealed by interferometry - F. Malbet



VLTI Summer school 2008 - Inner regions of YSOs revealed by interferometry - F. Malbet

# Infrared and visible Interferometry

- Principles and observables
- Instruments available for YSO studies
- Elements of bibliography on YSO science results

## **Basics of optical interferometry**





## **Basics of optical interferometry**



## **Spatial coherence**



### Zernicke-van Cittert theorem

Visibility = Fourier transform of the brightness spatial distribution

# Visibilities



**Uniform disk** 

Binary with unresolved components

Binary with resolved component

| Facility   | Instrument                   | Wavelength<br>(microns) | # tel.  | Tel.<br>Diam.<br>(m) | Baseline<br>(m) |  |  |  |
|------------|------------------------------|-------------------------|---------|----------------------|-----------------|--|--|--|
|            |                              | Existing fac            | ilities |                      |                 |  |  |  |
| PTI        | V <sup>2</sup>               | H, K                    | 3       | 0.4                  | 80-110          |  |  |  |
| ΙΟΤΑ       | V², CP                       | H, K                    | 3       | 0.4                  | 5-38            |  |  |  |
| ISI        | Heterodyne                   | 11                      | 2 (3)   | 1.65                 | 4-70            |  |  |  |
|            | V <sup>2</sup>               | K                       | 2(A/C)  | 10 (1 0)             | 80 (135)        |  |  |  |
| <b>N</b> I | (nulling)                    | (10)                    |         | 10 (1.0)             |                 |  |  |  |
|            | AMBER: V <sup>2</sup> , CP   | 1-2.5 / spectral        | 3 (8)   |                      | 40-130 (8-200)  |  |  |  |
| VLII       | MIDI: V <sup>2</sup> , V     | 8-13 / spectral         | 2 (4)   | 8.2 (1.8)            |                 |  |  |  |
| CHARA      | V <sup>2</sup> , CP, Imaging | 1-2.5 (/ spectral)      | 2/4-(6) | 1                    | 50-350          |  |  |  |
|            | Future facilities            |                         |         |                      |                 |  |  |  |
| LBT        | V <sup>2</sup> , nulling     | 1-12 µm                 | 2       | 8.4                  | 6-23            |  |  |  |
| MROI       | V <sup>2</sup> , CP, imaging | V, NIR                  | 6 (10)  | 1.4                  | 7.5-340         |  |  |  |

| Facility           | Instrument                   | Wavelength<br>(microns) | # tel.             | Tel.<br>Diam.<br>(m) | Baseline<br>(m) |  |  |
|--------------------|------------------------------|-------------------------|--------------------|----------------------|-----------------|--|--|
|                    |                              | Existing fac            | ilities            |                      |                 |  |  |
| PTI V <sup>2</sup> |                              | H, K                    | 3                  | 0.4                  | 80-110          |  |  |
| Smal               | vapertures                   | H, K                    | 3                  | 0.4                  | 5-38            |  |  |
| ISI                | Heterodyne                   | 11                      | 2 (3)              | 1.65                 | 4-70            |  |  |
|                    | V <sup>2</sup>               | К                       | $\mathcal{O}(A/C)$ | 10 (1 9)             | 80 (135)        |  |  |
|                    | (nulling)                    | (10)                    | 2 (4/0)            | 10 (1.0)             |                 |  |  |
|                    | AMBER: V <sup>2</sup> , CP   | 1-2.5 / spectral        | 3 (8)              | 0.0 (1.0)            | 40-130 (8-200)  |  |  |
| VLII               | MIDI: V <sup>2</sup> , V     | 8-13 / spectral         | 2 (4)              | 8.2 (1.8)            |                 |  |  |
| CHARA              | V <sup>2</sup> , CP, Imaging | 1-2.5 (/ spectral)      | 2/4-(6)            | 1                    | 50-350          |  |  |
| Future facilities  |                              |                         |                    |                      |                 |  |  |
| LBT                | V <sup>2</sup> , nulling 1   | I-12 µm                 | 2                  | 8.4                  | 6-23            |  |  |
| MROI               | V <sup>2</sup> , CP, imaging | J, NIR                  | 6 (10)             | 1.4                  | 7.5-340         |  |  |

| Facility | Instrument                                | t Wavelength (microns) # tel. Tel. Diam. (m) |         | Baseline<br>(m) |                |  |  |  |  |
|----------|-------------------------------------------|----------------------------------------------|---------|-----------------|----------------|--|--|--|--|
|          |                                           | Existing fac                                 | ilities |                 |                |  |  |  |  |
| PTI      | V <sup>2</sup>                            | H, K                                         | 3       | 0.4             | 80-110         |  |  |  |  |
| ΙΟΤΑ     | V², CP                                    | H, K                                         | 3       | 0.4             | 5-38           |  |  |  |  |
| ISI      | Heterodyne                                | 11                                           | 2 (3)   | 1.65            | 4-70           |  |  |  |  |
|          | V <sup>2</sup>                            | K                                            | O(A C)  | 10 (1 0)        | 00 (125)       |  |  |  |  |
| NI       | (nulling)                                 | (10)                                         | 2 (4/0) |                 | 80 (135)       |  |  |  |  |
|          | AMBER: V <sup>2</sup> , CP                | 1-2.5 / spectral                             | 3 (8)   | Large           | apertures      |  |  |  |  |
| VLII     | MIDI: V <sup>2</sup> , V                  | 8-13 / spectral                              | 2 (4)   | 8.2 (1.8)       | 40-130 (8-200) |  |  |  |  |
| CHARA    | HARA V <sup>2</sup> , CP, Imaging 1-2.5 ( |                                              | 2/4-(6) | 1               | 50-350         |  |  |  |  |
|          | Future facilities                         |                                              |         |                 |                |  |  |  |  |
| LBT      | V <sup>2</sup> , nulling                  | 1-12 µm                                      | 2       | 8.4             | 6-23           |  |  |  |  |
| MROI     | V <sup>2</sup> , CP, imaging              | V, NIR                                       | 6 (10)  | 1.4             | 7.5-340        |  |  |  |  |

| Facility          | Instrument                   | Wavelength<br>(microns) | # tel.             | Tel.<br>Diam.<br>(m) | Baseline<br>(m) |  |  |
|-------------------|------------------------------|-------------------------|--------------------|----------------------|-----------------|--|--|
|                   |                              | Existing fac            | ilities            |                      |                 |  |  |
| PTI               | V <sup>2</sup>               | H, K                    | 3                  | 0.4                  | 80-110          |  |  |
| ΙΟΤΑ              | V², CP                       | H, K                    | 3                  | 0.4                  | 5-38            |  |  |
| ISI               | Heterodyne                   | 11                      | 2 (3)              | 1.65                 | 4-70            |  |  |
|                   | V <sup>2</sup>               | К                       | $\mathcal{O}(A/C)$ | 10 (1 0)             | 80 (135)        |  |  |
|                   | (nulling)                    | (10)                    | 2 (4/0)            | 10 (1.0)             |                 |  |  |
|                   | AMBER: V <sup>2</sup> , CP   | 1-2 5 / spectral        | 3 (8)              | 0.0(1.0)             | 40-130 (8-200)  |  |  |
| VLII              | MIDI: V <sup>2</sup> , V     | 8-137 spectral          | 2 (4)              | 8.2 (1.8)            |                 |  |  |
| CHARA             | V <sup>2</sup> , CP, Imaging | 1-2.5 (/ spectral)      | 2/4-(6)            | 1                    | 50-350          |  |  |
| Future facilities |                              |                         |                    |                      |                 |  |  |
| LBT               | V <sup>2</sup> , nulling     | 1-12 µm                 | 2                  | 8.4                  | 6-23            |  |  |
| MROI              | V <sup>2</sup> , CP, imaging | V, NIR                  | 6 (10)             | 1.4                  | 7.5-340         |  |  |

| Facility           | Instrument                                           | Wavelength<br>(microns) | # tel.        | Tel.<br>Diam.<br>(m) | Baseline<br>(m) |  |  |  |  |
|--------------------|------------------------------------------------------|-------------------------|---------------|----------------------|-----------------|--|--|--|--|
|                    |                                                      | Existing fac            | ilities       |                      |                 |  |  |  |  |
| PTI V <sup>2</sup> |                                                      | H, K                    | 3             | 0.4                  | 80-110          |  |  |  |  |
| ΙΟΤΑ               | V², CP                                               | H, K                    | 3             | 0.4                  | 5-38            |  |  |  |  |
| ISI                | Heterodyne                                           | 11                      | 2 (3 <b>D</b> | 1.65                 | 4-70            |  |  |  |  |
|                    | V <sup>2</sup>                                       | K                       |               | 10 (1 0)             | 80 (135)        |  |  |  |  |
| NI                 | (nulling)                                            | (10)                    |               | 10 (1.0)             |                 |  |  |  |  |
|                    | AMBER: V <sup>2</sup> , CP                           | 1-2.5 / spectral        | 3 (8          | 0.0(1.0)             |                 |  |  |  |  |
| VLII               | MIDI: V <sup>2</sup> , V 8-13 / spectral             |                         | 2 (4)         | 8.2 (1.8)            | 40-130 (8-200)  |  |  |  |  |
| CHARA              | HARA V <sup>2</sup> , CP, Imaging 1-2.5 (/ spectral) |                         | 2/4-(6)       | 1                    | 50-350          |  |  |  |  |
|                    | Future facilities                                    |                         |               |                      |                 |  |  |  |  |
| LBT                | V <sup>2</sup> , nulling                             | 1-12 µm                 | 2             | 8.4                  | 6-23            |  |  |  |  |
| MROI               | V <sup>2</sup> , CP, imaging                         | V, NIR                  | 6 (10)        | 1.4                  | 7.5-340         |  |  |  |  |

## **Census of results**

| Object    | Туре  | Instrument           | Band    | Spect. Resol. | Observables         | References          | Object       | Туре  | Instrument     | Band    | Spect. Resol. | Observables         | References |
|-----------|-------|----------------------|---------|---------------|---------------------|---------------------|--------------|-------|----------------|---------|---------------|---------------------|------------|
| FU Ori    | FUOr  | PTI, IOTA, VLTI/MIDI | H, K, N | BB, LR        | V <sup>2</sup>      | 01, 12, 24          | V2508 Oph    | TTS   | KI             | K       | BB            | V <sup>2</sup>      | 14         |
| AB Aur    | HAeBe | IOTA, PTI, CHARA     | H, K    | BB, LR        | V <sup>2</sup> , CP | 02, 04, 06, 10, 22, | AS 205A      | TTS   | KI             | K       | BB            | V <sup>2</sup>      | 14         |
|           |       |                      | ,       |               | , -                 | 23, 25, 36          | PX Vul       | TTS   | KI             | K       | BB            | V <sup>2</sup>      | 14         |
| T Tau N   | TTS   | PTI                  | K       | BB            | V <sup>2</sup>      | 03                  | UX Ori       | HAeBe | KI             | K       | BB            | V <sup>2</sup>      | 15         |
| SU Aur    | TTS   | PTI                  | K       | BB            | V <sup>2</sup>      | 03                  | ZCMa-NW      | HAeBe | KI, VLTI/AMBER | K       | BB, LR        | V <sup>2</sup>      | 15, 34     |
| MWC 147   | HAeBe | IOTA, PTI, VLTI/     | H, K, N | BB, LR        | V <sup>2</sup>      | 03, 04, 08, 35      | HD 58647     | HAeBe | KI             | K       | BB            | V <sup>2</sup>      | 15         |
|           |       | AMBER, VLTI/MIDI     |         |               |                     |                     | HD 146666    | HAeBe | KI             | K       | BB            | V <sup>2</sup>      | 15         |
| V380 Ori  | HAeBe | IOTA                 | Н       | BB            | V <sup>2</sup>      | 04                  | HD 143006    | HAeBe | KI             | K       | BB            | V <sup>2</sup>      | 15         |
| MWC 166   | HAeBe | IOTA                 | H       | BB            | V <sup>2</sup> , CP | 04, 23              | HD 150193    | HAeBe | KI             | K       | BB            | V <sup>2</sup>      | 15         |
| Omega Ori | HAeBe | IOTA                 | H, K    | BB            | V <sup>2</sup>      | 04                  | WW Vul       | HAeBe | KI             | K       | BB            | V <sup>2</sup>      | 15         |
| MWC 863   | HAeBe | IOTA                 | H, K    | BB            | V², CP              | 04, 23              | AS 477       | HAeBe | KI             | К       | BB            | V <sup>2</sup>      | 15         |
| MWC 361   | HAeBe | IOTA                 | H, K    | BB            | V², CP              | 04, 23              | HD 98800B    | TTS   | KI             | K       | BB            | V <sup>2</sup>      | 16         |
| V1685 Cyg | HAeBe | IOTA, PTI, KI        | H, K    | BB, LR        | V <sup>2</sup>      | 04, 06, 10, 15, 25  | BP Tau       | TTS   | KI             | K       | BB            | V <sup>2</sup>      | 17         |
| MWC 1080  | HAeBe | IOTA, PTI            | H, K    | BB, LR        | V <sup>2</sup> , CP | 04, 06, 10, 23, 25  | DI Tau       | TTS   | KI             | K       | BB            | V <sup>2</sup>      | 17         |
| MWC 297   | HAeBe | IOTA, PTI, VLTI/     | H, K, N | BB, MR, LR    | V², CP              | 04, 08, 10, 23, 26, | GM Aur       | TTS   | KI             | K       | BB            | V <sup>2</sup>      | 17         |
|           |       | AMBER, VLTI/MIDI     |         |               |                     | 38                  | LkCa15       | TTS   | KI             | K       | BB            | V <sup>2</sup>      | 17         |
| V1295 Aql | HAeBe | IOTA, PTI            | H, K    | BB, LR        | V², CP              | 04, 08, 10, 23, 25  | RW Aur A     | TTS   | KI             | K       | BB            | V <sup>2</sup>      | 17 33      |
| MWC 614   | HAeBe | IOTA, PTI, VLTI/MIDI | H, K, N | BB, LR        | V², CP              | 04, 08, 09, 23      | V830 Tau     | TTS   | KI             | K       | BB            | V<br>V <sup>2</sup> | 17,00      |
| V594 Cas  | HAeBe | IOTA, PTI            | H, K    | BB            | V <sup>2</sup>      | 04, 08              | TW Hva       | TTS   |                | KN      | BBIR          | V<br>V/2            | 18 31      |
| MWC 275   | HAeBe | IOTA, VLTI/MIDI, KI, | H, K, N | BB, LR        | V², CP              | 04, 09, 11, 15, 23, | V1515 Cyg    | FLIOr | KI             | K K     | BB            | V<br>V/2            | 10, 01     |
|           |       | CHARA                |         |               |                     | 36                  | ZCMa-SE      | FUOr  | KI             | K       | BB            | V<br>V <sup>2</sup> | 10         |
| T Ori     | HAeBe | IOTA, PTI            | H, K    | BB, LR        | V <sup>2</sup>      | 04, 10, 25          | HR 5000      | HAeBe |                | N       | IR            | V<br>\/2            | 20         |
| LkHa 101  | HAeBe | ISI                  | N       | BB            | V <sup>2</sup>      | 05                  | V1647 Ori    | FLIOr |                | N       |               | V<br>\/2            | 20         |
| VV Ser    | HAeBe | PTI                  | K       | BB, LR        | V <sup>2</sup>      | 06, 10, 25          | HD 45677     | HAeBe |                |         | BB            |                     | 21         |
| AS 442    | HAeBe | PTI, KI              | K       | BB, LR        | V <sup>2</sup>      | 06, 10, 15, 25      | MWC 342      | HABO  |                | н       | BB            |                     | 23         |
| DG Tau    | TTS   | KI                   | K       | BB            | V <sup>2</sup>      | 07, 17              | UD 104227    | HAcBo |                | II<br>K | MD            |                     | 23         |
| V1057 Cyg | FUOr  | PTI, KI              | K       | BB            | V <sup>2</sup>      | 08, 19              | Thota1 Ori C | LING  |                |         |               |                     | 21         |
| HD 142527 | HAeBe | VLTI/MIDI            | N       | LR            | V <sup>2</sup>      | 09, 11              | Hop 3 1101   |       |                | N       |               |                     | 20         |
| HD 144432 | HAeBe | VLTI/MIDI, KI, IOTA  | N, K, H | BB, LR        | V², CP              | 09, 11, 15, 23      | V772 Tou A   | TTO   |                |         |               | V<br>\/2            | 29         |
| HD 100546 | HAeBe | VLTI/MIDI            | N       | LR            | V <sup>2</sup>      | 09                  |              | TTC   |                | N K     |               | V<br>\/2            | 32         |
| HD 179218 | HAeBe | VLTI/MIDI            | N       | LR            | V <sup>2</sup>      | 09                  |              |       |                | N K     |               | V <sup>-</sup>      | 33<br>22   |
| KK OPh    | HAeBe | VLTI/MIDI            | N       | LR            | V <sup>2</sup>      | 09                  | DK Tau A     |       |                | n K     | BB            | V <sup>-</sup>      | 33         |
| 51 Oph    | HAeBe | VLTI/MIDI            | N       | LR            | V <sup>2</sup>      | 09                  | DK Tau B     | 115   | KI KI          | n K     | BB            | V-                  | 33         |
| CQ Tau    | HAeBe | PTI                  | K       | BB, LR        | V <sup>2</sup>      | 10, 25              | AA Iau       | 115   | KI             | ĸ       | BB            | V <sup>2</sup>      | 33         |
| MWC 120   | HAeBe | PTI                  | K       | BB, LR        | V <sup>2</sup>      | 10, 25              | RVV AUF B    | 115   | KI             | ĸ       | BB            | V <sup>2</sup>      | 33         |
| HD 158352 | HAeBe | PTI                  | K       | BB            | V <sup>2</sup>      | 10                  | V1002 Sco    | TIS   | KI             | K       | BB            | V <sup>2</sup>      | 33         |
| MWC 480   | HAeBe | PTI, KI, IOTA        | K, H    | BB, LR, MR    | V², CP              | 10, 23, 25, 30      | V1331 Cyg    | 115   | KI             | K       | RR            | V <sup>2</sup>      | 33         |
| MWC 758   | HAeBe | PTI, VLTI/AMBER      | K, H    | BB, LR        | V², CP              | 10, 15, 25, 37      | DI Cep       | 115   | KI             | K       | RR            | V <sup>2</sup>      | 33         |
| HD 141569 | HAeBe | PTI                  | K       | BB            | V <sup>2</sup>      | 10, 15              | BIM And      | 115   | KI             | K       | RR            | V <sup>2</sup>      | 33         |
| RY Tau    | TTS   | PTI                  | K       | BB            | V², CP              | 13, 23              |              |       |                |         |               |                     |            |
| DR Tau    | TTS   | PTI                  | K       | BB            | V <sup>2</sup>      | 13                  |              |       |                |         |               |                     |            |
| AS 207A   | TTS   | KI                   | K       | BB            | V <sup>2</sup>      | 14                  |              |       |                |         |               |                     |            |

→ 76 young stellar objects observed and published to date,  $\rightarrow$  38 refereed articles

| 1  | Malbet, Berger, Colavita et al.           | 1998 | ApJ, 507, L149   | FU Orionis Resolved by Infrared Long-Baseline Interferometry at a 2 AU Scale                                                                                         |
|----|-------------------------------------------|------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | Millan-Gabet, Schloerb, Traub et al.      | 1999 | ApJ, 513, L131   | Sub-Astronomical Unit Structure of the Near-Infrared Emission from AB Aurigae                                                                                        |
| 3  | Akeson, Ciardi, van Belle et al.          | 2000 | ApJ, 543, 313    | Infrared Interferometric Observations of Young Stellar Objects                                                                                                       |
| 4  | Millan-Gabet, Schloerb & Traub            | 2001 | ApJ, 546, 358    | Spatially Resolved Circumstellar Structure of Herbig AE/BE Stars in the Near-Infrared                                                                                |
| 5  | Tuthill, Monnier, Danchi et al.           | 2002 | ApJ, 577, 826    | Imaging the Disk around the Luminous Young Star LkHa 101 with Infrared Interferometry                                                                                |
| 6  | Eisner, Lane, Akeson et al.               | 2003 | ApJ, 588, 360    | Near-Infrared Interferometric Measurements of Herbig Ae/Be Stars                                                                                                     |
| 7  | Colavita, Akeson, Wizinowich et al.       | 2003 | ApJ, 592, L83    | Observations of DG Tauri with the Keck Interferometer                                                                                                                |
| 8  | Wilkin & Akeson                           | 2003 | Ap&SS, 286, 145  | Palomar Testbed Interferometer Observations of Young Stellar Objects                                                                                                 |
| 9  | Leinert, van Boekel, Waters et al.        | 2004 | A&A, 423, 537    | Mid-infrared sizes of circumstellar disks around Herbig Ae/Be stars measured with MIDI on the VLTI                                                                   |
| 10 | Eisner, Lane, Hillenbrand et al.          | 2004 | ApJ, 613, 1049   | Resolved Inner Disks around Herbig Ae/Be Stars                                                                                                                       |
| 11 | van Boekel, Min, Leinert et al.           | 2004 | Nature, 432, 479 | The building blocks of planets within the 'terrestrial' region of protoplanetary disks                                                                               |
| 12 | Malbet, Lachaume, Berger et al.           | 2005 | A&A, 437, 627    | New insights on the AU-scale circumstellar structure of FU Orionis                                                                                                   |
| 13 | Akeson, Walker, Wood et al.               | 2005 | ApJ, 622, 440    | Observations and Modeling of the Inner Disk Region of T Tauri Stars                                                                                                  |
| 14 | Eisner, Hillenbrand, White et al.         | 2005 | ApJ, 623, 952    | Observations of T Tauri Disks at Sub-AU Radii: Implications for Magnetospheric Accretion and Planet<br>Formation                                                     |
| 15 | Monnier, Millan-Gabet, Billmeier et al.   | 2005 | ApJ, 624, 832    | The Near-Infrared Size-Luminosity Relations for Herbig Ae/Be Disks                                                                                                   |
| 16 | Boden, Sargent, Akeson et al.             | 2005 | ApJ 635, 442     | Dynamical Masses for Low-Mass Pre-Main Sequence Stars: A Preliminary Physical Orbit for HD 98800 B                                                                   |
| 17 | Akeson, Boden, Monnier et al.             | 2005 | ApJ 635, 1173    | Keck Interferometer observations of classical and weak line T Tauri stars                                                                                            |
| 18 | Eisner, Chiang & Hillenbrand              | 2006 | ApJ 637, L133    | Spatially Resolving the Inner Disk of TW Hydrae                                                                                                                      |
| 19 | Millan-Gabet, Monnier, Akeson et al.      | 2006 | ApJ 641, 547     | Keck Interferometer Observations of FU Orionis Objects                                                                                                               |
| 20 | Preibisch, Kraus, Driebe et al.           | 2006 | A&A 458, 235     | A compact dusty disk around the Herbig Ae star HR 5999 resolved with VLTI / MIDI                                                                                     |
| 21 | Ábrahám, Mosoni, Henning et al.           | 2006 | A&A 449, L13     | First AU-scale observations of V1647 Orionis with VLTI/MIDI                                                                                                          |
| 22 | Millan-Gabet, Monnier, Berger, et al.     | 2006 | ApJ 645, L77     | Bright Localized Near-Infrared Emission at 1?4 AU in the AB Aurigae Disk Revealed by IOTA Closure<br>Phases                                                          |
| 23 | Monnier, Berger, Millan-Gabet, et al.     | 2006 | ApJ 647, 444     | Few Skewed Disks Found in First Closure-Phase Survey of Herbig Ae/Be Stars                                                                                           |
| 24 | Quanz, Henning, Bouwman, et al.           | 2006 | ApJ 648, 472     | FU Orionis: The MIDI VLTI Perspective                                                                                                                                |
| 25 | Eisner, Chiang, Lane, et al.              | 2007 | ApJ 657, 347     | Spectrally Dispersed K-Band Interferometric Observations of Herbig Ae/Be Sources: Inner Disk Temperature Profiles                                                    |
| 26 | Malbet, Benisty, de Wit et al.            | 2007 | A&A 464, 43      | Disk and wind interaction in the young stellar object MWC 297 spatially resolved with VLTI/AMBER                                                                     |
| 27 | Tatulli, Isella, Natta, et al.            | 2007 | A&A 464, 43      | Constraining the wind launching region in Herbig Ae stars: AMBER/VLTI spectroscopy of HD 104237                                                                      |
| 28 | Kraus, Balega, Berger, et al.             | 2007 | A&A 466, 649     | Visual/infrared interferometry of Orion Trapezium stars: Preliminary dynamical orbit and aperture synthesis imaging of the Theta 1 Orionis C system                  |
| 29 | Lachaume, Preibisch, Driebe, et al.       | 2007 | A&A 469, 587     | Resolving the B[e] star Hen 3-1191 at 10 microns with VLTI/MIDI                                                                                                      |
| 30 | Eisner                                    | 2007 | Nature, 447, 562 | Water vapour and hydrogen in the terrestrial-planet-forming region of a protoplanetary disk                                                                          |
| 31 | Ratzka, Leinert, Henning, et al.          | 2007 | A&A 471, 173     | High Spatial Resolution Mid-Infrared Observations of the Low-Mass Young Star TW Hya                                                                                  |
| 32 | Boden, Sargent, Torres, et al.            | 2007 | ApJ 670, 1214    | Dynamical Masses for Pre-Main Sequence Stars: A Preliminary Physical Orbit for V773 Tau A                                                                            |
| 33 | Eisner, Hillebrand, White, et al.         | 2007 | ApJ 669, 1072    | Near-Infrared Interferometric, Spectroscopic, and Photometric Monitoring of T Tauri Inner Disks                                                                      |
| 34 | Li Causi, Antoniucci & Tatulli            | 2007 | A&A 479, 589     | De-biasing interferometric visibilities in VLTI-AMBER data of low SNR observations                                                                                   |
| 35 | Kraus, Preibisch & Ohnaka                 | 2007 | ApJ 676, 490     | Detection of an inner gaseous component in a Herbig Be star accretion disk: Near- and mid-infrared spectro-interferometry and radiative transfer modeling of MWC 147 |
| 36 | Tannirkulam, Monnier, Millan-Gabet et al. | 2008 | ApJ 677, L51     | Strong Near-Intrared Emission Interior to the Dust Sublimation Radius of Young Stellar Objects MWC 275<br>and AB Aur                                                 |
| 37 | Isella, Tatulli, Natta et al.             | 2008 | A&A 483, L13     | Gas and dust in the inner disk of the Herbig Ae star MWC 758                                                                                                         |
| 38 | Acke, Verhoelst, van den Ancker et al.    | 2008 | A&A in press     | MWC 297: a young high-mass star rotating at critical velocity                                                                                                        |

## **YSOs observed (1998-2008)**

### **YSO** refereed papers





### **YSOs by spectral resolution**



**YSOs by spectral band** 

## **INNER DISK PHYSICS**

- Sizes of circumstellar structures
- Constraints on disk structure (T, z,...)
- Dust mineralogy
- Gas/dust connection

## **Original disk concept**



- Optically thick disk both for inner gas and outer dust
- Simple power-law temperature distribution (T  $\alpha$  r<sup>-0.75</sup>, T  $\alpha$  r<sup>-0.5</sup>)
- Oblique disk heating

→ fits rather well spectral energy distributions (SEDs)

















## Inner region discussion

Inner rim shapes: how sharp is it?

Dust sublimation Isella & Natta (2005, A&A 438, 899) VS Dust settling & grain growth Tannirkulam et al. (2007, ApJ 661, 374)


#### Inner region discussion

Inner rim shapes: how sharp is it?

Dust sublimation Isella & Natta (2005, A&A 438, 899) VS Dust settling & grain growth Tannirkulam et al. (2007, ApJ 661, 374)

Inner hole? but

-optically thick disk beyond the dust sublimation barrier
 e.g. TTS Akeson et al. (2006, ApJ 635, 1173)
 -disk halo with 0.15-0.8 optical depths

C

С

Vinkovic & Jurkic (2007, ApJ 658..462)



#### The geometry of the inner rim

#### The geometry of the inner rim

 If inclined disk: asymmetries (skewness) depending on dust characteristics Tannirkulam et al. (2007, ApJ 661, 374)



#### The geometry of the inner rim

- If inclined disk: asymmetries (skewness) depending on dust characteristics Tannirkulam et al. (2007, ApJ 661, 374)
- Closure phase is a powerful observable to probe such asymmetries Monnier et al. (2006, ApJ 646, 444)



#### **FU** Orionis



VLTI Summer school 2008 - Inner regions of YSOs revealed by interferometry - F. Malbet

#### **FU** Orionis



#### **FU** Orionis



- FU Ori well constrained Quanz et al. (2006, ApJ 648, 472)
- Others like Z CMa appear more extended: background emission or companion? Millan-Gabet et al. (2006, ApJ 645, L77)
- Recent FUOr: V1647 Ori Ábrahám, Mosoni, Henning et al. (2006, A&A 449, L13)

# A tool to probe the radial temperature distribution of disks



Commonly used analytic temperature-power-law disk models ( $T \propto r^{-1/2}$  or  $T \propto r^{-3/4}$ ) cannot describe the measured wavelength-dependence of the apparent size  $\rightarrow$  Detailed physical modeling required

Kraus et al. (2007, ApJ 676, 490)

#### MWC 147: a full disk model to understand NIR and MIR measurements



Kraus et al. (2007, ApJ 676, 490)

#### Effect of extended scattered light





- Ring radius fitting can lead to overestimated sizes
- Careful modeling must be performed including all sources of radiation

#### Vertical structure @ 10 microns



#### Vertical structure @ 10 microns



VLTI Summer school 2008 - Inner regions of YSOs revealed by interferometry - F. Malbet

#### Vertical structure @ 10 microns



VLTI Summer school 2008 - Inner regions of YSOs revealed by interferometry - F. Malbet

#### Dust mineralogy in HAeBe





Van Boekel et al. (2004, Nature, 432, 479)

#### Dust mineralogy in HAeBe



Van Boekel et al. (2004, Nature, 432, 479)

#### Dust mineralogy in HAeBe



Van Boekel et al. (2004, Nature, 432, 479)

#### ... also in T Tauri disks!



Ratzka et al. 2007, A&A in press

#### $\rightarrow$ Inner disks (< 2 AU) have:

-larger silicate grains

-higher fraction of silicates is crystalline (40-100%)

#### 51 Oph: NIR CO overtone emission



Tatulli, et al. (2007, in prep.)

0.15

 $7.10^{-5} M_{\odot}/{
m yr}$ 

7 AU

0.55 AU 88°

78°

Av

Accretion rate

Disk outer radius

Disk inner radius

Inclination

Position Angle

### 51 Oph: NIR CO overtone emission



All observations fitted by the standard disk model! but it seems not to be physically possible

| Parameter         | Best fit Value                |
|-------------------|-------------------------------|
| Distance          | 131 pc                        |
| $R_{\star}$       | $7~R_{\odot}$                 |
| $M_{\star}$       | $3.8 M_{\odot}$               |
| $T_{\rm eff}$     | 10000 K                       |
| Av                | 0.15                          |
| Accretion rate    | $7.10^{-5} M_{\odot}/{ m yr}$ |
| Disk outer radius | 7 AU                          |
| Disk inner radius | 0.55 AU                       |
| Inclination       | 88°                           |
| Position Angle    | $78^{\circ}$                  |

Tatulli, et al. (2007, in prep.)



Tatulli, et al. (2007, in prep.)

2340

0.40

0.35

0.30



Tatulli, et al. (2007, in prep.)





### OTHER AU-SCALE PHENOMENA

- Outflowing winds
- Magnetospheres
- Binaries and multiple systems















#### Nature of Bry in the HAe star HD104237



Disk truncated by magnetosphere

#### Gas within the disk

#### Outflowing wind

Tatulli et al. (2007, A&A 464, 55)

#### Disk/star interaction ?



#### A systematic study of the origin of the BrY emission in Herbig Ae/Be stars



Kraus et al. (2008, A&A in press)

### A systematic study of the origin of the BrY emission in Herbig Ae/Be stars

- magnetospheric accretion
- disk wind
- X-wind or disk wind ?





### A systematic study of the origin of the BrY emission in Herbig Ae/Be stars

- magnetospheric accretion
- disk wind
- X-wind or disk wind ?
- ➡ No correlation with L\* as suggested by Eisner et al. 2007
- We are probing mostly outflows phenomena: Brγ indirect accretion tracer through accretion-driven mass loss?



Kraus et al. (2008, A&A in press)

#### Aperture synthesis imaging of the θ<sup>1</sup> Orionis C system with IOTA



#### HD 98800B: orbit and masses


# FUTURE PROSPECTS



## First steps to imaging



Isella & Natta (2005, A&A 438, 899)

#### Closure phase provides information on departure from centro-symmetry

#### Imaging



Data

ing

5

Ba

Actual

mage simulati 0 ns

4.9e-03

3.4e-03

-1.9e-03

-3.1e-04

## Conclusion

- A major leap in less than 10 years:
  - -76 objects observed so far,

-38 refereed papers (mainly with one baseline broad-band observations, but it is changing).

-new types of observations with spectral resolution, closure phases, imaging

 Observations are mature enough to allow detailed modeling.

## **Open issues in YSO physics**

- NIR emitting zone larger than corotation / magnetospheric radii .
  What implications for disk/star connection?
- Which implications do these measurements have for the initial conditions of planetary formation?
- Need to combine NIR+MIR to secure the disk structure.
- Can we apply this technique to gas disk ?
- Origin of the **BrY emission** ?
- Companions, formation of planets

## A tool to study the inner regions of Young Stellar Objects



From Isella et al. (2007)