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Outline of Talk

Fringe patterns; amplitude and phase
Impact of atmosphere
Techniques to get phase information:

- Phase Referencing
- Differential Phase

- Closure Phase

Closure Phase
- Definition and properties
- Bayesian inference
- Use of CP in model fitting
- Use CP in mapping



Interferometers measure fringes (revision)
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Fringe amplitude and phase depend on FT
of source brightness distribution (revision)

* Recall sinusoidal interferometer output (fringes):
PO 1+ cos(kD), D=sB+d-d,

* This is related to the Fourier Transform of the source
brightness distribution:
P(s, B,d)=1  +Re[V(B)exp(-ikd)],

total

V(B)= V(uv)=]I(a,B)exp(-2mi (au+ Bv))dadp

* 0 is offset from expected white-light fringe delay.
Measure Pat e.g. =0 and d=1/4 to obtain complex V



BUT....

* When we observe through the Earth's atmosphere, the
phase of the fringe pattern is perturbed

* We can still measure the phase, but it no longer tells us
anything about the source



Actual (dispersed) fringe pattern

Delay

>
Wavelength



Fringe motion = phase fluctuations

* Note motions are > 1 fringe




Fringe motion = phase fluctuations

* Note motions are > 1 fringe




The atmosphere

Phasescreen

* A12m x 12m patch of good
atmosphere

* Each contour represents
one radian of phase delay
for light at a wavelength
of 2 microns

Meters

Meters



What this does

* Atmosphere introduces an S Nt ik
unknown phase delay above
each interferometric collector

* Example: suppose only one
aperture affected

* Shifts output of
interferometer away from
expected white-light position

Fringe Signal (arbitrary offset)




Why we can't average the phase

Placid Atmosphere (Ad < &t radians)

100

Histogram

-100 0 100
Measured Fringe Phase (degrees)

Actual Atmosphere (A¢ > &t radians)

Histogram

-100 0 100
Measured Fringe Phase (degrees)

* Even on a good site in the near-infrared, phase
excursions exceed 1 radians



|

CUMUL (percent

Timescale for phase variations

100 rabl? lrlhleCIiOSpl T T T T f—t—T T
90 - /
80 ' ,/
70 f Coherence Time, Paranal
€0 f- Photometric sky only
[ 95y, BO%, GOx = 6.6, 4.4, 2.8 ms
50
40 =
30 -
20 -
10
||l|
[~ r /
0 A/ I L I 1 L L i bt St L I 1
0 5 10 15 20

taulOms (ms—0.5Smu-zenith)

« Coherence time T

1 Il
DEI6T 002 934 £ L4 EnEp

Fourier Phase (Degrees)

Fourier Phases on 3 Baselines

o

100}

20 40 60 80
Speckle Frame #

Interval over which RMS phase change is 1 rad

- Scales as A\*°, so 3ms at 500nm corresponds to 18ms at 2.2um

* Must use short exposures to avoid smeared fringes



Recap

Interferometers measure fringe patterns:
- Amplitude
- Phase: location (in delay-space) of white-light fringe
Fringe amplitude and phase are amplitude and phase of

one Fourier component of the source brightness
distribution

Atmosphere perturbs measured phase by > 1 rad

Timescale for phase perturbations is coherence time

— Tens of milliseconds in NIR

- Need short exposures even if only measuring amplitude




Questions?



Why do we care about phase?

Why don't we just measure the fringe amplitude then?

Answer: Depends on what science you want to do.
Sometimes just the amplitude is enough, often its not.

Aside: atmosphere also affects measured visibility
amplitude

Mitigate by interleaving observations of science object
and unresolved calibrator star



Most of information is in visibility phases (i)

Milliarcseconds
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Without closure phase data, map is nhecessarily
centro-symmetric

With phase information, correct source brightness
distribution is discovered



Most of information is in visibility phases (i)

Amplitudes and phases Phases only



Techniques to recover phase information

* Closure phase (most of this talk & practical session)
* Phase referencing

* Differential phase



Phase Referencing
(Dual Star Interferometry)
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Phase Referencing e.g. PRIMA

Fringes on 2 sources
simultaneously

Track fringes on reference |=| [ |- |
source using BC#1  Lomnor

. )D/ delay §1eam Combiner — 0
Measure amplitude and e
phase of science object e’ |
fringes in BC#2 e s e

together (~10 nm)

Metrology system tells you
phase zero-point for BCH#?2
- measured phase then

equals true visibility phase



Differential phase e.g. AMBER/MIDI

Extra hardware not required

Nearby reference star not required

Measure fringe phase as function of wavelength

Model and remove atmospheric dispersion

— @ =0A) - @A )

ref

Tells you photocentre shift w.r.t A _
(Fourier shift theorem)

Need a model for the source to interpret further



Phase (rad)

Differential Phase Example
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The Closure Phase

P, =@, +& - &
Py3 = (3 + €, - &
Py = @y + &5 - E :
Pt @+ Dy = @, + P + Py

] |

Atmospheric turbulence

Telescope 1

Telescope 2

* Sum of visibility phases
around a closed triangle of
baselines

* Telescope-dependent
errors (e.g. atmosphere)
cancel

Baseline 2-3

Baseline 3-1

Telescope 3



The Bispectrum

* Often more convenient to work with the bispectrum
(a.ka. "Triple product”)
= product of complex visibilities around a closed
triangle of baselines

* Argument of bispectrum is the closure phase



Bispectrum measurements can be averaged

* Successive bispectrum measurements can be averaged
in the complex plane

* Average is useful even if SNR of individual

measurements is low (even if <« 1)
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Recap on Visibility Functions

* FTis linear — V' (componentl + component?2)
= I/ (componentl) + I/ (component2)

- Remember Vis complex

- Use this to predict bispectrum and hence closure phase for
complicated sources




What does a closure phase measure?

* Insensitive to source position
- Unlike visibility phase

* Point-symmetric sources have CP of O or 180°
- Common examples: symmetric disc, equal binary

* CP measures fraction of asymmetric flux

- On the angular scale to which you have resolved the source

-
~ -
B I CP /rad I - F;symm / Fsymm - q’PN VAsym
VSym

- With enough closure phases, you can discover the nature of
the asymmetry



AMBER visibility amplitude
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Recap: closure phase

* Bispectrum is product of complex visibilities around
closed triangle of baselines

- Closure phase is argument of bispectrum

* Bispectrum is "good observable" in presence of
atmosphere

- Can be averaged over many coherence times

* Closure phase measures fraction of asymmeftric flux,
on scale at which you have resolved the source




Questions?



Important Properties of Closure Phases

More robust to calibration error than visibility
amplitude

- Atmospheric turbulence generally does not bias measurement
- Reasonable hope of measurement error reducing as VN
- There can be biases due to chromatic effects (same for
visibility amplitude)
Sensitive to asymmetries in brightness distribution
- Bispectrum real for point-symmetry (¥, = O or 180°)
- Must resolve object to have significant signal
- Critical for validating model fits to visibility amplitude data

- Necessary for imaging (if no phase referencing)



How Much Phase Information?

Closure Phases are not all independent from each other

Number of Closure Phases Number of Fourier Phases
(N)_(NMN—JXN—Q) (N)_(NMN—J)
3) (3)(2) ’ 2 2

Number of Independent Closure Phases

(N;1)_(N—1¥N—2)

Number of Number of Number of Number of Independent Percentage of

Telescopes  Fourier Phases Closing Triangles Closure Phases Phase Information
3 3 1 1 33%
7 21 35 15 1%
21 210 1330 190 90%
27 351 2925 325 93%

20 1225 19600 1176 96%




Using Interferometric Observables

i.e. statistical inference with squared visibilities,
closure phases eftc.

Quantitative interpretation of sparse Fourier-plane
data is an inverse problem:

- What can we infer about the sky brightness distribution given
the data we have measured?

The most useful technique is Bayesian inference:

- Model-fitting (a.k.a. parameter estimation, parametric imaging)

- Mapping (a.k.a image reconstruction)

Will also outline non-Bayesian mapping techniques



Classes of Inference Problems

* Given a hypothesis H, are some data D consistent
with it?
- Related problem is Mode/ Selection. given two competing
hypotheses H and H_, which is best supported by the
data?

* Parameter Estimation can be thought of as
hypothesis testing as well:
- Given a family of hypotheses, identical apart from the

value of some parameter, which is best supported by the
data?



Interpretation of Probability (i)

* Consider hypothesis testing as introduced above

* We can ask "Given a hypothesis H, what is the
probability that our noisy measurement process gave
rise to the observed dataset?”

- We can image a series of repeated trials of the

measurements, each of which would give rise to a different
realisation of the dataset

- No intellectual leap from thinking about different outcomes of
dice throwing or card drawing experiment



Interpretation of Probability (ii)

* But we only have one realisation of the dataset

* We are interested in the Inverse Problem: what can we
say about the validity of the hypothesis given the data?

* A Bayesian would ask "Given the data, what is the
probability that the hypothesis H is true?”

- Requires a broad interpretation of the concept of probability



Bayes' Theorem (i)

A Bayesian would ask "Given the data, what is the
probability that the hypothesis H is true?”

- Willing to interpret probability as reflecting their degree of
belief in a particular hypothesis

Accepting this, we can now use the sum and product rules
for combining probabilities

Hence derive Bayes' Theorem (after Rev. Thomas Bayes):

P(HID,I)=P(D|H, I) - P(H|I)/ P(D|I)
Posterior = Likelihood - Prior / Evidence

I is background information, assumptions

Often, just proportionality is useful:
P(HID, I) OP(DIH, I) - P(H|T)



Bayes' Theorem (ii)

* Posterior probability is what we are interested in knowing
= probability of H given measured dataset

* Likelihood is probability of obtaining our particular
realisation of the dataset given H - we hopefully know
enough about the measurement process to calculate this

* Prior encodes our a priori knowledge about H. Critics of
Bayesian methods have particular problems with this:
- Subjective
- Hard to encode complete ignorance

- But if changing prior alters your conclusions, you need more datal



Hypothesis Testing (Bayesian)

* Usually couched as a Mode/ Selection problem: given
two competing hypotheses H, and H_, which has the

highest posterior probability?

* Usually choose a simple uninformative (as possible)
prior, then model selection boils down to calculating the
likelihood = probability of obtaining measured data
given hypothesis

* Slightly more complicated if competing hypotheses
have different numbers of unknown parameters - but
Bayes' theorem allows this to be handled objectively,
by marginalisation



Assigning Probabilities

* Hypothesis testing requires calculation of the /ikelihood
= prob. of obtaining measured data given hypothesis

* To make progress we must think about the noise mode/
for our dataq, i.e. how to assign the probability of
measuring certain values, given a hypothesis concerning
e.g. parameter(s) we want to infer from the data



Example: Gaussian Noise

Suppose N data x, measurements of a quantity whose
true value is y

Gaussian nhoise, known standard deviation o

P(x) = 1/(0/ (2m)) expl-(x-1)*/(20%)]

What is /ikelihood of dataset {x} given particular value
of p?

By product rule for combining probabilities:

P} W) = TTP(x) = TT (1/(a¥ (2m)) expl-(x-41)?/(20%)]

Often more convenient to work with natural log:
InP = const. - ¥ (x-u)°/(20°)



Gaussian Noise: Bayesian Approach

* From previous slide:
InP = const. - ¥ (x-u)°/(20°)

* Taking a Bayesian approach, for case of a uniform prior
(over a certain range), posterior probability P(u|{x}) is
proportional to likelihood - only likelihood depends on p

* Best estimate of y is given by maximum of the posterior
pdf. This is a Maximum Likelihood method

« Unsurprisingly, P (and In P) is maximised for u_ = (Zx)/N

i.e. the mean of the samples {x} is the best estimator of
the population mean



Gaussian Noise: Posterior pdf

* In[P(ul{x}] for true p=0, o=1:

* As N increases

- Pos'n of peak gets closer to : ———
true @

- Peak becomes sharper

5}

i.e. mean of measurements gives
better estimate of true yas
we acquire more data - this is
generally true in parameter

estimation provided you have
designed a good experiment!



Posterior pdf

* In general, the (log) posterior pdf may be
- Asymmetric
- Multi-modal i.e. have multiple peaks
» In the region of a maximum X , we can always perform a

Taylor expansion (note 1*! derivative is zero):
INIPCXI03)] = LOXIER) = LX) + & dPL/AX], o (X-X Y + ...

(now using X, rather than p, as symbol for parameter under test)

* Taking the exponential again:
P(XI{x}) A exp[3 d’L/dX?|, o(X-X )’]




Posterior pdf

* So after Taylor expansion of In P we have:
PCXI{x}) = A exp[7 d’L/dX?|,o(X-X )]

X=X0
* We've approximated the posterior as a Gaussian pdf
- Withu=X, o, = (-d’L/dX?|,_ )"

X=X0
- Hence interval [X -o,, X +0,] contains approximately 68.3% of
the posterior probability; [X -20,, X +20, ] contains 95% etc.

- i.e. 0, gives the “error bar” on the parameter estimate X_

* In the Gaussian noise example, approximation is exact
- d’L/dX?|, . =-N/¢°

X=X0

- Best estimate of mean of Gaussian process is (Zx)/N + o//N



Chi-square Fitting

If we have N data points (RVs) y(x)with independent
Gaussian errors o, maximum likelihood model-fitting
corresponds to minimising chi-squared. To see this:-

P(y.|{a}) O exp[-(y-y(x {a}))*/(207)],
where y(x {a}) is model-predicted value given params {a}

Likelihood of dataset {y} given particular {a} is:
P({y}l{a}) = TT P(y) O TT exp[-(y-M(x {a}))*/(20°)]

Maximising P is equivalent to maximising In P, given by:
InP = const. - X(y-yx {a}))?/(20°) = const. - °/2

Obviously, maximising -x°/2 is the same as minimising y°



Model-fitting in practice

Lots of literature about how to minimise y° (and other
merit functions)
Can choose to minimise x* even if 0.'s are not Gaussian,
but:

- No longer a maximum-likelihood estimate

- Cannot legitimately perform chi-square goodness-of-fit test

Distinction between problems that are linear in {a} and
those that are not - usually non-linear for OI

Beware of:

- May be several local minima in x*({a})

- Unhelpful topology of ¥° hyper-surface



Interpretation of best-fit i’

Models with unlikely y*/v values (say 3-5) are often
described as "acceptable”

Slightly high y* may be wholly or partly due to
underestimated or non-normal ¢.'s

May also indicate that there is some element of the
physics that is unmodelled, but model may still be useful:
- Good fit over some range(s) of x

- Probably captures some physics, can form basis for more
realistic model

- Make useful/testable predictions

Conversely y*<<1 suggests over-complex model is fitting
noise and/or data/bins not independent



Model Fitting with Closure Phases

* Conventional techniques used to fit model for source
brightness distribution fo measured visibility
amplitudes and closure phases/bispectra

- Least-squares (only if equally-sized errors)

- Bayesian: minimise negative log posterior probability
L= Prior + Z (D-M(a))*/(207)

by varying vector a of model parameters

» Here D is Squared Visibility or Closure Phase (D-M calculated
modulo 2)

* Model is either:

- Sum of uniform discs, elliptical Gaussians etc.

- Output of radiative transfer code



Recap: Bayesian Model-fitting

Recall Bayes' Theorem:

P(HID, I) = P(D|H, I)- P(H|I) / P(D|T)

Posterior = Likelihood - Prior / Evidence
If we have data with independent Gaussian errors,
maximum likelihood model-fitting corresponds to
minimising chi-squared.

For sparse Fourier plane data, the chi-squared hyper-
surface often has unhelpful topology

We can derive error bars on fitted parameters from
the shape of the peak in the posterior pdf




The Imaging Problem

Suppose we wish to reconstruct a pixellated (model-
independent) image instead

Sampling of the (u,v) plane is necessarily incomplete

In other words we have only measured some of the
spatial frequencies (given by B/A) in the sky
brightness distribution

Unless we do phase referencing, the phase of each
measured visibility is unknown

We only have linear combinations of the visibility
phases = closure phases



Sampling

We have sampled the visibility VVat various points (u,v)

In other words we have measured the product of FT(sky
brightness) and a sampling function S(u,v) = sum of delta
functions

We can invert this to give a dirty image

By the convolution theorem, the dirty image is the convolution
of the true sky brightness with the dirty beam

T
Sw,v)V(u,v)- 15800V =0801
Dirty Dirty

Image beam
The dirty beam is the Fourier Transform of the sampling
function S(u,v)



Deconvolution in Principle

There are an infinite number of maps that fit the data
Most of these are physically unreasonable
Need to use prior knowledge

Universal:
- Positivity
- Finite extent (support)
CLEAN-specific
- Map consists of a relatively small number of point sources
(convolved with a clean beam)

MEM-specific

- Map has a compressed range of pixel values

- i.e. map is smooth in some sense



Deconvolution Does Work!




Mapping with Closure Phases:
(a) Iterative Deconvolution

* Closure phases used as a constraint in an iterative
scheme

- Assignh some phases consistent with the closure phases using
a model

- Fourier Invert— dirty map

- Deconvolve dirty map (e.g. CLEAN)— new model
- Start over with new model

- Unless procedure has converged



Why do iterative schemes converge?

In early iterations, models do not fit data perfectly
- Generally over-simplified

model = true sky + “error distribution”

"Error distribution” produces errors in phases
assigned to the data

Hence get spurious features in dirty map. But these
are

- Weak
- Spread over a large area

Hence don't get incorporated into new model
Deconvolution filters out the error distribution



Mapping with Closure Phases:
(b) Fitting with Regularization

* Fit model consisting of pixel values to visibility
amplitude and closure phases
* No unique solution, so constrain using prior knowledge:
- Positivity
- Limited Field of View
- Regularization term to favour "simple” solutions
* e.g. Maximum Entropy: compressed range of pixel values
* e.g. local smoothness

- Note that the iterative schemes outlined previously
incorporate prior knowledge implicitly



Maximum Entropy (MEM/Maxent)

Fit pixellated model (I,) to data with the extra

constraint that the “entropy” S is maximised

5=-% Ikln/\‘r/l—"

k

Produces image with a compressed range of pixel
values
- Hence image is "smooth” (but not locally)

M, are pixel values for default image

- Allows specific prior knowledge to be incorporated

In practice constraints are maximum entropy and that
x> has its expected value, so maximise oS - ¥%/2



Entropic Prior

Monkeys throw a large number, M, of balls into N buckets
(flux quanta into pixels).

Probability that they end up with configuration {n} is

v
pr(n, | M, N)= N0
nln,l...

Use Stirling's approximation, log(al) # nlog(n) - n

> On, [
log[pr(n, |M,N)]= - MlogN - Z ’

Let the fraction of peanuts be, . =n, /M

N
loglpr(f; |M,N)]= -MlogN - MY flogf,

i=1
pr(f,|M,N)U exp(aS) “entropic” prior pdf

- - z filog f configurational entropy



Fitting with regularization in practice

Want to avoid doing inverse transform from data to
model space (missing phase information)

Start in model space, with initial (default) image
Calculate merit function (S and ¥2 for MaxEnt)

Determine improved model (gradient search, or model-
space algorithm)

Iterate



Milliarcsec
& .

Available OI imaging codes

Building Block Method

Milliarcsec
& .
Milliarcsec
o .

0 -10
Milliarcsec

BSMEM (Cambridge) Building Block Method (Bonn) MACIM (Caltech)

* Also MIRA (Lyon;this school) and Wisard (ONERA)



Image Quality

* Dynamic Range: Ratio of peak brightness to faintest
believable feature
- Limited by errors on visibility data (random, systematic)

- Few 100:1 typical for optical interferometry

* Image Fidelity: How close map is to true image
- Hard to quantify!

- Clearly dependent on (u,v) coverage



Rules of Thumb

* The number of visibility data = number of filled pixels
in the recovered image

* The distribution of samples should be as uniform as
possible

- To aid the deconvolution process.

* The range of interferometer baselines, i.e. B, /B,

max

will govern the range of spatial scales in the map

* There is no need to sample the visibility function

too finely
- For a source of maximum extent 6__, sampling very much finer
than Au #1/8,_, is unnecessary.



Field of View (revision)

The field of view will be limited by:
* Primary beam of the collectors

* Spectral resolution
- OPD < A2/AX must be satisfied for all field angles

- Generally O FOV < [A/B][A/AA]
i.e. (spatial resolution)x(spectral resolution)

* Shortest baseline in the array
- Must sample low spatial frequencies i.e. large scales

* Chosen map size



Conventional vs. Interferometric Imaging
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* Optical HST (left) and 330MHz VLA (right) images of the Crab
Nebula and the Orion nebula. Note the differences in the:
- Range of spatial scales in each image
- The range of intensities
- The complexity of each image
- The field of view as measured in resolution elements
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Recap: Bayesian Mapping

No unique solution - need to use prior knowledge
Implicit prior knowledge: positivity, finite map size

Explicit prior knowledge: regularization term e.qg.
entropy

Several public software packages - most do a good job

I'mage quality is generally limited by poor uv coverage




Concluding Remarks

* Phase information important for unambiguous
interpretation of Fourier plane data

* Several techniques for obtaining phase information in
phase-unstable conditions
- Closure phase
- Differential phase
- Phase referencing (see talk on PRIMA)

* Closure phases/differential phases can be used in
mapping and model-fitting



Spare slides start here



Closure Amplitudes

Combination of amplitudes that is unaffected by
an’renna-bas%d erreTE Vo=

234 measured
V3

V measured
24

lGlel
GG

true
Vi

true
Vi

true
Vi

true
Vi

true
V34

true
V24

Gs|G|
Ga|G|

true
V34 _

true B
V24

Named by analogy with closure phase
Need at least four elements

Can use as an additional constraint in self-calibration, to
correct the amplitudes of the telescope gains
- Usually applied in later iterations only



Self-Calibration

Cornwell & Wilkinson (1981)
Another specific example of above: closure phases used implicitly
intrinsic measured
- (‘9/' B Ej)

Explicitly solves for telescope phase errors &2 Y5 =75
CALIB task in AIPS implements this

Start with sky model: frial image

Adjust telescope errors (corrections) so data is best fit by trial image
- Take proper account of noise on measured amplitudes and phases
Apply these corrections to data

Invert corrected data and deconvolve

If not converged, use resulting map as new trial image and start over



Features of Self-Calibration

Uses a noise model in choosing optimum phases:
- Allows for different SNRs on different baselines
- Allows for different phase stability at different telescopes

- Can specify timescale over which phase errors change

This noise model is wrong for optical/infrared
interferometry

One telescope error is arbitrary

- Assign zero error to a reference telescope

CLEAN/MEM aids convergence in same way as other
iterative schemes




MaxEnt data processing

Object of Study Forward Transform of our  Data space:
measuring Instrument

{d) k=1,...,N

b data

TO{f} = {di)

odel space:

{ﬁ} l =17"‘9 Nobject

Start from “flat” maximum entropy “object”: { /} all equal (a =¥

transform this to get “mock™ data, and x? degree-of-fit
Find new search directions (e.g. Ux?, US) and update { '}

a relaxed from ¥to its most probable value




Differential Phase Example

Prime indicates
~ ~ ~, . corrupted by

A V’ - V’ + V atmospheric piston
|

ine continuum emission only

Measured Interpolated

Flux

If you make assumption about
(e.g., unresolved), then

continuum

can be determined fully

emission

Wavelength
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