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Outline of TalkOutline of Talk

● Fringe patterns; amplitude and phase
● Impact of atmosphere
● Techniques to get phase information:

– Phase Referencing
– Differential Phase
– Closure Phase

● Closure Phase
– Definition and properties
– Bayesian inference
– Use of CP in model fitting
– Use CP in mapping



Interferometers measure fringes (revision)Interferometers measure fringes (revision)
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Fringe amplitude and phase depend on FT Fringe amplitude and phase depend on FT 
of source brightness distribution (revision)of source brightness distribution (revision)

● Recall sinusoidal interferometer output (fringes):
P ∝ 1 + cos(kD), D = s.B + d

1
 – d

2

● This is related to the Fourier Transform of the source 
brightness distribution:

P (s
0
, B, δ) = I

total
 + Re[V (B) exp(-ikδ)],

V (B) = V (u,v) = ∫ I (α, β) exp(-2πi (αu + βv)) dα dβ
● δ is offset from expected white-light fringe delay. 

Measure P at e.g. δ=0 and δ=π/4 to obtain complex V



BUT....BUT....

● When we observe through the Earth's atmosphere, the 
phase of the fringe pattern is perturbed

● We can still measure the phase, but it no longer tells us 
anything about the source



Actual (dispersed) fringe patternActual (dispersed) fringe pattern

Wavelength

Delay



Fringe motion = phase fluctuationsFringe motion = phase fluctuations

● Note motions are > 1 fringe



Fringe motion = phase fluctuationsFringe motion = phase fluctuations

● Note motions are > 1 fringe



The atmosphereThe atmosphere

● A 12m × 12m patch of good 
atmosphere

● Each contour represents 
one radian of phase delay 
for light at a wavelength 
of 2 microns



What this doesWhat this does

● Atmosphere introduces an 
unknown phase delay above 
each interferometric collector

● Example: suppose only one 
aperture affected

● Shifts output of 
interferometer away from 
expected white-light position

Dyck et al. 1995 (IOTA).



Why we can't average the phaseWhy we can't average the phase

● Even on a good site in the near-infrared, phase 
excursions exceed π radians



Timescale for phase variationsTimescale for phase variations

● Coherence time τ
0
:

Interval over which RMS phase change is 1 rad
– Scales as λ6/5, so 3ms at 500nm corresponds to 18ms at 2.2μm

● Must use short exposures to avoid smeared fringes



RecapRecap

● Interferometers measure fringe patterns:
– Amplitude
– Phase: location (in delay-space) of white-light fringe

● Fringe amplitude and phase are amplitude and phase of 
one Fourier component of the source brightness 
distribution

● Atmosphere perturbs measured phase by > π rad
● Timescale for phase perturbations is coherence time

– Tens of milliseconds in NIR
– Need short exposures even if only measuring amplitude



Questions?Questions?

?



Why do we care about phase?Why do we care about phase?

● Aside: atmosphere also affects measured visibility 
amplitude

● Mitigate by interleaving observations of science object 
and unresolved calibrator star

● Why don't we just measure the fringe amplitude then?

● Answer: Depends on what science you want to do. 
Sometimes just the amplitude is enough, often its not.



Most of information is in visibility phases (i)Most of information is in visibility phases (i)

● Without closure phase data, map is necessarily 
centro-symmetric

● With phase information, correct source brightness 
distribution is discovered



Most of information is in visibility phases (ii)Most of information is in visibility phases (ii)

Amplitudes and phases Phases only



Techniques to recover phase informationTechniques to recover phase information

● Closure phase (most of this talk & practical session)
● Phase referencing
● Differential phase



Phase ReferencingPhase Referencing
(Dual Star Interferometry)(Dual Star Interferometry)



Phase Referencing e.g. PRIMAPhase Referencing e.g. PRIMA
● Fringes on 2 sources 

simultaneously
● Track fringes on reference 

source using BC#1
● Measure amplitude and 

phase of science object 
fringes in BC#2

● Metrology system tells you 
phase zero-point for BC#2 
– measured phase then 
equals true visibility phase



Differential phase e.g. AMBER/MIDIDifferential phase e.g. AMBER/MIDI

● Extra hardware not required
● Nearby reference star not required

● Measure fringe phase as function of wavelength
● Model and remove atmospheric dispersion

→  Φ
DP

 = φ(λ) - φ(λ
ref

)

● Tells you photocentre shift w.r.t λ
ref

 
(Fourier shift theorem)

● Need a model for the source to interpret further



Differential Phase ExampleDifferential Phase Example

● From Meilland et al. (2007) A&A 464, 59



The Closure PhaseThe Closure Phase

 Φ12 = φ12 + ε1 - ε2 
 Φ23 = φ23 + ε2 - ε3

 Φ31 = φ31 + ε3 - ε1

Φ12+Φ23+Φ31 = φ12 + φ23 + φ31

● Sum of visibility phases 
around a closed triangle of 
baselines

● Telescope-dependent 
errors (e.g. atmosphere) 
cancel

ε1

ε3

ε2



The BispectrumThe Bispectrum

● Often more convenient to work with the bispectrum 
(a.ka. “Triple product”)
= product of complex visibilities around a closed 
triangle of baselines

● Argument of bispectrum is the closure phase



Bispectrum measurements can be averagedBispectrum measurements can be averaged

• Successive bispectrum measurements can be averaged 
in the complex plane

• Average is useful even if SNR of individual 
measurements is low (even if << 1)



Recap on Visibility FunctionsRecap on Visibility Functions

● FT is linear → V (component1 + component2) 
= V (component1) + V (component2)

– Remember V is complex
– Use this to predict bispectrum and hence closure phase for 

complicated sources

+=



What does a closure phase measure?What does a closure phase measure?

● Insensitive to source position
– Unlike visibility phase

● Point-symmetric sources have CP of 0 or 180°
– Common examples: symmetric disc, equal binary

● CP measures fraction of asymmetric flux
– On the angular scale to which you have resolved the source
– | CP /rad  | ≈ F

asymm
 / F

symm

– With enough closure phases, you can discover the nature of 
the asymmetry

φ
Sym

~V
Asym

~V



Closure Phase ExampleClosure Phase Example

● Deroo et al. (2007)
A&A 474, L45 

● CP -> infer presence of 
inclined dust disk in post-
AGB binary

● Note use of spectral 
dispersion



Recap: closure phaseRecap: closure phase

● Bispectrum is product of complex visibilities around 
closed triangle of baselines
– Closure phase is argument of bispectrum

● Bispectrum is “good observable” in presence of 
atmosphere
– Can be averaged over many coherence times

● Closure phase measures fraction of asymmetric flux, 
on scale at which you have resolved the source



Questions?Questions?

?



Important Properties of Closure PhasesImportant Properties of Closure Phases

● More robust to calibration error than visibility 
amplitude
– Atmospheric turbulence generally does not bias measurement
– Reasonable hope of measurement error reducing as √N
– There can be biases due to chromatic effects (same for 

visibility amplitude)
● Sensitive to asymmetries in brightness distribution

– Bispectrum real for point-symmetry (ΦCP = 0 or 180°)
– Must resolve object to have significant signal
– Critical for validating model fits to visibility amplitude data
– Necessary for imaging (if no phase referencing)



How Much Phase Information? How Much Phase Information? 

Closure Phases are not all independent from each other
Number of Closure Phases Number of Fourier Phases

Number of Independent Closure Phases



Using Interferometric ObservablesUsing Interferometric Observables

● i.e. statistical inference with squared visibilities, 
closure phases etc.

● Quantitative interpretation of sparse Fourier-plane 
data is an inverse problem:
– What can we infer about the sky brightness distribution given 

the data we have measured?

● The most useful technique is Bayesian inference:
– Model-fitting (a.k.a. parameter estimation, parametric imaging)
– Mapping (a.k.a image reconstruction)

● Will also outline non-Bayesian mapping techniques



Classes of Inference ProblemsClasses of Inference Problems

● Given a hypothesis H, are some data D consistent 
with it?
– Related problem is Model Selection: given two competing 

hypotheses H
1
 and H

2
, which is best supported by the 

data?
● Parameter Estimation can be thought of as 

hypothesis testing as well:
– Given a family of hypotheses, identical apart from the 

value of some parameter, which is best supported by the 
data?



Interpretation of Probability (i)Interpretation of Probability (i)

● Consider hypothesis testing as introduced above
● We can ask “Given a hypothesis H, what is the 

probability that our noisy measurement process gave 
rise to the observed dataset?”
– We can image a series of repeated trials of the 

measurements, each of which would give rise to a different 
realisation of the dataset

– No intellectual leap from thinking about different outcomes of 
dice throwing or card drawing experiment



Interpretation of Probability (ii)Interpretation of Probability (ii)

● But we only have one realisation of the dataset
● We are interested in the Inverse Problem: what can we 

say about the validity of the hypothesis given the data?
● A Bayesian would ask “Given the data, what is the 

probability that the hypothesis H is true?”
– Requires a broad interpretation of the concept of probability



Bayes' Theorem (i)Bayes' Theorem (i)

● A Bayesian would ask “Given the data, what is the 
probability that the hypothesis H is true?”
– Willing to interpret probability as reflecting their degree of 

belief in a particular hypothesis
● Accepting this, we can now use the sum and product rules 

for combining probabilities
● Hence derive Bayes' Theorem (after Rev. Thomas Bayes):

P(H|D, I) = P(D|H, I) ∙ P(H|I) / P(D|I)
Posterior =  Likelihood ∙ Prior / Evidence

● I is background information, assumptions
● Often, just proportionality is useful:

P(H|D, I) ∝ P(D|H, I) ∙ P(H|I)



Bayes' Theorem (ii)Bayes' Theorem (ii)

● Posterior probability is what we are interested in knowing
= probability of H given measured dataset

● Likelihood is probability of obtaining our particular 
realisation of the dataset given H – we hopefully know 
enough about the measurement process to calculate this

● Prior encodes our a priori knowledge about H. Critics of 
Bayesian methods have particular problems with this:
– Subjective
– Hard to encode complete ignorance
– But if changing prior alters your conclusions, you need more data!



Hypothesis Testing (Bayesian)Hypothesis Testing (Bayesian)

● Usually couched as a Model Selection problem: given 
two competing hypotheses H

1
 and H

2
, which has the 

highest posterior probability?
● Usually choose a simple uninformative (as possible) 

prior, then model selection boils down to calculating the 
likelihood = probability of obtaining measured data 
given hypothesis

● Slightly more complicated if competing hypotheses 
have different numbers of unknown parameters – but 
Bayes' theorem allows this to be handled objectively, 
by marginalisation 



Assigning ProbabilitiesAssigning Probabilities

● Hypothesis testing requires calculation of the likelihood 
= prob. of obtaining measured data given hypothesis

● To make progress we must think about the noise model 
for our data, i.e. how to assign the probability of 
measuring certain values, given a hypothesis concerning
e.g. parameter(s) we want to infer from the data



Example: Gaussian NoiseExample: Gaussian Noise

● Suppose N data x
i
, measurements of a quantity whose 

true value is μ
● Gaussian noise, known standard deviation σ
● P(x

i
) = 1/(σ√(2π)) exp[-(x

i
-μ)2/(2σ2)]

● What is likelihood of dataset {x} given particular value 
of μ?

● By product rule for combining probabilities:
P({x}|μ) = ∏ P(x

i
) =  ∏ (1/(σ√(2π)) exp[-(x

i
-μ)2/(2σ2)]

● Often more convenient to work with natural log:
ln P = const. - ∑ (x

i
-μ)2/(2σ2)



Gaussian Noise: Bayesian ApproachGaussian Noise: Bayesian Approach

● From previous slide:
ln P = const. - ∑ (x

i
-μ)2/(2σ2)

● Taking a Bayesian approach, for case of a uniform prior 
(over a certain range), posterior probability P(μ|{x}) is 
proportional to likelihood – only likelihood depends on μ

● Best estimate of μ is given by maximum of the posterior 
pdf. This is a Maximum Likelihood method

● Unsurprisingly, P (and ln P) is maximised for μ
0
 = (∑x

i
)/N

i.e. the mean of the samples {x} is the best estimator of 
the population mean



Gaussian Noise: Posterior pdfGaussian Noise: Posterior pdf

● ln[P(μ|{x})] for true μ=0, σ=1:
● As N increases

– Pos'n of peak gets closer to 
true μ

– Peak becomes sharper

i.e. mean of measurements gives 
better estimate of true μ as 
we acquire more data – this is 
generally true in parameter 
estimation provided you have 
designed a good experiment!
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Posterior pdfPosterior pdf

● In general, the (log) posterior pdf may be
– Asymmetric
– Multi-modal i.e. have multiple peaks

● In the region of a maximum X
0
, we can always perform a 

Taylor expansion (note 1st derivative is zero):
ln[P(X|{x})] = L(X|{x}) = L(X

0
) + ½ d2L/dX2|X=X0(X-X

0
)2 + ...

(now using X, rather than μ, as symbol for parameter under test)

● Taking the exponential again:
P(X|{x}) ≈ A exp[½ d2L/dX2|X=X0(X-X

0
)2]
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Posterior pdfPosterior pdf

● So after Taylor expansion of ln P we have:
P(X|{x}) ≈ A exp[½ d2L/dX2|X=X0(X-X

0
)2]

● We've approximated the posterior as a Gaussian pdf
– With μ = X

0
, σ

X
 = (-d2L/dX2|

X=X0
)-1/2 

– Hence interval [X
0
-σ

X
, X

0
+σ

X
] contains approximately 68.3% of 

the posterior probability; [X
0
-2σ

X
, X

0
+2σ

X
] contains 95% etc.

– i.e. σ
X
 gives the “error bar” on the parameter estimate X

0

● In the Gaussian noise example, approximation is exact
– d2L/dX2|

X=X0
= -N/σ2 

– Best estimate of mean of Gaussian process is (∑x
i
)/N ± σ/√N



Chi-square FittingChi-square Fitting

● If we have N data points (RVs) y
i
(x

i
)

 
with independent 

Gaussian errors σ
i
, maximum likelihood model-fitting 

corresponds to minimising chi-squared. To see this:-
● P(y

i
|{a}) ∝ exp[-(y

i
-y(x

i
,{a}))2/(2σ

i
2)],

where y(x
i
,{a}) is model-predicted value given params {a}

● Likelihood of dataset {y} given particular {a} is:
P({y}|{a}) = ∏ P(y

i
) ∝ ∏ exp[-(y

i
-y(x

i
,{a}))2/(2σ

i
2)]

● Maximising P is equivalent to maximising ln P, given by:
ln P = const. - ∑(y

i
-y(x

i
,{a}))2/(2σ

i
2) = const. - χ2/2

● Obviously, maximising -χ2/2 is the same as minimising χ2



Model-fitting in practiceModel-fitting in practice

● Lots of literature about how to minimise χ2 (and other 
merit functions)

● Can choose to minimise χ2 even if σ
i
's are not Gaussian, 

but:
– No longer a maximum-likelihood estimate
– Cannot legitimately perform chi-square goodness-of-fit test

● Distinction between problems that are linear in {a} and 
those that are not – usually non-linear for OI

● Beware of:
– May be several local minima in χ2({a})
– Unhelpful topology of χ2 hyper-surface



Interpretation of best-fit Interpretation of best-fit χχ22

● Models with unlikely χ2/ν values (say 3-5) are often 
described as “acceptable”

● Slightly high χ2 may be wholly or partly due to 
underestimated or non-normal σ

i
's

● May also indicate that there is some element of the 
physics that is unmodelled, but model may still be useful:
– Good fit over some range(s) of x
– Probably captures some physics, can form basis for more 

realistic model
– Make useful/testable predictions

● Conversely χ2<<1 suggests over-complex model is fitting 
noise and/or data/bins not independent



Model Fitting with Closure PhasesModel Fitting with Closure Phases

● Conventional techniques used to fit model for source 
brightness distribution to measured visibility 
amplitudes and closure phases/bispectra
– Least-squares (only if equally-sized errors)
– Bayesian: minimise negative log posterior probability 

L= Prior + Σ (D
i
-M(a))2/(2σ

i
2)

by varying vector a of model parameters
● Here D

i
 is Squared Visibility or Closure Phase (D

i
-M calculated 

modulo 2π)
● Model is either:

– Sum of uniform discs, elliptical Gaussians etc.
– Output of radiative transfer code



Recap: Bayesian Model-fittingRecap: Bayesian Model-fitting

● Recall Bayes' Theorem:
P(H|D, I) = P(D|H, I) ∙ P(H|I) / P(D|I)
Posterior =  Likelihood ∙ Prior / Evidence

● If we have data with independent Gaussian errors,
maximum likelihood model-fitting corresponds to 
minimising chi-squared.

● For sparse Fourier plane data, the chi-squared hyper-
surface often has unhelpful topology

● We can derive error bars on fitted parameters from 
the shape of the peak in the posterior pdf



The Imaging ProblemThe Imaging Problem

● Suppose we wish to reconstruct a pixellated (model-
independent) image instead

● Sampling of the (u,v) plane is necessarily incomplete
● In other words we have only measured some of the 

spatial frequencies (given by B/λ) in the sky 
brightness distribution

● Unless we do phase referencing, the phase of each 
measured visibility is unknown

● We only have linear combinations of the visibility 
phases = closure phases



SamplingSampling

● We have sampled the visibility V at various points (ui,vi)
● In other words we have measured the product of FT(sky 

brightness) and a sampling function S(u,v) = sum of delta 
functions

● We can invert this to give a dirty image
● By the convolution theorem, the dirty image is the convolution 

of the true sky brightness with the dirty beam

● The dirty beam is the Fourier Transform of the sampling 
function S(u,v)

ISVSvuVvuS
FT

∗ℑ=ℑ∗ℑ⇔),(),(

Dirty 
image

Dirty 
beam



Deconvolution in PrincipleDeconvolution in Principle

● There are an infinite number of maps that fit the data
● Most of these are physically unreasonable
● Need to use prior knowledge
● Universal:

– Positivity
– Finite extent (support)

● CLEAN-specific
– Map consists of a relatively small number of point sources

(convolved with a clean beam)
● MEM-specific

– Map has a compressed range of pixel values
– i.e. map is smooth in some sense



Deconvolution Does Work!Deconvolution Does Work!



Mapping with Closure Phases:Mapping with Closure Phases:
(a) Iterative Deconvolution(a) Iterative Deconvolution

● Closure phases used as a constraint in an iterative 
scheme
– Assign some phases consistent with the closure phases using 

a model
– Fourier Invert→ dirty map
– Deconvolve dirty map (e.g. CLEAN)→ new model
– Start over with new model
– Unless procedure has converged



Why do iterative schemes converge?Why do iterative schemes converge?

● In early iterations, models do not fit data perfectly
– Generally over-simplified

● model = true sky + “error distribution”
● “Error distribution” produces errors in phases 

assigned to the data
● Hence get spurious features in dirty map. But these 

are
– Weak
– Spread over a large area

● Hence don’t get incorporated into new model
● Deconvolution filters out the error distribution



Mapping with Closure Phases:Mapping with Closure Phases:
(b) Fitting with Regularization(b) Fitting with Regularization

● Fit model consisting of pixel values to visibility 
amplitude and closure phases

● No unique solution, so constrain using prior knowledge:
– Positivity
– Limited Field of View
– Regularization term to favour “simple” solutions

● e.g. Maximum Entropy: compressed range of pixel values
● e.g. local smoothness

– Note that the iterative schemes outlined previously 
incorporate prior knowledge implicitly



Maximum Entropy (MEM/Maxent)Maximum Entropy (MEM/Maxent)

● Fit pixellated model (Ik) to data with the extra 
constraint that the “entropy” S is maximised

● Produces image with a compressed range of pixel 
values
– Hence image is “smooth” (but not locally)

● Mk are pixel values for default image
– Allows specific prior knowledge to be incorporated

● In practice constraints are maximum entropy and that 
χ2 has its expected value, so maximise αS - χ2/2

∑−=
k

k
k M

IIS ln



Monkeys throw a large number, M, of balls into N buckets 
(flux quanta into pixels). 

Probability that they end up with configuration {ni} is

!...!
!),|(

21 nn
MNNMn M

i
−=pr

Use Stirling’s approximation, log(n!) ≈ n log(n) - n

)exp(),|( SNMfi α∝pr

configurational entropyi
i

i ffS log∑−=

∑
=





−−=

N

i

i
ii M

nnNMNMn
1

loglog)],|(log[pr

Let the fraction of peanuts be, fi = ni / M

∑
=

−−=
N

i
iii ffMNMNMf

1

loglog)],|(log[pr

“entropic” prior pdf

Entropic PriorEntropic Prior



Fitting with regularization in practiceFitting with regularization in practice

● Want to avoid doing inverse transform from data to 
model space (missing phase information)

● Start in model space, with initial (default) image
● Calculate merit function (S and χ2 for MaxEnt)
● Determine improved model (gradient search, or model-

space algorithm)
● Iterate



Available OI imaging codesAvailable OI imaging codes

● Also MIRA (Lyon;this school) and Wisard (ONERA)

BSMEM (Cambridge) Building Block Method (Bonn) MACIM (Caltech)



Image QualityImage Quality

● Dynamic Range: Ratio of peak brightness to faintest 
believable feature
– Limited by errors on visibility data (random, systematic)
– Few 100:1 typical for optical interferometry

● Image Fidelity: How close map is to true image
– Hard to quantify!
– Clearly dependent on (u,v) coverage



Rules of ThumbRules of Thumb

● The number of visibility data ≥ number of filled pixels 
in the recovered image

• The distribution of samples should be as uniform as 
possible
– To aid the deconvolution process.

• The range of interferometer baselines, i.e. Bmax/Bmin, 
will govern the range of spatial scales in the map 

• There is no need to sample the visibility function 
too finely
– For a source of maximum extent θmax, sampling very much finer 

than ∆u ≈1/θmax is unnecessary.



Field of View (revision)Field of View (revision)

The field of view will be limited by:
● Primary beam of the collectors
● Spectral resolution

– OPD < λ2/∆λ must be satisfied for all field angles
– Generally ⇒  FOV ≤ [λ/B][λ/∆λ]

i.e. (spatial resolution)×(spectral resolution)
● Shortest baseline in the array

– Must sample low spatial frequencies i.e. large scales
● Chosen map size



Conventional vs. Interferometric ImagingConventional vs. Interferometric Imaging

● Optical HST (left) and 330MHz VLA (right) images of the Crab 
Nebula and the Orion nebula. Note the differences in the:

– Range of spatial scales in each image
– The range of intensities
– The complexity of each image
– The field of view as measured in resolution elements



Mapping/Model-fitting ExampleMapping/Model-fitting Example

● Mapping and model-fitting are complementary



Recap: Bayesian MappingRecap: Bayesian Mapping

● No unique solution - need to use prior knowledge
● Implicit prior knowledge: positivity, finite map size
● Explicit prior knowledge: regularization term e.g. 

entropy
● Several public software packages – most do a good job
● Image quality is generally limited by poor uv coverage



Concluding RemarksConcluding Remarks

● Phase information important for unambiguous 
interpretation of Fourier plane data

● Several techniques for obtaining phase information in 
phase-unstable conditions
– Closure phase
– Differential phase
– Phase referencing (see talk on PRIMA)

● Closure phases/differential phases can be used in 
mapping and model-fitting



Spare slides start hereSpare slides start here



Closure AmplitudesClosure Amplitudes

● Combination of amplitudes that is unaffected by 
antenna-based errors

● Named by analogy with closure phase
● Need at least four elements
● Can use as an additional constraint in self-calibration, to 

correct the amplitudes of the telescope gains
– Usually applied in later iterations only
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Self-CalibrationSelf-Calibration

● Cornwell & Wilkinson (1981)
● Another specific example of above: closure phases used implicitly
● Explicitly solves for telescope phase errors εI:
● CALIB task in AIPS implements this

)(measuredintrinsic
jiijij εεφφ −−=

• Start with sky model: trial image

• Adjust telescope errors (corrections) so data is best fit by trial image

– Take proper account of noise on measured amplitudes and phases

• Apply these corrections to data

• Invert corrected data and deconvolve

• If not converged, use resulting map as new trial image and start over



Features of Self-CalibrationFeatures of Self-Calibration

● Uses a noise model in choosing optimum phases:
– Allows for different SNRs on different baselines
– Allows for different phase stability at different telescopes
– Can specify timescale over which phase errors change

● This noise model is wrong for optical/infrared 
interferometry

● One telescope error is arbitrary
– Assign zero error to a reference telescope

● CLEAN/MEM aids convergence in same way as other 
iterative schemes



MaxEnt data processingMaxEnt data processing

}{}{ ki dfT =⋅

Object of Study Forward Transform of our
measuring Instrument

model space:

 { fi } i =1,…, Nobject

Data space:

{dk} k=1,…, Ndata

∑
=






 −=
dataN

k k

kk dd
1

2
2

σ
χ

Start from “flat” maximum entropy “object”: { fi } all equal (α = )

transform this to get “mock” data, and χ2 degree-of-fit

Find new search directions (e.g. ∇χ2 , ∇S) and update { fi }

α relaxed from  to its most probable value 



Differential Phase ExampleDifferential Phase Example

Wavelength

Fl
ux

onlyemission continuumline
~~~ VVV ′+′=′

Prime indicates 
corrupted by 
atmospheric piston

Measured Interpolated

If you make assumption about 
V

continuum
 (e.g., unresolved), then 

V
emission

 can be determined fully
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