(c) UCLA Department of Physics and Astronomy Jun 05 08 03:58:48

Imaging at CHARA

On the Fringe VLTI Summer School, Keszthely

05/06/2008

Ettore Pedretti Scottish Universities Physics Association School of Physics and Astronomy University of St Andrews

- John Monnier, University of Michigan
- Ming Zhao, University of Michigan
- Nathalie Thureau, University of St Andrews
- David Berger, University of Michigan
- Ajay Tannirkulan, University of Michigan
- Theo ten Brummelaar, Georgia State University
- Harold McAlister, Georgia State University
- Laszlo and Judith Sturmann, Georgia State University
- and many others...
- This presentation has heavily borrowed from material from John Monnier

VLBA spans 10000 Km

CHARA spans 330 m

CHARA : longest baseline in the infrared

- VLBA = best angular resolution
- CHARA = best angular resolution in the infrared

Instrument	Wavelength	Baseline	Resolution
VLBA	$1 \mathrm{cm}$	$8600~{\rm Km}$	$0.2 \mathrm{mas}$
CHARA	$1.65~\mu{ m m}$	$330 \mathrm{m}$	$1 \mathrm{mas}$

Built and op e rated by Georgia State University (PI: Hal McAlister)

Funded by State of Georgia, National Science Foundation, Keck Foundation

A cartoon of CHARA

Instrument	Magnitude limit	Visibility Precision	Closure Phase Precision
Classic	K = 6.5	6-10%	NA
FLUOR	K = 4 - 5	1% typical	NA
MIRC	H = 4 - 4.5	10% or worse	$0.1 - 0.5 \deg$ (worst case)

- Sensitive to asymmetries in brightness distribution (SKEW)
 - Centro-symmetry yields $\Pi = 0$ or 180 degs
 - Necessary for imaging (if no phase referencing)
- More robust to calibration error
 - Atmospheric turbulence generally does not bias measurement (unlike Visibility^2)
 - Reasonable hope of measurement error reducing as root(N)

MIRC infrared table (not the final design)

MIRC infrared combiner

Fringe sampling - 1

Minimum requirement (Nyquist): 2px/fringe Chosen sampling: 2.5px/fringe @1.5µm

> Detector = PICNIC chip Pixel size = 40µm x 40µm

> > Fibers spacing: two main configurations: 6 telescopes: 2-6-5-4-3 4 telescopes: 2-6-4

Visibility and closure phase

N Telescopes	N Visibilities	N Independent CP
4	6	3
6	15	10

PICNIC camera and optics

- Spatial filtering with single mode fibres.
- Spectral Resolution R~35, 150, 450, using prisms, grism.
- Reduction in sensitivity due to spectral dispersion.

MIRC fringes without cylindrical lens

Lab dispersed fringes (two beams only)

Detail of the VGROOVE

MIRC: an image plane combiner using fibers

Detail of the VGROOVE

MIRC: an image plane combiner using fibers

20

MIRC at CHARA

Importance of group delay tracking

 If fringes are not tracked they can be lost.

If fringes are not acquired in the same coherence time the closure phases are affected.

Improvement in closure-phase error

 Fringe tracker on: The fringes are kept in the coherence interval.

 Closure phase error is three times smaller in average. (Pedretti et al, AO, 2005)

- MIRC is highly automated (this is not the problem).
- Keeping all delay carts in delay range.
 - MUCH HARDER WITH 4 TELESCOPES!
 - Limited by longest E-W baseline.
- Because only a limited sky coverage is possible then also very hard to find bright calibrators.

Sky coverage example from Ming Zhao

26

Sky coverage example from Ming Zhao

- Completely automated -- minimal user input
- Analyze an entire night at once
- Multiple calibration strategies in pipeline
- Input files in fits format (from PICNIC camera)
- Output files as calibrated oifits files

- Pipeline carefully checked against the binary IOTA Peg
 - Still some visibility calibration 'issues'
 - Always advise getting 2 or 3 visits on each target due to visibility calibration problems

Validation

Validation

"Model-fitting produces the high-precision results while the role of image reconstruction is to guide the model".

Anonymous referee

First image of a main-sequence star

Altair (α Aql, V=0.7)

- Nearby hot star (d=5.1pc, SType A7V, T=7850 K)
- Rapidly rotating (v sin i = 240 km/s, ~90% breakup)

Altair Model (β =0.19)

ALTAIR image and model from Ming Zhao

Model of a fast-spinning star

0.1 revolutions/day

 $\beta = 0.25$ radiative $T \propto g^{\beta}$ $\beta = 0.08$ convective

$T \propto g^{\beta}$ $\beta = 0.25$ radiative $\beta = 0.08$ convective

Our model-independent image bears striking resemblance to model prediction

$T \propto g^{\beta}$ $\beta = 0.25$ radiative $\beta = 0.08$ convective

- Our model-independent image bears striking resemblance to model prediction
- Distortion and gravity darkening robustly confirmed

$T \propto g^{\beta}$ $\beta = 0.25$ radiative $\beta = 0.08$ convective

- Our model-independent image bears striking resemblance to model prediction
- Distortion and gravity darkening robustly confirmed
- Temperature profiles more consistent with β=0.19, compared to β=0.25 from theory

$T \propto g^{\beta}$ $\beta = 0.25$ radiative $\beta = 0.08$ convective

- Our model-independent image bears striking resemblance to model prediction
- Distortion and gravity darkening robustly confirmed
- Temperature profiles more consistent with β=0.19, compared to β=0.25 from theory
- Equator is cooler than expected from von Zeipel law
 - Differential Rotation ?

More images of rapid rotator

Time: 0 minutes

Time: 11 minutes

Time: 25 minutes

Time: 45 minutes

The "β Lyrae" system:

- β Lyrae: interacting and eclipsing binary (period 12.9 days)
- B6-8 II donor + B gainer in a thick disk
- V = 3.52, H = 3.35; distance ~300pc

First image of the 12.9-day eclipsing binary β Lyrae

CHARA-MIRC Image

Model

First image of the 12.9-day eclipsing binary β Lyrae

CHARA-MIRC Image

Model

First image of the 12.9-day eclipsing binary β Lyrae

First image of the 12.9-day eclipsing binary β Lyrae

Zhao et al. 2008

First astrometric orbit of

Spots on Stars: Interferometry + Doppler imaging

- First images of main sequence stars besides Sun
 - Temperatures not consistent with von Zeipel law, suggesting differential rotation
- Interacting binaries now accessible
 - Physics of accretion disks in close binaries
- Studies of magnetic fields and star spots underway
 - Combining interferometry + doppler imaging

- Remove "atmospheric piston" and "freezes fringes"
- Longer coherence time and integration time
- Expected improvement in magnitude limit of ~3 4 magnitudes

CHAMP first fringe lock !!

If you do not get fringes in your run buy them in Edinburgh!!

