Dualstar to PHASES	Hardware Setup	Software and Analysis	Performance	Multiple Star Systems	Exoplanets	Recommendations
0 00 000	000000	0	0000000 00	0 00 0000	000	0

PHASES

The Palomar High-precision Astrometric Search for Exoplanet Systems

Matthew W. Muterspaugh¹ Benjamin F. Lane² B. F. Burke³ Maciej Konacki⁴ S. R. Kulkarni⁵ M. M. Colavita⁶ M. Shao⁶

¹Townes Fellow, University of California, Berkeley

²Draper Lab

³MIT

⁴Torun, Poland

⁵Caltech

⁶JPL

PHASES

Berkeley, Draper, MIT, Caltech, JPL, PTI

Dualstar to PHASES ● ○○ ○○	Hardware Setup 0000000	Software and Analysis 0 0	Performance 0000000 00	Multiple Star Systems 0 00 0000	Exoplanets 000	Recommendations 0	
Astrometry Reference Fields							

Reference Fields

- Wide-angle (Global) Astrometry
 - Absolute Positions of Stars on Sky
 - Limited by Atmosphere or Size of Satellite
 - Precisions \approx few mas
 - > 2012: SIM, precisions 4 μas
- Narrow-Angle Astrometry
 - Separations \approx 10-30 arcsec
 - Target and Reference may be physically related. Unimportant for few-year timescale phenomena.
 - Precisions \approx 20-100 μ as.
- Sub-Arcsecond Astrometry
 - Target and Reference physically related Orbital motion can be significant.
 - Precision measured relative to separation.

Dualstar to PHASES • • • • • • • • • • • • •	Hardware Setup 0000000	Software and Analysis 0 0	Performance 0000000 00	Multiple Star Systems 0 00 0000	Exoplanets 000	Recommendations 0	
Dualstar Astrometry							

Dualstar Advantages

- Unbiased Estimators
- Differential Measurements
- Apply Full Angular Resolution of Interferometer to Larger Field Of View (Not limited to Interferometric Field-of-View/Coherence Length/Fringe Packet Size)
- Observable Insensitive to Effective Bandpass/Fringe Packet Shape to high order
- Calibration tied to stability of metrology laser, rather than other astrophysical sources of potentially unknown nature.

Dualstar to PHASES	Hardware Setup 0000000	Software and Analysis 0 0	Performance 0000000 00	Multiple Star Systems 0 00 0000	Exoplanets 000	Recommendations 0	
Dualstar Astrometry							

Dualstar Experiment

At Mark III (Colavita, 1994) and PTI (Shao et al, 1999).

- Differential astrometry on 8-50 arcsec separation pairs
- Starlight separated at telescopes
- Bright star $K \sim 4.5$
- Finite Fringe Lock Lengths: Faint star $K \sim 7$
- $ho \sim 100 \mu$ as repeatability over weeks to months
- 1 Target in PTI sky: 61 Cyg
- ▶ 16 Cyg (with exoplanet!): A few degrees too far north!
- Complex, Occasional Metrology Alignment Drops/Realignments

・ 同 ト ・ ヨ ト ・ ヨ ト

= na0

Dualstar to PHASES	Hardware Setup	Software and Analysis 0	Performance 0000000 00	Multiple Star Systems	Exoplanets 000	Recommendations 0
•00				0000		

PHASES Modification

PHASES Modification: Motivations

Need a Bright Reference Star Nearby:

Much more likely if you target physically associated binaries.

► Need More Science Targets: For bright stars, distribution of binaries peaks at ~ few 100 mas.

(Measurements from Duquennoy & Mayor 1991)

Need a Simpler Instrumental Setup:

Telescopes cannot resolve subarcsecond binaries; split light later. 🚊 🔊 ५०

Dualstar to PHASES Hardware Setup	Software and Analysis	Performance	Multiple Star Systems	Exoplanets	Recommendations
0 0000000 00 0●0	0	0000000	0 00 0000	000	0

PHASES Modification

PHASES Modification: Timeline

(Dyck, Benson, and Schloerb, 1995.)

- Began 2002, (built on many years of dualstar development)
- Routine operations late 2003
- Technique published 2004 (Lane & Muterspaugh, ApJ)
- First Science 2005 (Muterspaugh et al., AJ)

Dualstar to PHASES	Hardware Setup	Software and Analysis o	Performance 0000000 00	Multiple Star Systems o oo oooo	Exoplanets 000	Recommendations 0	

PHASES Modification

PHASES Modification: New Challenges

- Star and Reference light mixed
- New observable, not as clean; new data pipeline and algorithm
- New systematics
- Automation and reliability to enable frequent observing

Dualstar to PHASES	Hardware Setup	Software and Analysis	Performance	Multiple Star Systems	Exoplanets	Recommendations
0 00 000	000000	0	0000000	0 00 0000	000	0

The Palomar Testbed Interferometer

Berkeley, Draper, MIT, Caltech, JPL, PTI

Dualstar to PHASES 0 00 000	Hardware Setup ○●○○○○○	Software and Analysis 0 0	Performance 0000000 00	Multiple Star Systems 0 00 0000	Exoplanets 000	Recommendations 0

Light Collectors

Berkeley, Draper, MIT, Caltech, JPL, PTI

< 6 >

0000000 0 000000 0 000000 0	Dualstar to PHASES	Hardware Setup	Software and Analysis	Performance	Multiple Star Systems	Exoplanets	Recommendations
	0 00 000	000000	0	0000000	0 00 0000	000	0

Light Collectors

Dualstar to PHASES	Hardware Setup	Software and Analysis	Performance	Multiple Star Systems	Exoplanets	Recommendations
0 00 000	000000	0	0000000	0 00 0000	000	0

Light Pipes

National Geographic 2004 "Pictures of the Year"

Berkeley, Draper, MIT, Caltech, JPL, PTI

0 0000000 0 0000000 0 00000 0 00000 0 00000 0 00000 0 00000 0 00000 0 00000 0 00000 0 00000 0 0 0 0 0 0 0 0 0 0 0 0	Dualstar to PHASES	Hardware Setup	Software and Analysis	Performance	Multiple Star Systems	Exoplanets	Recommendations
	0 00 000	0000000	0	0000000	0 00 0000	000	0

Delay Lines

Dualstar to PHASES 0 00 000	Hardware Setup 00000€0	Software and Analysis 0 0	Performance 0000000 00	Multiple Star Systems 0 00 0000	Exoplanets 000	Recommendations 0

Beam Combiners

Berkeley, Draper, MIT, Caltech, JPL, PTI

-

< 6 >

Dualstar to PHASES 0 00 000	Hardware Setup 000000●	Software and Analysis 0 0	Performance 0000000 00	Multiple Star Systems 0 00 0000	Exoplanets 000	Recommendations 0
Hardware Setup:						

Control

Berkeley, Draper, MIT, Caltech, JPL, PTI

3

イロト イポト イヨト イヨト

Dualstar to PHASES	Hardware Setup	Software and Analysis	Performance	Multiple Star Systems	Exoplanets	Recommendations
0 00 000	000000	•	0000000	0 00 0000	000	0

PHASES Data and Reduction

PHASES Data and Reduction

- Fringe fitting: highly oscillatory PDF—processor intensive.
- Fringe Packet Fitting: χ^2 vs. Separation
- Convert Delay Separation to Sky Separation via Baseline
- Sum Oscillatory χ^2 on grid of RA, Dec, Incoherently
- Global minimum: coadd χ^2 over many scans
- Non-global minuma blurred by earth rotation.

Dualstar to PHASES 0 00 000	Hardware Setup 0000000	Software and Analysis ○ ●	Performance 0000000 00	Multiple Star Systems 0 00 0000	Exoplanets 000	Recommendations O		
Important Software Tools								

Useful Tools

- NOVAS/NOVAS-C: Naval Observatory Vector Astrometry Subroutines
 Kaplan and Bangert
 Time Required To Learn: 1 Long, Miserable, Focused
 Weekend
- MPI/MPICH: Multiprocessing interface with simple inter-process communications.
 Time Required To Learn: 1 Cloudy Winter Night, Isolated at the Observatory

・ 同 ト ・ ヨ ト ・ ヨ ト

Dualstar to PHASES o oo ooo	Hardware Setup	Software and Analysis 0 0	Performance •000000 00	Multiple Star Systems 0 00 0000	Exoplanets 000	Recommendations O
Error Budget						

Differential Astrometry: Theoretical Precision

- Baseline *B* measured by wide-angle astrometry.
- Internal delay *d* measured by laser interferometer.
- δa(t, s) nonzero due to two terms:
 - 1. Anisoplanatism: $\delta \vec{s} > 30$ arcsec.
 - 2. Coherence Loss: Temporal turbulence variations.

Berkeley, Draper, MIT, Caltech, JPL, PTI

Dualstar to PHASES 0 00 000	Hardware Setup	Software and Analysis 0 0	Performance	Multiple Star Systems o oo oooo	Exoplanets 000	Recommendations 0

Differential Dispersion

Order of Magnitude: 30 μ as

Use vacuum delay lines or a dispersion compensator!

Dualstar to PHASES 0 00 000	Hardware Setup 0000000	Software and Analysis 0 0	Performance	Multiple Star Systems 0 00 0000	Exoplanets 000	Recommendations 0
Error Budget						

Differential Dispersion

Order of Magnitude: 30 μ as

Again, Use vacuum delay lines or a dispersion compensator!

Dualstar to PHASES	Hardware Setup	Software and Analysis	Performance	Multiple Star Systems	Exoplanets	Recommendations
0 00 000	000000	0	000●000 00	0 00 0000	000	0

Baseline Errors

Berkeley, Draper, MIT, Caltech, JPL, PTI

Dualstar to PHASES 0 00 000	Hardware Setup	Software and Analysis 0 0	Performance	Multiple Star Systems 0 00 0000	Exoplanets 000	Recommendations O

Beam Walk

Berkeley, Draper, MIT, Caltech, JPL, PTI

3

PHASES

Dualstar to PHASES	Hardware Setup	Software and Analysis	Performance	Multiple Star Systems	Exoplanets	Recommendations
0 00 000	000000	0	00000●0 00	0 00 0000	000	0

Starspots and Granulation

Order of Magnitude: $< 8 \ \mu$ as, $< 3 \ \mu$ as

Dualstar to PHASES 0 00 000	Hardware Setup	Software and Analysis 0 0	Performance 000000● 00	Multiple Star Systems 0 00 0000	Exoplanets 000	Recommendations 0
Error Budget						

Other Errors

- Fringe Template (1 µas)
- Scan Rate (1 μas) Δs ≈ 500 mas × cos (2πt/day) Take first derivative, convert sky angle to delay: 20 nm/sec = 5 nm/scan = 10 μas, but cancels by 10×. Second order (curvature) at nano-as level.
- ▶ Global Astrometry (< 1 µas)</p>

Dualstar to PHASES	Hardware Setup	Software and Analysis	Performance	Multiple Star Systems	Exoplanets	Recommendations
0 00 000	0000000	0	0000000 00	0 00 0000	000	0

Observed Precision

Differential Delay Residuals

Berkeley, Draper, MIT, Caltech, JPL, PTI

Dualstar to PHASES 0 00 000	Hardware Setup	Software and Analysis 0 0	Performance ○○○○○○ ○●	Multiple Star Systems 0 00 0000	Exoplanets 000	Recommendations O
Observation I Description						

Observed Precision

13 Pegasi

Berkeley, Draper, MIT, Caltech, JPL, PTI

Dualstar to PHASES 0 00 000	Hardware Setup	Software and Analysis o o	Performance 0000000 00	Multiple Star Systems	Exoplanets 000	Recommendations 0
T : 1 C.						

Triple Stars

Triple Stars: Results

Berkeley, Draper, MIT, Caltech, JPL, PTI

Dualstar to PHASES	Hardware Setup	Software and Analysis	Performance	Multiple Star Systems	Exoplanets	Recommendations
0 00 000	000000	0	0000000	0 • 0 0000	000	0

Quadruple Stars

Quadruple Stars: 88 Tau A

Berkeley, Draper, MIT, Caltech, JPL, PTI

Dualstar to PHASES	Hardware Setup	Software and Analysis	Performance	Multiple Star Systems	Exoplanets	Recommendations
0 00 000	000000	0	0000000 00	0 00 0000	000	0

Quadruple Stars

Quadruple Stars: μ Ori

 $\mu \; {\sf Ori}$

$$\Phi = 91.2 \pm 3.6 \text{ deg}$$

Muterspaugh et al. 2008

ъ

Dualstar to PHASES	Hardware Setup	Software and Analysis	Performance	Multiple Star Systems	Exoplanets	Recommendations
0 00 000	0000000	0	0000000	0 00 0000	000	0

Theory vs. Observation

Triple System Structure: Theory I

Sterzik & Tokovinin 2002

- Mutual Inclinations are key Observable
- Distribution if random orbits: $(1 \cos \Phi)/2$
- More coplanar: fingerprint of structure in molecular cloud

Berkeley, Draper, MIT, Caltech, JPL, PTI

Dualstar to PHASES 0 00 000	Hardware Setup	Software and Analysis O	Performance 0000000 00	Multiple Star Systems	Exoplanets 000	Recommendations O	
Theory vs. Observation							

Random Coplanarity?

Sterzik & Tokovinin 2002: Mutual Inclination Distribution and Formation

Dualstar to PHASES	Hardware Setup	Software and Analysis	Performance	Multiple Star Systems	Exoplanets	Recommendations
0 00 000	0000000	0	0000000 00	0 00 00●0	000	0

Theory vs. Observation

Triple System Structure: Theory II

- Kozai Cycles with Tidal Friction
- Prediction: All short period binaries (< 10 days) have outer companions.
- Prediction: Spikes in Mutual Inclination distribution near 40, 140 degrees.
- Prediction: Planet Orbit/Star Spin Vectors non

Dualstar to PHASES o oo ooo	Hardware Setup 0000000	Software and Analysis 0 0	Performance 0000000 00	Multiple Star Systems	Exoplanets 000	Recommendations 0	
Theory vs. Observation							

Spikes in Distribution?

Fabrycky & Tremaine, 2007 Predictions:

- Spikes Near 40, 140 degrees?
 - 5 systems outside 3-10 day range:
 V819 Her, Algol, η Vir, ξ UMa, ε Hya ABC
 - O systems in 3-10 day but outside 40-140 deg
 - 2 systems in 3-10 day and between 40 and 140 deg:
 μ Ori AB-BaBb, 88 Tau AaAb-Ab1Ab2
 - 3 systems in 3-10 day and near 40 and 140 deg:
 μ Ori AB-AaAb, 88 Tau AaAb-Aa1Aa2, κ Peg
- All Short Period Binaries are in Triples?
 - Tokovinin 2006
 - Deep AO Imaging, pushing visible identification to cross with RV sensitivity.
 - Results Consistent with All in Triples

Dualstar to PHASES	Hardware Setup	Software and Analysis	Performance	Multiple Star Systems	Exoplanets	Recommendations
0 00 000	000000	0	0000000 00	0 00 0000	•00	0

Exoplanets in Binary Systems

Extrasolar Planets: Motivation

Copyright 1999 John Wiley and Sons, Inc. All rights reserved.

Image from Rodriguez et al., 1998

Berkeley, Draper, MIT, Caltech, JPL, PTI

Dualstar to PHASES	Hardware Setup	Software and Analysis	Performance	Multiple Star Systems	Exoplanets	Recommendations
0 00 000	0000000	0	0000000	0 00 0000	000	0

Exoplanets in Binary Systems

Planets In Binaries

Object	a_b (AU)	е	M_{1}/M_{2}	R_t (AU)	Refs
HD 188753	12.3	0.50	1.06/1.63	1.3	1
γ Cephei	18.5	0.36	1.59/0.34	3.6	2
GJ 86	${\sim}20$		0.7/1.0	${\sim}5$	3
HD 41004	${\sim}20$		0.7/0.4	${\sim}6$	4
HD 196885	${\sim}25$		1.3/0.6	${\sim}7$	5

(1) Konacki 2005

(2) Campbell et al. 1988, Hatzes et al. 2003

(3) Queloz et al. 2000, Mugrauer & Neuhauser 2005, Lagrange et al. 2006

(4) Zucker et al. 2004

(5) Chauvin et al. 2006

Dualstar to PHASES o oo ooo	Hardware Setup	Software and Analysis 0 0	Performance 0000000 00	Multiple Star Systems 0 00 0000	Exoplanets 00●	Recommendations O		
Exoplanets in Binary Systems								

PHASES

Berkeley, Draper, MIT, Caltech, JPL, PTI

	Dualstar to PHASES 0 00 000	Hardware Setup 0000000	Software and Analysis 0	Performance 0000000 00	Multiple Star Systems 0 00 0000	Exoplanets 000	Recommendations •
Recommendations							

Recommendations

- Begin With A Reliable, Well Engineered Base System: V² mode should be 99% reliable before adding extra complexity.
- Automate it, procedurize: Necessary for reliability required for time-variable phenomena.
- Don't Push the Threshold of Reference Star Faintness
- Collaborate with RV