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Abstract

Narrow-angle dual-star interferometric astrometry can provide very high accuracy
in the presence of the Earth’s turbulent atmosphere. However, to exploit the high
atmospherically-limited accuracy requires control of systematic errors in measure-
ment of the interferometer baseline, internal OPDs, and fringe phase. In addition,
as high photometric SNR is required, care must be taken to maximize throughput
and coherence to obtain high accuracy on faint stars. This article reviews the key
aspects of the dual-star approach and implementation, the main contributors to the
systematic error budget, and the coherence terms in the photometric error budget.
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1 Introduction

1.1 Astrometry with interferometers

Figure 1 illustrates the fundamental astrometric geometry of a Michelson in-
terferometer. Fringes are detected when the external path delay is equal to
the internal path delay. While the former cannot be directly measured, the
latter can be directly measured with a laser distance gauge. The accuracy
of this measurement is one contributor to the achieved astrometric accuracy.
For ground-based astrometry, the requirement is usually on differential accu-
racy as one switches between target and calibrator stars, and applies for the
duration of the specific measurement sequence.

If the baseline ~B is taken to be the vector connecting the pivots of the two
collectors, then the delay x is given as

x = ~B · ŝ + c, (1)
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Figure 1. Detecting fringes with an interferometer.

where ŝ is the star unit vector, and c is the “constant” term, sometimes in-
corporated into the delay. Strictly, this geometric equation describes the non-
measurable “external delay;” astrometric errors arise when we try to estimate
the external delay via the internal delay and the fringe residual. These errors
can include laser metrology accuracy and its correlation with the starlight
path; fringe measurement accuracy, including SNR; and internal atmospheric
and dispersive effects. The other terms in Eq. 1 also impact accuracy, includ-
ing atmospheric noise and classical refraction that can affect ŝ, and knowledge
and stability of ~B.

1.2 Atmospheric limit to narrow-angle astrometry

Consider a differential astrometric measurement as illustrated in Fig. 2. As-
trometric noise arises as rays from different stars separated by angle θ traverse
different paths through the atmosphere. Intuitively, one would expect the er-
ror to depend on the separation of the beams in the atmosphere, θh, where h
is the atmospheric height, as well as on the amount of overlap of the beams
with respect to instrument extent, B, which would be the telescope diameter,
for a single-telescope measurement, or the interferometer baseline, which is of
interest here. This intuition is indeed correct, and the error behavior becomes
very favorable when θh < B (Shao & Colavita, 1992).
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Figure 2. Schematic differential measurement.

The detailed behavior is shown in Fig. 3. In the very-narrow-angle case, where
θh << B, the error takes the form

ǫ(T ) ∝ B−2/3θ
(
∫

dhC2
n(h)h2

)1/2

T−1/2, (2)

or evaluated for a Mauna Kea turbulence profile,

ǫ(T ) ≃ 300B−2/3θT−1/2. (3)

Of note is that the error is white, i.e., the standard deviation improves with
the square root of the integration time. In addition, the standard deviation is
linear with star separation and has a nearly inverse baseline dependence. Note
also, compared to the usual seeing metric r0 which involves a straight integral
over the turbulence profile, the narrow-angle expression weights high altitude
turbulence as h2. The expression above uses an infinite-outer-scale Kolmogorov
atmospheric model. With a finite outer scale, the error dependence changes
from θB−2/3 to θL

1/3
0 B−1. As an example, for a Mauna Kea turbulence profile,

θ = 15 arcsec, and L0 = 40 m, the error in a T = 1000 sec integration time
is ∼24 µas for a 100 m baseline; and ∼12 µas for a 200 m baseline. These are
very interesting performance levels.

1.3 Implementing a dual-star interferometer

Thus with the long baseline of an interferometer, ten’s of microarcsecond ac-
curacy is possible for measurements made over small fields. In addition, over
small fields, the requirements on baseline knowledge are greatly decreased.
However, the measurements of the two stars must be essentially simultaneous
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Figure 3. Limits to a narrow-angle astrometric measurement.

in order to exploit the common-mode nature of the atmosphere over small
fields. A practical consideration is that small fields mean that the second star
will be faint. Another practical consideration is that interferometers usually
pass only small fields of view. Thus a simultaneous differential measurement
will require the instrument to simultaneously observe two separate fields of
view. This will require an instrument with two separate beam trains, as well
as laser metrology to “tie” the two beam trains together.

These considerations lead to the dual-star approach (Shao & Colavita, 1992),
illustrated schematically in Fig. 4. The keys aspects of the dual-star approach
are:

• Two interferometers, sharing a common baseline and apertures, with laser
metrology to tie them together

• Two stars: one bright (target, nearby); one faint (astrometric reference,
distant)

• Observe target star on first interferometer
· Use as phase reference for stars within its isoplanatic patch; feedforward

to second interferometer
• Observe astrometric reference star on second interferometer
• Work in the infrared (2.2 µm) for its larger isoplanatic angle
· Increases solid angle over which to find astrometric reference stars (∼20 arc-

sec radius)
• Use 2 m class, or larger, apertures to provide sensitivity for adequate sky
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Figure 4. Dual-star optical concept.

coverage for astrometric reference stars.
· AO (D > 2 m ) or fast tip/tilt (D < 2 m) needed to correct aperture

Operationally, beam combiner 1 continually tracks the bright star, providing
the necessary phase referencing. Beam combiner 2 makes the differential mea-
surement, switching between the bright and faint stars. Implications in this
operational scenario on the implementation are that beam combiners 1 and
2 can be different; metrology continuity (or absolute metrology) is required;
and that the star separator has to pass both stars. Other dual-star approaches
are possible; this concept follows from the implementation at PTI (Colavita et
al., 1999), and what had been planned for the proposed Keck Interferometer
outrigger project (cf. Hrynevych, Ligon, & Colavita, 2004).

2 Systematic errors

Perhaps surprisingly, the random atmospheric noise will likely be the least
bothersome term in the end-to-end dual-star error budget. In addition, the
finite SNR of the measurement will be quite important, as the small fields
allowed by phase referencing require faint reference stars. However, astrometry
is very much about the control of systematic errors, and we discuss that below.

A simple two-dimensional sensitivity analysis is useful in understanding the
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requirements. We can write the astrometric equation for a differential mea-
surement, following Eq. 1, as

∆x = ~B · ∆ŝ. (4)

We can rewrite this in two dimensions for estimating the differential angle θ
in terms of length l, phase φ, baseline B as

l + k−1φ = Bθ, (5)

for which a simple sensitivity analysis illustrates the required accuracies:

δθ =
δl

B
+

k−1δφ

B
−

δB

B
θ. (6)

These three terms are OPD measurement noise δl, fringe measurement noise
δφ, and baseline noise δB. Each of these three terms depends inversely on
baseline; in addition, the baseline term is proportional to field-of view.

For the purpose of the following discussion, assume λ = 2.2 µm, θ = 15–
20 arcsec and B = 100 m. Longer baselines are better both for the atmospheric
term, as well as for the systematic terms in Eq. 6; in practice, the baseline
should be made a long as possible, limited by the finite size of the phase-
reference star. Assume our desired accuracy is δθ = 20 µas, and that we
allocate 10 µas to each of the three terms in Eq. 6. Then, δB = 50 µm rms,
and δl = δφ = 5 nm rms.

Below, we do some example suballocations to give a feel for what terms are
important. We also identify mechanisms by which systematic errors get intro-
duced, the magnitudes of the underlying effects, and approaches for mitigating
these effects. We describe these three terms below, starting with the baseline
term.

2.1 Baseline noise

For the assumptions above, the required baseline knowledge is δB = B(dθ/θ)
= 50 µm. We suballocate this amount among the following four terms at 25 µm
each.
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2.1.1 Wide-angle baseline solution

Solving for the wide-angle baseline is a standard task in order to find fringes
with an interferometer. The 25 µm requirement corresponds to 50 mas for our
assumed 100 m baseline. The contributors are:

a) Input star position accuracy: ∼20 mas. The Hipparcos catalog (Perryman,
Lindegren, Kovalevsky, et al., 1997) is the usual source of positions for the
bright stars (it’s complete to V = 7.3) used in a baseline solution. The accuracy
of the catalog today is determined by propagation of errors in the proper
motion estimates. Given positional accuracies of 1–3 mas for epoch 1991.25
and proper motion accuracy of 1–2 mas/yr, we should be able to assume
typical accuracies of 20 mas for epoch 2010 (Zacharias et al., 2004).

b) Wide-angle atmospheric accuracy: <50 mas. For L0 ≪ B, the fringe posi-
tion fluctuations are given by (cf. Roddier, 1981)

σx ≃ 0.42λ
(

L0

r0

)5/6

. (7)

For an L0 = 40 m outer scale and r0 = 20 ms (½ arcsec seeing), σx = 20 µm
rms, or 40 mas rms with a 100 m baseline. With a correlation time of L0/W
for wind speed W , this should average down for a typical integration time.

c) DCR: < 1 µm. For a telescope, DCR (differential chromatic refraction) refers
to image elongation along the zenith direction attributable to the wavelength
dependence of the atmospheric refractivity. For an interferometer, in the limit
of a plane-parallel atmospheric, there is in principle no DCR if internal OPDs
are measured at the same wavelength as the science measurement (or if the
delay lines are in vacuum, as this is usually expressed). The extent to which the
science and metrology wavelengths differ, and the dispersion characteristics of
the atmosphere, set the size of this term. While it’s not significant for wide-
angle astrometry, we’ll return to it below in the context of OPD measurement
errors.

2.1.2 Unmodeled baseline noise

This term in the baseline-noise budget addresses the “mechanical” quality of
the wide-angle baseline. It’s the noise in the telescope pivots that is unac-
counted for in the wide-angle baseline solution. We allocate 25 µm total to
this term; 17 µm per telescope. This term of the error budget is a knowledge
requirement – the values refer only to the unmodelable component – and thus
it includes terms such as non-repeatable bearing noise, unmodeled flexure, and
thermal deformation. In practice this term should be manageable with good
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telescope design and an appropriate modeling strategy. An existence proof
would be measurements made of pivot quality of one of the Keck Interferom-
eter outrigger telescopes (Hrynevych, Ligon, & Colavita, 2004). After fitting
the measured azimuth and elevation runouts to fourth-order harmonic models,
the residual per telescope was ∼10 µm rms.

2.1.3 Wide-angle baseline identification

Understanding the 25 µm allocation to this term requires an understanding
of what defines the narrow-angle baseline, i.e., the baseline that applies to the
narrow-angle measurement. Recall the dual-star optical concept from Fig. 4.
While for wide-angle astrometry we articulate between stars by repointing the
telescopes, for narrow-angle astrometry we articulate between stars by tilting
a mirror in the star separators. There’s no a priori reason why these baselines
should be the same, i.e., the wide-angle baseline we carefully solved for above
may be unrelated to the narrow-angle baseline that we really care about.

Normally the wide-angle baseline is defined as connecting the telescope pivot
points as illustrated in Fig. 5(a). However, providing OPD measurements with
adequate accuracy for narrow-angle astrometry will require end-to-end, or
nearly end-to-end, laser metrology: how does this affect the baseline definition?

Consider Fig. 5(b), which shows the metrology corner cubes (assumed sub-
aperture) located at the telescope pivots, and accessible by both dual-star
beam combiners. In this case, the wide-angle and narrow-angle baselines are
the same, leaving only one error term: the accuracy in locating the fiducial
on the pivot. However, it’s not necessarily the case that the actual pivot is
accessible this way.

However, with reference to Fig. 5(c), it turns out that we can put the corner
cubes anywhere in input space (i.e., prior to the first optic), as long as we
define the baseline as the vector connecting the vertices of the corner cubes.
However, two questions – and two contributors the error budget – remain: a)
how do you ensure that this new baseline is also the one solved for earlier; b)
how do you ensure that this is also the narrow-angle baseline?

2.1.4 Narrow-angle to wide-angle baseline transfer

Ideally, one would solve for the narrow-angle baseline directly, analogously to
solving for the wide-angle baseline. Unfortunately, this is not generally possi-
ble, as ten’s of microarcseconds a priori astrometric accuracy would be required
for these stars (although in principle some sort of ratiometric approach using
reference narrow-angle pairs is not excluded). We describe below the approach
for determining the narrow-angle baseline that was planned for the proposed
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Keck Interferometer outrigger project (Hrynevych, Ligon, & Colavita, 2004).

The approach used a pivot beacon near the real pivot (conceptually, located
at the tertiary surface but in input space). Using an auxiliary measurement
system, this pivot beacon would be surveyed as the telescope was articulated,
in order to transfer the beacon to the wide-angle baseline. Inside the star
selector, a metrology corner cube would be aligned to an image of the beacon
in order to define the narrow-angle baseline.

Figure 6 shows a schematic star separator for a large telescope. From left to
right is the physical telescope pivot in the entrance pupil p1, which precedes
the first optic in the system (nominally in the plane of the tertiary). The box
“Telescope Optics” includes all of the optics from the entrance pupil to the
star selector. The pupil reimager – part of the star separator – images the
entrance pupil to the plane p2, which includes the metrology corner cube that
ties together the two beam combiners. Also in this plane (or very close to it) is
an articulating star selector, in this implementation realized as an articulating
beamsplitter, which reflects one star and transmits the other.

If the pupil reimaging is exact, the metrology corner cube is projected onto the
pivot (or more precisely, onto a pivot beacon which has been tied to the pivot),
and this transfer ties the narrow-angle baseline to the wide-angle baseline
subject to some caveats. In principle, this transfer can be aided by a camera
on the beam-combiner side of star selector which images the conjugate planes
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p1 and p2, along with illumination of the metrology corner cube and pivot
beacon. The caveats include acceptable control of beamwalk and aberration in
the pupil reimager and in the telescope optics, as well as control of tolerances in
the reimaging. The tolerancing on the transfer uses the wide-angle tolerances,
i.e., the lateral mapping must be done with 25 µm accuracy. There is also a
relatively loose longitudinal tolerance δz: we require (1/2)θ2δz ≪ 5 nm, which
requires δz ≪ 1 m.

2.2 OPD measurement noise

OPD measurement noise δl refers to errors in measuring the “internal path-
length” of Fig. 1, to which we had allocated 5 nm above. The sources of error
in this measurement include laser metrology accuracy, beam walk errors, ther-
mal stability, DCR (mostly from air, but also other dispersive material), and
environmental stability.

2.2.1 Laser metrology accuracy

To first order, if one wanted to keep this portion of the measurement noise
term to 1 nm over the 100 m pathlengths within the interferometer, laser
metrology accuracy of 10−11 would be required. While this level is possible,
commonly-used stabilized lasers have accuracy ∼10−8. However, it is possible
to design the instrument such that the metrology need only be accurate over
the ten’s of mm of OPD articulation range as one switches between stars, in
which case the required accuracy is now ∼10−7. One way to achieve this is to
use the same laser source for all of the metrology beams, in which case errors
in the large common-mode paths of primary and secondary drop out.

2.2.2 Beam walk

As we’re worried about system accuracies of nanometers, we need to account
for the fact that optical surfaces are not smooth at the nanometer level. A
λ/20 surface in reflection introduces a wavefront error across the optic of
∼13 nm rms; 16 such surfaces in series, assuming RSS combination, leads to
50 nm rms errors. If these effects are static, they just impact Strehl. However
for astrometry, this wavefront error can introduce errors when beams walk
across the optics. While thermal drift and seeing compensation can introduce
beam walk, it also gets introduced when switching between stars in the star
selector. With reference to Fig. 6, for which the star selector mirror is conjugate
to the input pupil, as the star selector mirror is articulated, there will be beam
walk on the telescope optics.
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The error from beam walk can show up in two ways. One is from changes in an
unmonitored path as a beam walks; the second is from differences between the
path seen by starlight, which typically represents an average of the wavefront
over a large diameter, vs. the path seen by laser metrology, which will typically
be subaperture and sample a much smaller fraction of the wavefront.

One can do a stochastic analysis of the problem (see the Appendix). Subject
to a number of assumptions, the rms beam walk error ǫ can be approximated
as (see Eqs. A.16 & A.21; we round down the leading coefficient)

ǫ ∼ w

(

∆∗

q∗

)

(

q∗

Z∗

)0.25

, ∆∗ ≪ q∗, (8)

where w is the total rms wavefront over an optic of diameter Z∗, ∆∗ is the
transverse beam walk, and q∗ is diameter of the footprint of the illumination
on the optic. If q∗ = D∗, where D∗ is the diameter of the starlight footprint,
Eq. 8 gives the change in OPD as the beam translates by a distance ∆∗.
Alternatively, if q∗ = d∗, where d∗ is the diameter of a subaperture metrology
beam in the middle of the starlight beam, d∗ ≪ D∗, then Eq. 8 gives the
error caused by different sampling of the wavefront by the metrology vs. the
starlight as the beams translate, together, by distance ∆∗.

As an example, consider a Z∗ = 20 cm optic with w = 50 nm rms (representing
16 optics in series, as described above), a metrology diameter d∗ = 2 cm (small
compared to an assumed starlight diameter D∗ = 10 cm), and a shear ∆∗ =
1 cm: Eq. 8 predicts an error ∼15 nm rms, which is ∼5× larger than the
estimated change in OPD seen by the starlight footprint. This analysis is
very approximate, but illustrates the nature of the issue, and the perhaps
surprising result that metrology of a common mode path subject to beamwalk
can introduce errors. Note that large aspheres can have significant zonal errors,
which could be a larger effect than that given above; on the other hand, in
smaller diameters, superpolished (λ/100) optics are available which could be
useful for critical locations where the relative beamwalk is large.

2.2.3 Thermal stability

Even if you meter everything, you still need to introduce the metrology into
the starlight path in a way that doesn’t introduce its own complications. As
an example, suppose you introduce the metrology from behind the starlight
beamsplitter into the center of pupil, but add two small polarizers in the
center of the beam which are seen by just the metrology. How stable do these
non-common optics need to be?

The thermo-optical constant G measures the change in OPD with temperature
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as an optic changes in size and refractivity, viz. G ≈ N×CTE+dN/dT , where
CTE is the ordinary coefficient of thermal expansion and N is refractivity,
N = n−1. As an example, BK7, a common optical glass, has G = 7×10−6, such
that a 10 mm thickness introduces an OPD error of 70 nm K−1. While better
glasses exist, it is better to design out the problem. One way is an approach
with no non-common optics; another is to design the observation scenario such
that stability is only required over a short switching timescale. The latter
approach, using the design of the observational scenario, is helpful for dealing
with many sorts of systematic errors, including those we’ll be discussing below.

2.2.4 Differential chromatic refraction (DCR)

While vacuum delay lines (and vacuum beam pipes), in principle, make most of
this problem go away (leaving only a small second order term due to curvature
of the Earth), many interferometers use air delay lines, and are thus sensitive
to the dispersion of air in the internal interferometer paths. Consider the
effect of star color. The change in refractivity (Ciddor, 1996) of dry air at 1
atmosphere is ∆N ≈ 3.0 × 10−9 between λ = 2.20 µm and 2.21 µm, i.e., for
a δλ = 10 nm wavelength uncertainty. For 100 m of total pathlength, this
corresponds to an error of 300 nm, which is much larger than our allocation of
5 nm for all measurement errors. To first order, the implication appears to be
that the starlight wavelength must be known δλ ∼0.1 nm. It’s worth noting,
for context, that DCR is a major problem for all ground based astrometry (cf.
Monet et al., 1992).

Fortunately, the beam combiner will usually include at least a low resolution
spectrometer. In principle, with 10 nm spectral channels, the change in ef-
fective wavelength for a change in stellar temperature from 5000 to 6000 K
is ∼0.001 nm, much better than required. In addition, absolute calibration is
not required. Thus the practical requirement is on spectrometer stability: the
spectrometer must be stable to ∼0.1 nm, i.e., to ∼1% of the assumed channel
width, over a switching cycle. This is also challenging, but more achievable
than absolute wavelength knowledge. To achieve the requirement requires a
stable camera design and environment, and most likely a single-mode fiber feed
to ensure a stable MTF. However, likely equally essential, is a fast-switching
observational scenario to reduce the time scale for spectrometer stability and
to allow averaging of errors over multiple cycles.

2.2.5 Environmental stability

As the metrology and starlight will typically be at different wavelengths, stabil-
ity of the dispersive interferometer environment is also important. For metrol-
ogy at 1.3 µm and starlight at 2.2 µm, the difference in dry air refractivity at
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1 atmosphere is 0.6 × 10−6. Dry air refractivity is dependent on inverse (ab-
solute) temperature, so the temperature dependence is 2 × 10−9 K−1, or 200
nm K−1 for a 100 m pathlength. You can do a similar calculation for changes
in relative humidity, yielding 80 nm per percent change in relative humidity
(Colavita et al., 2004). Note that these effects are considerably larger with
HeNe (633 nm) metrology, with values of 1200 nm K−1 for temperature and
150 nm %−1 for the two terms.

These numbers are again tight compared with the 5 nm allocation for all
measurement errors. However, this is a conservative analysis, not only because
the path may actually be less than 100 m if one observes close to zenith and
also accounts for the reduced atmospheric pressure at an observatory, but
primarily because the light from the two stars is likely traversing a similar
environment in the lab, i.e., the beams are likely side-by-side, ten’s of cm
apart. In this case, most of the error, except over the ∼10 mm OPD difference
between stars, drops out, leaving only variations over 10 cm scales which
should rapidly average out. In addition, a fast-switching scenario also greatly
reduces stability requirements for this term, too.

2.3 Fringe measurement noise

Fringe measurement noise δφ refers to errors in measuring the residual fringe
phase, which is used to correct the OPD measurement described above. We
had allocated 5 nm to this term above.

Absent camera stability, which we discussed above, if you work at null (i.e.,
φ = 0) there are no errors in this category; of course you won’t be working
exactly at null. One significant effect is that even if your phase referencing
were perfect, there would still be group delay fluctuations due to water vapor
turbulence as well as to the increase in dry-air path with earth rotation, as
illustrated (Akeson, Swain, & Colavita, 2000; Colavita et al., 2004) in Fig. 7. In
principle, group-delay feedforward to an atmospheric dispersion compensator
(ADC) from the phase reference combiner could be used to reduce the size of
the fluctuations, somewhat analogous to the dispersion control used for the
KI nuller (Colavita et al., 2008).

Without dispersion control, to first order you need accuracy from the fringe
engine of 5 nm over a range of 2.2 µm from all effects. This accuracy must
also apply in the presence of small rates due to tracking errors. The sources of
error include wavelength calibration, finite coherence (largely addressed with
a spectrometer), and phase measurement linearity, including linearity of OPD
modulation. The needed total accuracy is 0.2%, which should be achievable
with care. Note that this is a place where a slow dither could be useful to
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Figure 7. Group delay minus phase delay vs. total delay at PTI (adapted from
Akeson et al. 2000).

provide some degree of cyclic averaging.

2.4 Summary: systematic errors

Controlling the systematic errors associated with interferometer baseline, OPD
measurement, and fringe measurements is challenging and must be addressed
deliberately. In particular, identification of the narrow-angle baseline is a
unique problem for astrometry with a star separator. The fact that we are
making a differential measurement is very useful for reducing the effect of cer-
tain error sources, as is the ability to devise an observational scenario which
uses a fast-switching approach.

Figure 8 shows raw data from the PTI dual-star astrometry experiment (Lane
et al., 2000). For this experiment, the first beam combiner always tracked one
of the two stars. The second beam combiner rapidly switched, with a cycle
time <10 min, between the two stars, and that OPD is shown in the figure.
The metric for level-2 processing was the difference between the secondary
star measurements and an interpolated reference from the primary star. Sev-
eral metrology discontinuities are evident in the data; however, with the fast
switching approach, they affect at most one 6 min data segment. More gen-
erally, only deviations from a linear trend over the switching cycle introduce
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Figure 8. Raw OPD from PTI dual-star experiment.

astrometric errors.

3 Sensitivity

The squared phase SNR is given by the usual formula (cf. Colavita et al.,
1999)

SNR2 =
4

π2

N2V 2

N + G + 4R
(9)

which assumes a 4-bin algorithm, and where N is total detected photons (both
apertures), V is fringe visibility, G is background photons, and R is detector
read noise variance. The astrometric error e is given by

e =
λ

2πBSNR
(10)

For λ = 2.2 µm and B = 100 m, 20 µas astrometry requires an SNR of 36
(this is for the faint star: the astrometric error on the bright star should be
negligible). Because of the narrow fields of view in a dual-star measurement,
attention must be paid to maintaining a high SNR. This includes not only
maximizing throughput, N , but also maximizing the coherence term V 2.
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3.1 Detected flux

Assuming a single-mode combiner and incident flux F , the number of detected
photons is N = αSF , where α is the effective instrument throughput, includ-
ing warm and cold loss, mode matching, detector encircled energy, read-out
duty cycle, etc. The Strehl S is the product of the three terms below.

3.1.1 Beam train Strehl, Sb

For 100 nm rms per arm, and a science wavelength of 2.2 µm, this term is Sb

∼90%, and should not dominate the throughput.

3.1.2 Residual wavefront error after correction, Sw.

For a small telescope, tip/tilt correction may be adequate for infrared wave-
lengths under good seeing conditions; here is a rough numerical example. For
Kolmogorov turbulence, if you fully correct the tilt error, the wavefront vari-
ance decreases from 1.03(D/r0)

5/3 to 0.134(D/r0)
5/3 rad2 (Noll, 1976). In

reality, some tilt residual will remain, attributable to coma anisoplanatism
(sensing tilt using a centroid rather than a wavefront sensor), finite temporal
sampling and servo bandwidth, and sensor noise. If you assume the residual
of these three effects is 5% of the variance of the tilt component, then for D
= 1.8 m and r0 = 15 cm, the rms residual is 300 nm, and Strehl Sw ∼ 50%
at 2.2 µm; the value degrades rapidly with poorer seeing. With higher-order
correction, say from a low-order curvature system, considerably better perfor-
mance is possible. This is a somewhat simplistic analysis: the main point is
that finite Strehl decreases effective throughput.

3.1.3 Anisoplanatism error from off-axis wavefront correction, Sa

As the faint star will be off-axis from the bright star used for tilt correc-
tion, there will be a tilt isoplanatism error. We can estimate the Strehl from
tilt errors as Alloin & Mariotti (1994): S = 1/(1 + σ2

TILT), where σ2
TILT =

2σ2
1/(0.637λ/D)2, and σ1 is the one-axis tilt error. The tilt anisoplanatism

error is very site- and seeing-dependent, and is also a function of the telescope
diameter (Hardy, 1998). Assuming 1 a very approximate value σ1 = 0.35 µrad
at 15 arcsec off-axis, Sa = 70%. Again, this is a somewhat simplistic analysis,
and is again to emphasize the effect of finite Strehl.

1 We estimate using Fig. 7.38 in Hardy (1998), multiplying by two to convert the
result from a 4 arcsec visible isoplanatic patch to more typical 2 arcsec.
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3.2 Coherence loss

The coherence term V 2 in Eq. 9 includes (multiplicative) contributions from
atmospheric anisoplanatism, imperfect cophasing, and residual instrumental
effects, as described below.

3.2.1 Isopistonic angle

Anisoplanatism between the phase reference star and the target star reduces
fringe visibility, reducing sensitivity. We compute the coherence loss using the
usual Marechal approximation as V 2 = exp(−σ2). In the limit of point aper-
tures, infinite baseline, and infinite outer scale, the residual variance is given
by (cf. Roddier, Gilli, & Vernin, 1982) σ2 = 2(θ/θ0)

5/3 rad2, where θ0 is the
isoplanatic angle θ0 = 0.31r0/h5/3. However, this formula overestimates the
coherence loss for finite apertures and realistic baseline and outer scale as-
sumptions. In this context, the coherence term is usually described in terms
of the isopistonic angle (Esposito, Riccardi, & Femenia, 2000), which is some-
times normalized to λ/10 rms, vs. 1 radian rms for isoplanatic angle. Esposito,
Riccardi, & Femenia (2000) estimate the λ/10 isopistonic angle for a VLT unit
telescope as θp = 16.1 arcsec at 2.2 µm, with a variance dependence for the
error σ2 ∝ (θ/θp)

2. No value is given for an AT, but it will be smaller for a
smaller telescope; roughly scaling from the UT value we estimate ∼10 arcsec;
clearly all values are strongly site- and seeing-dependent. For this value, the
coherence at a typical 15 arcsec star separation is V 2 ≈ 40%. This term is
thus one of the larger contributors to the total SNR, and actual dual-star
measurements at the site are clearly needed.

3.2.2 Cophasing time delay & instrument vibrations

In principle, this term is given by σ2 = (Td/τ02)
5/3 where Td is the end-to-end

cophasing time delay and τ02 is the two-aperture first-difference coherence
time (Buscher, 1994), (Colavita et al., 1999). The time delay depends upon
the integration time on the bright star as well as the overall control archi-
tecture. However, residual instrument vibrations also contribute. Adopting
200 nm rms, based on achieved performance with the KI nuller cophasing
system (Colavita et al., 2008) yields a coherence term of V 2 = 70%. Clearly,
optimization of this system is important.

3.2.3 Instrument coherence loss

This catch-all term encompasses those quasistatic terms that contribute to
a non-unit visibility on an unresolved bright star observed at the maximum
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frame rate: we would expect V 2 = 80–90%.

3.3 Summary: sensitivity

For the faint star at K band, note that the background term, which is tradi-
tionally ignored for bright-star interferometry, can dominate the denominator
of Eq. 9. In addition, the read noise term can also be significant, as the de-
tector must be read out fast enough to perform at least some low-bandwidth
fringe tracking.

A detailed throughput calculation is beyond the current scope. However, there
are some points to emphasize. The first is that, without care, SNR can domi-
nate over the other terms. Thus, it’s important to optimize those instrument
factors that affect throughput, Strehl, and coherence; clearly, there’s less that
one can do about the fundamental atmospheric coherence terms. To further
improve SNR, one could consider simultaneous K- and H-band observations;
this would require incorporation of an ADC into the system, but that might
be driven by other considerations. The second point is the big improvement
with baseline: with a baseline of 200 m, vs. the nominal 100 m assumed above,
you need ½ the SNR, or ¼ the integration time, to achieve the same astrometric
performance.

4 Conclusions

This article has primarily addressed dual-star interferometry for astrometry.
However, the technique is also well suited for imaging. For imaging, most of
the systematic effects in Sec. 2 don’t matter as much; however, all of the SNR
issues remain relevant. Some things to consider for imaging applications: a)
cophasing implementation: feedback vs. feedforward, and performance with
instrument vibrations; b) water-vapor dispersion: if the reference and science
wavelengths are different, this needs to be accounted for; c) correlation of
phase-referencing light with the science light (dispersion, metrology, etc.); d)
practical issues: acquiring faint stars, providing some control bandwidth on
the faint star, and optimizing the observing sequence.

In conclusion, astrometry at ten’s of microarcseconds is allowed through the
terrestrial atmosphere for a long-baseline dual-star interferometer. However,
the fundamental atmospheric limit is only one part of a total instrument per-
formance budget. Careful control of systematics is required, for the astrometric
baseline, and for internal OPD and fringe measurements. Note in particular
that the astrometric baseline for narrow-angle astrometry is generally different
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than the usual wide-angle baseline. Beyond systematics, it’s important to pay
attention to SNR in order to optimize performance on faint stars: high SNR
also just makes the measurements easier and faster.

Some approaches for systematic control and optimization of SNR were de-
scribed; better approaches are surely possible. However, a couple of generally
powerful approaches should be part of any implementation: a fast switching
architecture, to minimize the time scale over which stability is required, and
use of the longest baseline possible, limited by resolution of the target star, to
exploit the inverse dependence on baseline of all of the error terms.

5 Acknowledgments

This work was performed at the Jet Propulsion Laboratory, California In-
stitute of Technology, under contract with National Aeronautics and Space
Administration.

A Beamwalk formulae

A.1 Definitions

Let Z∗, D∗, d∗, and ∆∗ be respectively the physical size of the optic, the
diameter of the starlight footprint, the diameter of the metrology footprint,
and the beam shear. In the equations below, we use normalized values D =
D∗/Z∗, d = d∗/Z∗, and ∆ = ∆∗/Z∗. Let ǫ be the beam walk error.

A.2 Mirror power spectrum

Model a radial slice through the two-dimensional wavefront power spectrum
(i.e., typically 4X the surface power spectrum for a normal-incidence reflection)
as

W (f) = k2f−α, f > fc, (A.1)

where f is spatial frequency in cycles across the optic, −α is the power law
obeyed by the wavefront error at high frequencies, and fc is a cutoff frequency
used for normalization. Let w2 be the total wavefront variance over the optic.
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If we arbitrarily define fc such that 1/2 of the wavefront variance is above
that frequency, i.e.,

w2/2 = 2π

∞
∫

fc

fdfW (f), (A.2)

then the scale factor k is given by

k2 =
α − 2

4π
fα−2

c w2. (A.3)

For fc = 1 cycle and assumed spectral slope of α = 2.5,

k2 = w2/(8π). (A.4)

If a power spectrum valid to zero frequency is needed, one could adopt a power
law −α = −1.5 for fc < 1, which provides equal total power below 1 cycle as
above.

A.3 Filter functions

A.3.1 Simple shear of two equal-size beams

We can write the error variance as

ǫ2 = 〈

∣

∣

∣

∣

1

A

∫

drx(r) −
1

A

∫

drx(r − ∆)

∣

∣

∣

∣

2

〉 (A.5)

where x(r) is the wavefront defined over a pupil function. We can represent
the random function x(r) using a Fourier-Stieltjes integral,

x(r) =
∫

dW (f) exp (−j2πf · r), (A.6)

and use the Fourier shift theorem to write

ǫ2 = 〈
∣

∣

∣

∣

∫

dW (f)(1 − exp(−j2πf ·∆))
1

A

∫

dr exp(−j2πf · r)
∣

∣

∣

∣

2

〉. (A.7)

Computing the second integral yields

ǫ2 = 〈

∣

∣

∣

∣

∣

∫

dW (f)(1 − exp(−j2πf ·∆))

(

2J1(πfD)

πfD

)∣

∣

∣

∣

∣

2

〉 (A.8)
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Expanding this expression, and applying the Fourier-Stieltjes sifting property,
〈
∫ ∫

dW (f)dW ∗(g)
〉

=
∫ ∫

dfdgW (f)δ(f − g), (A.9)

yields

ǫ2 =
∫

dfW (f)2(1 − cos(2πf · ∆))

(

2J1(πfD)

πfD

)2

. (A.10)

Finally, we compute the azimuthal part of the first integral to yield

ǫ2 = 2π
∫

fdfW (f)2(1 − J0(2πf∆))

(

2J1(πfD)

πfD

)2

. (A.11)

In general, these results have a common form:

ǫ2 = 2π
∫

fdfW (f)H(f), (A.12)

where W (f) is the mirror power spectrum and H(f) is a filter function; in
this case:

H1(f) = 2(1 − J0(2πf∆))

(

2J1(πfD)

πfD

)2

. (A.13)

For ∆ ≪ D, we can approximate the second factor of H1(f) as unity to
f = 1/D and zero at higher frequencies, and the first factor as 2(πf∆)2. Let
W (f) = k2f−2.5, as above, and for D ≪ 1, assume it is valid to zero frequency
(it gets rolled off by the (πf∆)2 factor), and approximate the error integral as

ǫ2 ≃ 4π

1/D
∫

0

dfk2f−1.5(2∆f)2, (A.14)

showing that most of the energy is from frequencies ∼ 1/D. Doing the er-
ror integral without the approximations to the Bessel functions to accurately
compute the leading coefficient yields

ǫ2 ≃ 37k2∆2D−1.5, ∆ ≪ D, (A.15)

or with k as defined above,

ǫ2 ≃ 1.5w2∆2D−1.5, ∆ ≪ D. (A.16)
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This result is a bit pessimistic as D approaches unity because of the low-
frequency power law assumption above. A numerical integration for D = 1
assuming α = 1.5 at low frequencies, as described above, gives a factor of two
smaller variance. The next term in the expansion of the first factor of H1(f)
is 0.5(πf∆)4, which leads to variance terms proportional to ∆4D−3.5, which
should be negligible given all of the other assumptions involved.

A.3.2 Change in metrology distance vs. starlight distance as beam shears

The error can be written as

ǫ = 〈

∣

∣

∣

∣

(

1

A

∫

drx(r) −
1

a

∫

drx(r)
)

−
(

1

A

∫

drx(r − ∆) −
1

a

∫

drx(r −∆)
)
∣

∣

∣

∣

2

〉,(A.17)

which leads to a filter function

H2(f) = 2(1 − J0(2πf∆))

(

2J1(πfD)

πfD
−

2J1(πfd)

πfd

)2

. (A.18)

We can approximate the error for the assumed power spectrum and 2∆ ≪
d ≪ D as

ǫ2 ≃ 4π

1/d
∫

0

dfk2f−1.5(2∆f)2, (A.19)

which gives a similar result as above:

ǫ2 ≃ 37k2∆2d−1.5, 2∆ ≪ d ≪ D, (A.20)

or with k as defined above:

ǫ2 ≃ 1.5w2∆2d−1.5, 2∆ ≪ d ≪ D. (A.21)

For d ≪ 2∆ ≪ D, we can approximate the error as

ǫ2 ≃ 4π

1/(2∆)
∫

0

dfk2f−1.5(2∆f)2, (A.22)

which leads to (doing the numerical integral to compute the leading coefficient)

ǫ2 ≃ 56k2∆0.5, d ≪ 2∆ ≪ D, (A.23)
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or with k as defined above,

ǫ2 ≃ 2.2w2∆0.5, d ≪ 2∆ ≪ D. (A.24)

For higher accuracy within the limitations of the model, it’s probably best to
just compute the integral using H2(f).

A.3.3 Simple shear of two equal-size Gaussian beams

Let the Gaussian beam radius (amplitude 1/e) be R. The filter function is
then

H3(f) = 2(1 − J0(2πf∆)) exp(−2(πfR)2). (A.25)

Calculating asymptotic forms as above yields

ǫ2 ≃ 8.1k2∆2R−1.5, ∆ ≪ R, (A.26)

or with k as defined above,

ǫ2 ≃ 0.32w2∆2R−1.5, ∆ ≪ R. (A.27)

A.3.4 Other filter functions

Analogous to the pencil-beam / full-aperture-beam expression above, except
for Gaussian beams of radii R and r, the filter function is

H4(f) = 2(1 − J0(2πf∆))
(

exp(−(πfR)2) − exp(−(πfr)2)
)2

. (A.28)

For the case of a Gaussian metrology beam only, the filter function is

H5(f) = 2(1 − J0(2πf∆))

(

2J1(πfD)

πfD
− exp(−(πfr)2)

)2

. (A.29)
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