## Beam estimation

Ferréol Soulez

Juin 2023

## 1 Direct estimation

To prevent the use of fitting methods to estimate the beam size, the main idea is to consider that ( $u, v$ ) points were drawn from a 2D normal distribution. The beam shape is extracted from the empirical covariance of this distribution.

We have $N$ points in the uv plane described by the vectors $\boldsymbol{u}$ and $\boldsymbol{v}$ (including the null frequency $(u, v)=(0,0))$. We can define the modulation transfer function $h$ of the interferometer as:

$$
\hat{h}(u, v)= \begin{cases}1 & \text { if } u \in \boldsymbol{u} \text { and } v \in \boldsymbol{v},  \tag{1}\\ 0 & \text { otherwise } .\end{cases}
$$

The dirty beam is $h$ the Fourier transform of $\widehat{h}$. One way to define the resolution of the interferometer is to compute the so called beam as half-width at half-maximum of a 2D Gaussian $g$ fitted on the central peak of the dirty beam. The covariance matrix of the Gaussian $\mathbf{C}$ are given by

$$
\begin{equation*}
\theta=\underset{\mathbf{C}}{\arg \min }\|g(\mathbf{C})-h\|^{2} \tag{2}
\end{equation*}
$$

From Parseval-Plancherel theorem, this can be also written in Fourier domain as

$$
\begin{equation*}
\theta=\underset{\mathbf{C}}{\arg \min }\|\widehat{g}(\mathbf{C})-\widehat{h}\|^{2} \tag{3}
\end{equation*}
$$

where the $\widehat{g}(\mathbf{C})$ is also a Gaussian of covariance matrix $\mathbf{D}=\pi^{-2} \mathbf{C}^{-1}$.
This covariance matrix $\mathbf{D}$ can be approximated from the distribution of the sampling point in the uv plane. As by construction $\langle\boldsymbol{u}\rangle=0$ and $\langle\boldsymbol{v}\rangle=0$ we have:

$$
\mathbf{D}=\frac{2}{2 N+1}\left(\begin{array}{ll}
\sum_{n} u_{n}^{2} & \sum_{k} u_{k} v_{k}  \tag{4}\\
\sum_{k} u_{k} v_{k} & \sum_{n} v_{n}^{2}
\end{array}\right)
$$

The $\frac{2}{2 N+1}$ factor is to count twice all the (uv) points (due to the symmetry of the uv plane) excepted the null frequency. In addition to its covariance matrix $\mathbf{C}$, we can describe the beam with its principal angle $\theta$ and its half-widths at half maximum $r_{1}$ and
$r_{2}$ along both the major and minor axes respectively. These parameters can be extracted by the mean of the eigendecomposition:

$$
\begin{equation*}
\mathbf{D}=\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{\mathrm{T}} \tag{5}
\end{equation*}
$$

where $\mathbf{Q}$ and $\boldsymbol{\Lambda}$ are the matrices of eigenvectors and eigenvalues respectively. The matrix $\boldsymbol{\Lambda}$ is a diagonal matrix that contains the eigenvalues $\left(\lambda_{1}, \lambda_{2}\right)$ that are the variances along both axis. $\mathbf{Q}$ is a rotation by the principal angle. As $\mathbf{C}=\pi^{-2} \mathbf{D}^{-1}$, its eigenvalues are $\boldsymbol{\Lambda}^{-1}$ and major and minor axis are inverted leading to a rotation of $\pi / 2$ of the principal angle. As a result, these matrices can be expressed as a function of the beam parameters using as :

$$
\begin{align*}
& \mathbf{Q}=\left(\begin{array}{ll}
\cos (\pi / 2-\theta) & -\sin (\pi / 2-\theta) \\
\sin (\pi / 2-\theta) & \cos (\pi / 2-\theta)
\end{array}\right)  \tag{6}\\
& \mathbf{\Lambda}=\frac{\log (2)}{2 \pi^{2}}\left(\begin{array}{ll}
r_{1}^{-2} & 0 \\
0 & r_{2}^{-2}
\end{array}\right) \tag{7}
\end{align*}
$$

where $\frac{\sqrt{2 \log (2)}}{2}$ is a factor to convert standard deviation to half-width at half-maximum. The beam ellipse parameters are then:

$$
\begin{align*}
r_{1} & =\frac{\sqrt{2 \log (2)}}{2 \pi} \frac{1}{\sqrt{\lambda_{1}}}  \tag{9}\\
r_{2} & =\frac{\sqrt{2 \log (2)}}{2 \pi} \frac{1}{\sqrt{\lambda_{2}}}  \tag{10}\\
\theta & =\arctan (Q[1,1], Q[2,1]) \tag{11}
\end{align*}
$$

In OImaging, we can plot the beam by applying the transformation matrix $\mathbf{T}=$ $\frac{1}{\pi} \mathbf{Q} \boldsymbol{\Lambda}^{-1 / 2}$ to a circle of diameter 1 .

## 2 Results

See notebook https://jovian.com/ferreols/beamexample

