
Volume Title
ASP Conference Series, Vol. **Volume Number**
Author
c©**Copyright Year** Astronomical Society of the Pacific

SAMP App Launcher - An on-demand VO application starter by
JMMC

Sylvain LAFRASSE1, Laurent BOURGES1, Guillaume MELLA1

1UJF-Grenoble 1 / CNRS-INSU, Institut de Planetologie et d’Astrophysique de
Grenoble (IPAG) UMR 5274, Grenoble, F-38041, France

Abstract. SAMP1 is the dedicated Virtual Observatory protocol to ensure data ex-
change between compatible astronomical software running on personnal computers.
However, one SAMP weakness lies in its requirement to have interoperable applications
already running in order to gracefully ensure communication between them. To circum-
vent this requirement, we present a dedicated application, plus some new SAMP speci-
fications, focused on JavaTMsoftware available through the Java Web Start application-
deployment technology (JNLP)2 at this stage. JMMC3 AppLauncher4 software fakes
any described application by registering stub clients on the central SAMP hub. When
one of the fake clients is solicited by any third-party software, AppLauncher takes the
responsibility to start the true application, and then forwards the waiting SAMP mes-
sage once fully started. To achieve this, we propose a set of new SAMP key-value pair to
hold JNLP URLs. In the future, other kind of software packages technology could also
be supported. We also want to standardize this solution, and get one central registry-
like interoperable repository of compatible software, in order to open our mechanism
to any third-party SAMP application provider. To illustrate, we briefly present our own
use case, which demonstrates the need of such a tool for the JMMC applications suite.

1. Problem : How to Bootstrap our Tool Suite ?

The Jean-Marie Mariotti Center provides software to astronomers involved in optical
interferometry technics, to help them use the most powerful observation facilities in the
domain. We offer three main Java applications, namely ASPRO2, LITpro and Search-
Cal, to support scientists from observation preparation phase up to data analysis.

Those applications recently gained interoperability capabilities. They can now
exchange data and provide services to each others (and all other VO-compliant soft-
ware, such as Aladin or TOPCAT). To achieve this, we rely on SAMP - the dedicated
VO protocol for inter-application communication - and more specifically on jSAMP, its
reference implementation in Java.

1Simple Application Messaging Protocol - http://www.ivoa.net/samp/

2http://download.oracle.com/javase/6/docs/technotes/guides/javaws/

3Jean-Marie Mariotti Center (a.k.a as JMMC) - http://www.jmmc.fr

4http://www.jmmc.fr/applauncher

1

2 Lafrasse, Bourges and Mella

But SAMP interoperability cannot work until a hub is started and all scientific
applications run, gently waiting for astronomers actions. Which means end users should
already be conscious of all this to interoperate our software. Then come the chicken-
and-egg problem - how the user could easily interoperate our software even if he is not
conscious of this capability, or does not remember where to find our applications for
launch? What can we do to enhance our user-friendliness, SAMP-wise ?

2. Solution : Faking, then Launching SAMP Clients !

A first idea was to dedicate one application to start the three others at once. But this
was far from elegant, resource and compatibility-wise.

The idea made its way, to later become a SAMP capable application launcher. The
first thing our application should do is hosting the SAMP hub outside of any other sci-
entific software. This way the hub is always running, even if the user quits all but
our application (which will be prevented by explicitly informing the user of the conse-
quences of killing the SAMP hub for interoperability). And at long last, our application
should be able to download and start any scientific software needed by the user, at
runtime. AppLauncher was born !

AppLauncher workflow is roughly synthesized hereafter:

• On startup, AppLauncher sets up a SAMP hub (or hooks to any hub already avail-
able), then registers as many fake SAMP clients as it internally has application
metadata descriptions for;

• Once a fake client is solicited by the user through any SAMP message, Ap-
pLauncher traps and holds this message for differed delivery;

• AppLauncher then tries to start the corresponding real application using Java Web
Start technology, handling errors and timeout as far as possible;

• Once the third-party application is fully started and registered in SAMP, Ap-
pLauncher unregisters the fake client from the hub, and then forwards the waiting
message to its true scientific recipient for processing.

2.1. Faking SAMP Clients

Fake clients are synthesized at runtime by AppLauncher. They pretend to be their
real application by presenting the same name and the same SAMP capabilities to the
hub. But their sole purpose is to forward whatever message they receive to the true
application, like a proxy. This is great because nothing has to be changed for this to
work, no SAMP hub hack nor third-party applications modification required !

With our ’fake client’ mechanism, the end user is able to virtually access and send
any SAMP message to any application not even running on his computer, the only limit
being the number of fully described application metadata available to AppLauncher.
We could also apply the same ’fake client’ method for MIME type associations with
file extensions, to better integrate applications capable of handling certain file formats
to modern operating systems for example.

Of course not all SAMP messages should be eligible for such automatic application
startup. For example, SAMP broadcasting (that target a large number of applications) or
table.highlight.row, table.select.rowList, coord.pointAt.sky messages

SAMP App Launcher by JMMC 3

(that potentially occurs many times in a raw at high frequency) should not trigger auto-
matic applications startup.

2.2. Launching SAMP Clients

To begin with this complex issue (in regard of all the different executing platforms
available out there), we decided to first rely on JNLP software distribution mechanism.
This gives us several advantages to launch scientific applications:

• Java Web Start is platform-agnostic, and works well on the three main desktop
operating systems that are Mac OS X, Linux and Windows, freeing us of lots of
trickeries and portability issues.

• As long as an Internet connection is available, JNLP will always present users
with an up-to-date version of the missing application.

• If Internet is not available, the latest downloaded version (cached in Java Web
Start system) will be used instead.

JNLP main drawback (even if VO applications are often written in Java) lies in its
restriction to handle Java packages only. To circumvent this, we also envision a way
to use Java’s ability to execute certain script languages such as Python or JavaScript.
Third-party scientific application providers could then develop their own scripts to
properly handle download, install and execution of non-Java software in a platform-
agnostic way. HTTP URL could also easily be opened in the user’s default web browser
to handle SAMP-compatible web applications.

3. Standardization : Opening to Third-Party Apps

AppLauncher first release embed fake clients for:

• ASPRO2, LITpro and SearchCal - the three JMMC Java applications;

• Aladin, the CDS reference sky atlas;

• TOPCAT, the reference interactive graphical viewer and editor for tabular data.

But our ultimate goal is to make AppLauncher work for any SAMP software out
there. So the crucial system that is missing today for full integration of third-party
applications is a centralized repository providing application metadata, such as:

• a mandatory application name, to present the user with a rightly named fake
client (also required as a strict match is needed to internally link fake and true
applications for hub connection management);

• a mandatory URL pointing to a JNLP (and maybe later other means to describe
any application download and startup process, such as scripts), to easily start the
application at runtime;

• a mandatory icon (standardized to 64*64 PNG);

4 Lafrasse, Bourges and Mella

• a list of supported SAMP messages (a.k.a MTypes5), should they be public or
private;

• a list of handled MIME types for file opening (with corresponding icons if any);

• at least an URL, pointing to application’s main web page.

So until such a central registry become widely available, JMMC will host its own
temporary solution to centralize those essential metadata. And to easily fill our registry,
we will embed a SAMP connection sniffer to discover user’s third-party apps (of course
only if he acknowledges to contribute). That’s why we need at least one new keyword
now in SAMP specifications to point each application’s JNLP URL.

4. Perspectives

In the near future, a first round of beta-testing will be held on IVOA apps-samp mailing
list to gather as much feedback as possible from software experts. The next logical step
will then be an (hopefully open-source) public release of AppLauncher.

Meanwhile, there is an ongoing effort to update SAMP specifications with new
keywords to support our needs. Further discussions are also going on through IVOA
mailing lists about application metadata registry, in order to define a standard that fits
everybody’s needs.

We are also trying to shape a broader way to download and start non-JNLP appli-
cations, maybe by relying on Rhino or Jython to execute ’download and start’ scripts
that could be written by application providers.

We are actively working on an XML schema describing application metadata, so
that developer can provide us with their own description for integration in AppLauncher
!

Acknowledgments. The JMMC would like to thank:

• Mark Taylor (University of Bristol, Astrogtrid), main maintainer of:

– SAMP Virtual Observatory standard, available at http://www.ivoa.net/
Documents/latest/SAMP.html;

– jSAMP, SAMP’s reference implementation, available at http://software.
astrogrid.org/doc/jsamp/;

– TOPCAT, the reference interactive graphical viewer and editor for tabular
data, available at http://www.starlink.ac.uk/topcat/.

• Centre de Donnees Astronomiques de Strasbourg (CDS), for the reference sky
atlas Aladin, availbale at http://aladin.u-strasbg.fr/.

• jMCS, the underlying GUI framework of AppLauncher and other scientific Java
applications such as ASPRO2, LITpro or SearchCal, available at http://www.
jmmc.fr/dev/jmcs.

5http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/SampMTypes

