Interferometric Data Reduction

Konrad R. W. Tristram European Southern Observatory, Chile

Contents

+ ES+ 0 +

- Data reduction in context
- The forward problem
 - atmospheric piston & pupil distortion
 - spectral decoherence
 - bias and noise sources
- The inverse problem
 - debias & flatfielding
 - coherent flux extraction (Fourier, ABCD, P2VM)
 - integration (coherent & incoherent)
- Calibration
 - photometric calibration
 - -transfer function calibration

Contents

Data reduction in context

- The forward problem
 - -atmospheric piston & pupil distortion
 - spectral decoherence
 - bias and noise sources
- The inverse problem
 - -debias & flatfielding
 - coherent flux extraction (Fourier, ABCD, P2VM)
 - integration (coherent & incoherent)
- Calibration
 - photometric calibration
 - -transfer function calibration

Data reduction in context

Simple expression for the fringes:

$$I(\delta) = I_0 \left[1 + \operatorname{Re} \left(\mathcal{V} \cdot e^{-ik\delta} \right) \right]$$

with the complex visibility $\mathcal{V} = V \cdot e^{i\varphi}$ = $\Re(\mathcal{V}) + i\Im(\mathcal{V})$.

⇒ The visibility can be estimated in an easy form:

$$\Re(\mathcal{V}) = I(0) / I_0 - 1$$
$$\Im(\mathcal{V}) = I(\frac{\lambda}{4}) / I_0 - 1$$

Contents

Data reduction in context

- The forward problem
 - atmospheric piston & pupil distortion
 - spectral decoherence
 - bias and noise sources
- The inverse problem
 - -debias & flatfielding
 - coherent flux extraction (Fourier, ABCD, P2VM)
 - integration (coherent & incoherent)
- Calibration
 - photometric calibration
 - -transfer function calibration

Forward Problem

$$I(\delta) = I_0 \left[1 + \operatorname{Re} \left(\mathcal{V} \cdot e^{-ik\delta} \right) \right]$$

Using the identity $e^{i\vartheta} = \cos \vartheta + i \sin \vartheta$:

$$I(\delta) = \left[1 + \operatorname{Re} \left(V \left(\cos \left(\varphi - k \delta \right) - i \sin \left(\varphi - k \delta \right) \right) \right) \right]$$
$$= I_0 \left[1 + V \cos \left(\varphi - k \delta \right) \right]$$

Forward Problem

- Idealised formula: $I(\delta_{\rho}) = I_0 \left[1 + V \cdot \cos(\varphi k\delta_{\rho}) \right]$
- More realistic raw data:

$$r(\delta) = I_{\rm src} \left[\frac{\eta_i(t) + \eta_j(t)}{2} + \sqrt{\eta_i(t)\eta_j(t)} \cdot e^{-\sigma_{\rm jit}^2(t)} \cdot \operatorname{sinc} \left(\frac{\Delta k}{2} \left(\delta_{\rm ins}(t) + \delta_{\rm atm}(t) \right) \right) \right) \cdot V(\vec{u}_{ij}) \cdot \cos \left(\varphi(\vec{u}_{ij}) - k \left(\delta_{\rm ins}(t) + \delta_{\rm atm}(t) \right) \right) \right] \cdot g(t) + n(t) + b(t)$$

Turbulence distorts the the incoming wavefront

1) piston \rightarrow OPD

♥>2) pupil wavefront distortion

Piston leads to a movement of the fringe packet in OPD space.

Noise – piston

H and K band fringes with AMBER of HD 048433

The piston has two effects:

- Time dependent phase shift
 \$\overline{\phase}\$ fringe motion phase lost
- Fringe blurring

∜fringe amplitude lost

- Reduction of visibility due to phase variance over the pupil
 - ♥small telescopes
 - ♦ adaptive optics
 - ♥ wavefront filtering

0 0 pupil 2

pupil 1

+ES+ 0 +

Spatial filtering:

Modal filtering:

Photometric fluctuations can be monitored:

Typically not only a single wavelength is observed: Idealised example of the K band: $\lambda = 2.2 \mu m$, $\Delta \lambda = 0.4 \mu m$

Remember?
$$I(\delta_{\rho}) = I_0 \Big[1 + V \cdot \cos(\varphi - k\delta_{\rho}) \Big]$$

Actually: $I(k, \delta_{\rho}) = t(k) \cdot I_0(k) \Big[1 + V(k) \cdot \cos(\varphi(k) - k\delta_{\rho}) \Big]$

$$\Rightarrow I(\delta_{\rho}) = \int t(k) \cdot I_{0}(k) \Big[1 + V(k) \cdot \cos(\varphi(k) - k\delta_{\rho}) \Big] dk$$

Limited band pass *t* centred on k_0 and I_0 , *V*, φ constant:

$$\Rightarrow I(\delta_{\rho}) = I_0 \left[1 + V \cdot \hat{t} \left(\frac{\delta}{2\pi}, k_0 \right) \cdot \cos \left(\varphi - k_0 \delta_{\rho} \right) \right]$$

Fourier transform of the band pass

- Bias: additive value with non-zero mean, e.g.
 - detector bias
 - -thermal background
 - EM detector perturbations

Sestimate and subtract it!

- Noise: additive value with zero mean, e.g.
 - photon noise from the source / backgound
 - readout noise

Average it away!

Contents

+ES+ ◎ +

- Data reduction in context
- The forward problem
 - -atmospheric piston & pupil distortion
 - spectral decoherence
 - -bias and noise sources
- The inverse problem
 - -debias & flatfielding
 - coherent flux extraction (Fourier, ABCD, P2VM)
 - integration (coherent & incoherent)
- Calibration
 - photometric calibration
 - -transfer function calibration

Inverse problem

Inverse problem

(1) Debias & flat fielding

Science

-Bias

Flat

-Bias

Output Image

Science -Bias

Flat-Bias

Science Frame

Bias Image

Flat Field Image

Three different methods:

- Fourier and ABCD (e.g. MIDI and PIONIER): take a Fourier transform to extract the oscillating part
- P2VM: pixel to visibility matrix (e.g. AMBER):
 least squares fit of the fringes in the image plane
- Coherent integration (e.g. MIDI):
 determine and remove the group delay and then integrate

(2a) Fourier method

(2a) Fourier method

(2a) Fourier method

(2c) P2VM method

Rewrite this as a matrix equation:

vector of pixel intensities
$$V2PM$$
 vector of coherent fluxes

Forward matrix equation:

I = M f

Backward matrix equation:

$$\hat{f} = H \hat{l}$$

estimate of \hat{f} estimate of
coherent fluxes P2VM pixel intensities

Only pseudoinverse matrix exists \rightarrow least squares fit:

minimise
$$\chi^2 = \left| \hat{I} - MH \hat{I} \right|^2$$

Coherent flux estimate very noisy.

 \clubsuit Need to know the fringe motion:

- 1) External fringe tracker
- 2) Different channel
- 3) Baseline bootstrapping
- 4) Group delay & phase delay
- $\hfill \ensuremath{\textcircled{\sc b}}$ "phase rotation" \longrightarrow coherent integration

(In-)Coherent integration

coherent integration

incoherent integration

Contents

+ ES+ ◎ +

- Data reduction in context
- The forward problem
 - -atmospheric piston & pupil distortion
 - spectral decoherence
 - -bias and noise sources
- The inverse problem
 - -debias & flatfielding
 - coherent flux extraction (Fourier, ABCD, P2VM)
 - integration (coherent & incoherent)
- Calibration
 - photometric calibration
 - -transfer function calibration

Calibration

$$f_{ij} = \gamma_{ij} F(\boldsymbol{u}_{ij})$$

fringe degradation factor

- Antenna-based gains: $\gamma_{ij} = \eta_i \eta_j$
 - pupil misalignment
 - spatial / modal filtering

♥ photometric calibration

- Transfer function calibration
 - fringe corruption
 - imperfect optics

observations of calibrator stars

$$\left\langle \hat{V}_{ij} \right\rangle = \sqrt{\frac{\left\langle \hat{p}_{ij} \right\rangle}{\left\langle \hat{F}_{i} \ \hat{F}_{j} \right\rangle}} \approx \sqrt{\frac{\left\langle \left| \eta_{i} \eta_{j} \right| \right\rangle \left| F(\boldsymbol{u}_{ij}) \right|^{2}}{\left\langle \eta_{i} F(0) \ \eta_{j} F(0) \right\rangle}} = \left| V(\boldsymbol{u}_{ij}) \right\rangle$$

Data from the Keck interferometer:

Kishimoto et al. 2009

PIONIER data:

Interferometric data reduction Is a well chosen sequence of:

- Calibrations (additive & multiplicative)
- Averaging of data
- Fourier Transforming
- Data fitting

Summary

+ ES+ 0 +

- Data reduction in context
- The forward problem
 - atmospheric piston & pupil distortion
 - spectral decoherence
 - bias and noise sources
- The inverse problem
 - debias & flatfielding
 - coherent flux extraction (Fourier, ABCD, P2VM)
 - integration (coherent & incoherent)
- Calibration
 - photometric calibration
 - -transfer function calibration