

Introduction to model-fitting

Michel Tallon, Isabelle Tallon-Bosc CRAL, Lyon France

M. Tallon & I. Tallon-Bosc

8th VLTI summer school — Cologne — Sept 6-13, 2015

- 1. Elements on model-fitting theory
 - understand a few concepts
 - understand the assumptions
 - getting hints useful for the practice
- 2. Digression on the correlations of data
- 3. LITpro software
 - short presentation of the main features
- 4. On the adventure of model-fitting
 - examples and hints
- 5. Short introduction to the practice

Elements on model-fitting theory

- understand the concepts
- understand the assumptions
- getting hints useful for the practice

d

Model fitting actors

- What we have
 - interferometric data (here OIFITS) and uncertainties on data
 - OI_VIS2 squared visibility amplitude
 - OI_VIS complex visibility (amplitude and phase)
 - OI_T3 triple product (amplitude and phase)
 - other data : SED (next OIFITS2), absolute photometry, etc.
 - priors: all possible models of object
- What we want
 - identity the observed object with a model
 - estimate object parameters *and* uncertainties on the parameters
 - easy 💽
- What we need
 - tools for model-fitting
 - know what we are doing (no black magic !)

m(x)

x

Model fitting principle

Criterion for the *best* parameters

• *best* parameters maximize the probability of the data (knowing the model)

 $x_{\text{best}} = \arg \max_{x} \operatorname{Pdf}(d \mid m(x))$

• where

d	data (random quantities, known statistics)
x	parameters
m(x)	model (of data): ~ expected values of data

- number of parameters < number of data
 - difference from image reconstruction
- priors are not objective
 - we have strong prior: the model of the object!
 - fundamental difference from image reconstruction

assumption: Gaussian statistics

• data have Gaussian statistics:

$$\operatorname{Pdf}(d \mid m(x)) = \frac{\exp\left(-\frac{1}{2} r^{\mathrm{T}} \cdot \mathbf{C}_{r}^{-1} \cdot r\right)}{\sqrt{(2\pi)^{N_{\text{data}}} \det\left(\mathbf{C}_{r}\right)}}$$

• where

$$r = d - m(x)$$
 residuals
 $C_r = \langle r.r^T \rangle - \langle r \rangle \langle r \rangle^T$ covariance matrix of residuals

• maximize Pdf ⇔ minimize argument of the Gaussian

$$\boldsymbol{x}_{\text{best}} = \arg\min_{\boldsymbol{x}} \left[\boldsymbol{d} - \boldsymbol{m}(\boldsymbol{x})\right]^{\mathrm{T}} \cdot \mathbf{C}_{r}^{-1} \cdot \left[\boldsymbol{d} - \boldsymbol{m}(\boldsymbol{x})\right]$$

assumption: data statistically independent

• C_r is a diagonal matrix:

$$\boldsymbol{x}_{\text{best}} = \arg\min_{\boldsymbol{x}} \left[\boldsymbol{d} - \boldsymbol{m}(\boldsymbol{x}) \right]^{\mathrm{T}} \cdot \mathbf{C}_{\boldsymbol{r}}^{-1} \cdot \left[\boldsymbol{d} - \boldsymbol{m}(\boldsymbol{x}) \right]$$
$$= \arg\min_{\boldsymbol{x}} \sum_{i=1}^{N_{\text{data}}} \left(\frac{d_i - m_i(\boldsymbol{x})}{\sigma_i} \right)^2$$

• thus we need to minimize $\chi^2(x)$:

$$\chi^{2}(\mathbf{x}) = \sum_{i=1}^{N_{\text{data}}} \left(\frac{d_{i} - m_{i}(\mathbf{x})}{\sigma_{i}} \right)^{2} = \sum_{i=1}^{N_{\text{data}}} \frac{r_{i}^{2}(\mathbf{x})}{\sigma_{i}^{2}} = \sum_{i=1}^{N_{\text{data}}} e_{i}(\mathbf{x})^{2}$$

a.k.a non-linear weighted least squares

where

 $e_i(\mathbf{x})$ normalized residual: random variable with standard normal distribution

 $=>\chi^2$ law

- Independency in real world ?
 - calibrator
 - normalization by incoherent flux

χ^2 law: definition

$$\chi^2(\mathbf{x}_{\text{best}}) = \sum_{i=1}^{N_{\text{data}}} e_i^2(\mathbf{x}_{\text{best}}) \text{ with } e_i(\mathbf{x}) = \frac{d_i - m_i(\mathbf{x})}{\sigma_i}$$

$$e_i(\mathbf{x}_{\text{best}})$$
 : standard normal distribution $\mathcal{N}(0,1)$

number of degrees of freedom: $N_{\text{free}} = N_{\text{data}} - N_{\text{param}}$ expected value: $E\{\chi^2(\boldsymbol{x}_{\text{best}})\} = N_{\text{free}}$ variance: $\text{Var}\{\chi^2(\boldsymbol{x}_{\text{best}})\} = 2 N_{\text{free}}$

χ^2 law: reduced χ^2

reduced χ^2 : $\chi^2_r = \frac{\chi^2}{N_{\text{free}}}$

number of degrees of freedom: expected value:

variance:

 $N_{\text{free}} = N_{\text{data}} - N_{\text{param}}$ $E\{\chi_{\text{r}}^{2}(\boldsymbol{x}_{\text{best}})\} = 1$ $Var\{\chi_{\text{r}}^{2}(\boldsymbol{x}_{\text{best}})\} = 2 / N_{\text{free}}$

Assume model is good !

- statistics is very sharp !
 - confidence level not very useful
- in practice, statistics cannot be used to accept or rule out a model
 - modeling errors may be high
 - noise level may be badly estimated
- can be used to compare two models:

 $\frac{\chi^2(\boldsymbol{m}_1)}{N} \longleftrightarrow \frac{\chi^2(\boldsymbol{m}_2)}{N_2}$

10

Errors on fitted parameters / 1

• We have seen :

$$x_{\text{best}} = \arg \min_{x} \left[d - m(x) \right]^{\text{T}} \cdot \mathbf{C}_{r}^{-1} \cdot \left[d - m(x) \right]$$
$$r = d - m(x)$$
$$\mathbf{C}_{r} = \langle (r - \langle r \rangle) (r - \langle r \rangle)^{\text{T}} \rangle = \mathbf{C}_{d}$$
$$\implies \mathbf{C}_{x} ?$$

• If a linear model: m(x) = H.x

$$\mathbf{C}_{r} = \mathbf{H} \langle (\mathbf{x} - \langle \mathbf{x} \rangle) (\mathbf{x} - \langle \mathbf{x} \rangle)^{\mathrm{T}} \rangle \mathbf{H}^{\mathrm{T}}$$
$$\mathbf{C}_{r} = \mathbf{H} \cdot \mathbf{C}_{\mathbf{x}} \cdot \mathbf{H}^{\mathrm{T}}$$
$$\Longrightarrow \mathbf{C}_{\mathbf{x}} = (\mathbf{H}^{\mathrm{T}} \cdot \mathbf{C}_{r}^{-1} \cdot \mathbf{H})^{-1}$$
$$\overset{C_{i,i}}{\leftarrow}$$

• Correlation matrix: $\Gamma_{i,j} = \frac{C_{i,j}}{\sigma_i \sigma_j}$

Errors on fitted parameters / 2

• But the model m(x) is highly non-linear ! => linearisation...

$$\boldsymbol{m}(\boldsymbol{x}) \approx \boldsymbol{m}(\boldsymbol{x}_{\text{best}}) + \left[\frac{\partial \boldsymbol{m}}{\partial \boldsymbol{x}}(\boldsymbol{x}_{\text{best}})\right](\boldsymbol{x} - \boldsymbol{x}_{\text{best}})$$
$$\mathbf{H} = \frac{\partial \boldsymbol{m}}{\partial \boldsymbol{x}}(\boldsymbol{x}_{\text{best}}) , \quad \text{i.e.} \quad H_{i,j} = \frac{\partial m_i}{\partial x_j}(\boldsymbol{x}_{\text{best}})$$
$$\mathbf{C}_{\boldsymbol{x}} \approx (\mathbf{H}^{\mathrm{T}} \cdot \mathbf{C}_{\boldsymbol{r}}^{-1} \cdot \mathbf{H})^{-1}$$

• Relation between errors on data and errors on parameters

$$\mathbf{C}_{\boldsymbol{x}} \approx \left[\left[\frac{\partial \boldsymbol{m}}{\partial \boldsymbol{x}} (\boldsymbol{x}_{\text{best}}) \right]^{\mathrm{T}} \cdot \mathbf{C}_{\boldsymbol{r}}^{-1} \cdot \left[\frac{\partial \boldsymbol{m}}{\partial \boldsymbol{x}} (\boldsymbol{x}_{\text{best}}) \right] \right]^{-1} \quad \text{Assume fitted model is good !}$$

- But:
 - assume modeled data are the expected value of data (i.e. the fitted model is good)
 - linear approximation of the model
 - this only translates the statistical errors from data to the parameters
 - ... and we are optimistic: we consider the equality to the Cramér-Rao lower bound

Errors on fitted parameters / 3

- General theorem of Cramér-Rao lower bound
- $\mathbf{C}_{\mathbf{x}} \geq \left[\nabla_{\mathbf{x}} \nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}) \right]^{-1}$ with log-likelihood:

$$\mathcal{L}(\boldsymbol{x}) = -\log \operatorname{Pdf}(\boldsymbol{d} \mid \boldsymbol{m}(\boldsymbol{x}))$$

13

• We come back to χ^2 using Gaussian assumption:

$$\mathcal{L}(\mathbf{x}) = \frac{1}{2} \left[d - m(\mathbf{x}) \right]^{\mathrm{T}} \cdot \mathbf{C}_{r}^{-1} \cdot \left[d - m(\mathbf{x}) \right] + \mathrm{Cte}$$

$$= \frac{1}{2} \chi^{2}(\mathbf{x}) + \mathrm{Cte}$$

$$\alpha \chi^{2}(\mathbf{x})$$
To get the idea, in 1 dimension:

$$\delta \mathbf{x} \ge \rho = \frac{1}{\alpha \frac{\partial^{2}}{\partial \mathbf{x}^{2}} \chi^{2}(\mathbf{x})}$$

$$\int_{\mathrm{best}} \frac{\delta \mathbf{x}}{\mathbf{x}} = \frac{1}{\alpha \frac{\partial^{2}}{\partial \mathbf{x}} - \frac{1}{\alpha \frac{\partial^{2}$$

Errors on fitted parameters: rescaling

- The model is good (assumption), but:
 - χ^2 is bad (>> N_{free})
 - errors on parameters may be good (only statistics) !

$$\chi^2(\boldsymbol{x}_{\text{best}}) = \sum_{i=1}^{N_{\text{data}}} \frac{r_i^2(\boldsymbol{x}_{\text{best}})}{\sigma_i^2} \gg N_{\text{free}}$$

we look for α such that:

$$\sum_{i=1}^{N_{\text{data}}} \frac{r_i^2(\boldsymbol{x}_{\text{best}})}{(\alpha \ \sigma_i)^2} = N_{\text{free}}$$

$$\Rightarrow \qquad \alpha = \sqrt{\frac{\chi^2(\boldsymbol{x}_{\text{best}})}{N_{\text{free}}}} = \sqrt{\chi_r^2(\boldsymbol{x}_{\text{best}})}$$

$$\Rightarrow \mathbf{C}_{\mathbf{x}} = \alpha^{2} \left[\left[\frac{\partial \mathbf{m}}{\partial \mathbf{x}}(\mathbf{x}_{\text{best}}) \right]^{\mathrm{T}} \cdot \mathbf{C}_{\mathbf{r}}^{-1} \cdot \left[\frac{\partial \mathbf{m}}{\partial \mathbf{x}}(\mathbf{x}_{\text{best}}) \right] \right]^{-1}$$

Model fitting principle

Outline of the optimization

- Needs
 - Minimize (iteratively!) $\chi^2(\mathbf{x})$ (sum of squares)
 - Non-linear, non-convex
- Local optimization with Newton method ٠
 - step from a local expansion at second order
 - need of gradients (Jacobian matrix)
 - need of second derivatives (Hessian matrix)
 - but step may be too long
 - outside region where quadratic approximation is valid
- Control of the length of the step ٠
 - add a constrain that deforms the cost function
- Levenberg-Marquardt algorithm ۲
 - we minimize a sum of squares
 - we only need gradients
 - finite differences are ok
 - Hessian is approximated
 - we only keep product of derivatives ٠

Newton step may be too long

=> We are currently looking for a local minimum

Local optimization with Newton method

• Second order expansion of the "cost function" we want to minimize

$$f(\boldsymbol{x} + \delta \boldsymbol{x}) = f(\boldsymbol{x}) + \delta \boldsymbol{x}^{\mathrm{T}} \cdot \boldsymbol{g}(\boldsymbol{x}) + \frac{1}{2} \delta \boldsymbol{x}^{\mathrm{T}} \cdot \mathbf{H}(\boldsymbol{x}) \cdot \delta \boldsymbol{x} + o(||\delta \boldsymbol{x}||^{2})$$

where

$$g(x) \equiv \nabla f(x)$$
 $g_i(x) = \frac{\partial f(x)}{\partial x_i}$ (gradient)
 $\mathbf{H}(x) \equiv \nabla \nabla f(x)$ $H_{i,j}(x) = \frac{\partial f(x)}{\partial x_i \partial x_j}$ (a.k.a. Hessian matrix)

• Local quadratic approximation around *x*.

$$f(\mathbf{x} + \delta \mathbf{x}) - f(\mathbf{x}) \approx q(\delta \mathbf{x}) \equiv \delta \mathbf{x}^{\mathrm{T}} \cdot \mathbf{g}(\mathbf{x}) + \frac{1}{2} \delta \mathbf{x}^{\mathrm{T}} \cdot \mathbf{H}(\mathbf{x}) \cdot \delta \mathbf{x}$$

• Optimal step

$$\delta \boldsymbol{x}_{\text{quad}} = \arg\min_{\delta \boldsymbol{x}} q(\delta \boldsymbol{x}) = -\mathbf{H}(\boldsymbol{x})^{-1} \cdot \boldsymbol{g}(\boldsymbol{x})$$

- + Method to prevent too large steps
 - at each step, reduce the "*trust region*" if quadratic approx is not good

Levenberg-Marquardt method

• Same ideas, but made specific to $\chi^2(x)$ function

$$f(\mathbf{x}) = \chi^2(\mathbf{x}) = \sum_{i=1}^{N_{\text{data}}} e_i^2(\mathbf{x}) \quad \text{with} \quad e_i(\mathbf{x}) = \frac{d_i - m_i(\mathbf{x})}{\sigma_i}$$

• Expressions of gradient and Hessian matrix

$$g_{k}(\boldsymbol{x}) = \frac{\partial f}{\partial x_{k}}(\boldsymbol{x}) = 2 \sum_{i=1}^{N_{\text{data}}} \frac{\partial e_{i}(\boldsymbol{x})}{\partial x_{k}} e_{i}(\boldsymbol{x})$$
$$H_{k,l}(\boldsymbol{x}) = \frac{\partial f(\boldsymbol{x})}{\partial x_{k} \partial x_{l}} = 2 \sum_{i=1}^{N_{\text{data}}} \frac{\partial e_{i}(\boldsymbol{x})}{\partial x_{k}} \frac{\partial e_{i}(\boldsymbol{x})}{\partial x_{l}} + 2 \sum_{i=1}^{N_{\text{data}}} \frac{\partial e_{i}(\boldsymbol{x})}{\partial x_{k} \partial x_{l}} e_{i}(\boldsymbol{x})$$

• + Approximation of Hessian matrix

$$H_{k,l}(\boldsymbol{x}) \approx 2 \sum_{i=1}^{N_{\text{data}}} \frac{\partial e_i(\boldsymbol{x})}{\partial x_k} \frac{\partial e_i(\boldsymbol{x})}{\partial x_l}$$

- + Method to prevent too large steps...
- + Method to take bounds into account...

Summary on theory

- OI-FITS data
 - with errors on data, but no covariance
- model of object \Leftrightarrow model of data
- assumption of Gaussian statistics of residuals
- assumption of statistical independency of data
 - no really true in real world
- χ^2 law
 - assume fitted model is good
 - sharp statistics
 - use reduced χ^2 for comparing two models on same data
- errors on parameters
 - somehow optimistic (Cramér-Rao lower bound achieved)
 - estimated from data errors, rescaled for systematic errors
 - correlations of parameters are estimated
- Optimization
 - Local minimization
 - Need of gradients only (finite differences is ok, **but beware at parameter scales**)

19

Digression on correlations of data

Appearance of independence

- simulated data
- model is perfect
- model is outside the error bars (1 sigma) for 32% of the data

- easier to compare data with various error bars
- show the true weight of data

Beware : only one realization here !

Data with adjacent correlations: 50%

20

×

20

- 50% correlation coefficient, only between adjacent points.
- Similar effect as spectral correlations in real data
- more alignments of successive points
- less dispersion of residuals

Beware : only one realization !

Data with adjacent correlations: 70%

20

××

20

- correlation coefficient:
 - 70% between adjacent points.
 - -25% with next points
 - Similar effect as (more) spectral correlations in real data
 - yet more alignments of successive points
- less dispersion of residuals

Beware : only one realization !

Data with global correlations: 70%

- 70% correlation between any points => more correlations
- Similar effect as noise on normalization (incoherent flux, calibrator)
- less dispersion of residuals

Beware : only one realization !

Examples on real data

25

M. Tallon & I. Tallon-Bosc

8th VLTI summer school — Cologne — Sept 6-13, 2015

Summary on correlation

- Several ways to get correlated data •
- When assuming independent data, correlations make χ^2 smaller ۲
- Thus don't trust χ^2 , confidence level, etc. •
 - can be used to compare different models (reduced χ^2) or assess the progress of the fit.
 - cannot be used to accept or rule out a model. —

LITpro model fitting software for optical interferometry

CRAL: I. Tallon-Bosc, P. Berlioz-Arthaud, M. Tallon
IPAG: H. Beust, L. Bourgès, G. Duvert, S. Lafrasse, J.-B. Le Bouquin,
G. Mella
LAGRANGE: A. Domiciano de Souza, N. Nardetto, M. Vannier

CRAL, Lyon France — IPAG, Grenoble, France — Lagrange, Nice/Grasse, France

What is LITpro?

- Parametric model fitting software for interferometry
 - LITpro: Lyon Interferometric Tool prototype
 - Conceived and developed up-to-now at CRAL in Lyon
 - Graphical User Interface developed at JMMC (Jean-Marie Mariotti Center)
 - Maintained and improved by the "model-fitting" group at JMMC (several labs in France)
- Aim: "exploit the scientific potential of existing interferometers", e.g. VLTI
- Complementary to image reconstruction
 - Sparse (u,v) coverage
 - Reconstructed images identify models
 - Model fitting extracts measured quantities

Leading requirements of LITpro

- Accessible to "general users" + flexible for "advanced users"
 - Opposite needs:
 - General users want simplicity (stepping stone)
 - Advanced users want a powerful tool (pioneering work)
 - Exchanges:
 - general users $--(needs) \rightarrow advanced users$
 - general users <---(training)--- advanced users
 - Progress must benefit to everybody (share experiences)
- Concentrate on the model of the object
 - Easy implementation of new models.
 - Only need to compute the Fourier transform of the object specific intensity on given coordinates (u, v, λ, t)

Leading requirements \Rightarrow implementation

- Accessible to astronomers + flexible for advanced users
 - flexible \Rightarrow high level language (*Yorick*)
 - easy modifications and adds in the software
 - "expert layer"
 - accessible \Rightarrow GUI
 - new abilities exposed once they are validated in the "expert" layer
- Concentrate on the model of the object
 - From Fourier transform of the object:
 - Modeled data (interferometric, spectroscopic, photometry, ...)
 - Images
 - LITpro also provides
 - Modeling builder (with GUI or filling a form)
 - Models of data
 - Fitter "engine"
 - Tools for analysis

Types of data

- **OIFITS** •
 - Squared visibilities (VIS2) _
 - Complex visibilities (VISAMP, VISPHI) _
 - Bispectrum (T3AMP, T3PHI) _
- Others ۲
 - Spectral Energy Distribution (dispersed fringes mode) —
 - Photometry (see example) _

. . .

Setting up the fitting process / principle

• Through the GUI

Fitting process

- Levenberg-Marquardt algorithm (modified)
 - Combined with a Trust Region method
 - Bounds on the parameters
 - Partial derivatives of the model by finite differences
- More latter...
 - Search of global minimum

Implementation of the GUI

🦄 ModelFitting V1.0.1	1.beta 😔 🤤	90				
File Edit Advanced Ho	p					
New model Ctrl-N						
Load model Ctrl-L	Settings panel	_				
Save model Ctrl-S	Oifile list					
Quit Ctrl-Q	File[/home/mfgui/SPIE08/Obj1.fits] File[/home/mfgui/SPIE08/Obj2.fits] File[/home/mfgui/SPIE08/Obj1Second.fits]					
	Load oifiles					
	Target list					
	Target[TARGET]					
	Add new target BSC1948					
	Fitter setup	ana 				
	standard					
	User info:	innin.				
Run fit	Created on Fri Jun 20 10:20:05 CEST 2008 by ModelFitting GUI rev. 1.0.11.beta					

- Implemented in JAVA
 - Web service
 - Links with other services (JMMC)
 - Virtual Observatory
 - Data explorer
 - User feedback
 - ...
- GUI just tells "expert layer" (*Yorick*) what to do
- First public release: October 2009

Status : New model ready for modifications

Work in progress

- LITpro
 - First public release Octobre 2009
- High in the list for near future
 - Easy implementation of "user models"
 - Fit of the spectrum (OIFITS2)
 - Tools for multichromatic modeling (e.g. dynamics)
 - Search for global minimum of χ^2
 - Cooperation between Image reconstruction and Model fitting

On the adventure of model fitting

- Local minimum
 - example of an uniform disk
- Observe your data... the Guru way
 - useful for initial guess (local minimum)
- Degeneracies

_

- on the total energy
- Example of a "heterogeneous" model-fitting

Beware of local minima !

- local minima exists even for a uniform disk, depending on data
- what to do ?
 - change first guess
 - cuts in χ^2 sub-spaces
 - use bounds
 - do not forget the low frequencies (or just confirm what we already know...)

Observe your data !

Observe your data !

- Starting from a good first guess may be decisive -

Binary with what?

Size of various object shapes

- Δu : width at half maximum (rad⁻¹)
- typical FWHM of the object : fwhm [mas] ~ $10^8 / \Delta u$
- gaussian is the smallest : fwhm [mas] ~ 0.6 x 10^8 / Δu

Degeneracy on total energy

- this degeneracy does not change χ^2
- huge errors because of no curvature of $\chi^2(\mathbf{x}_{best})$ for i1+i2
- this prevents reading the values of i1 and i2

Degeneracy on total energy: solution

- FAQ:
 - We could construct a normalized model !
 - Yes, but we want to combine all sorts of functions...
 - We could combine normalized functions !
 - Not always possible ! Ex: disk with constant amplitude (spot on a star)
- When total energy is not fixed by the data, we add this constraint:

$$\chi^2_{\star}(\boldsymbol{x}) = \chi^2(\boldsymbol{x}) + N_d \left(\frac{\sum_i \Delta \lambda_i \, m_i(\boldsymbol{x}, \boldsymbol{u}=0)}{\sum_i \Delta \lambda_i} - 1\right)^2$$

This drives total energy to unity

- But the added term MUST BE ZERO at the end of the fit !
 - If not: χ^2 is changed and quantities are wrong !
- Other degeneracies in practice
 - translation of the map (unless phase reference)
 - symmetries if no phase

- ...

Degeneracy on total energy: solved

Final values for fitted parameters and standard deviation: i1 = 0.83203 + / - 0.0812i2 = 0.16797 + - 0.0164x = -6.6657 + - 0.00441 mas y = 20.08 + - 0.00631 mas ٠ Chi2: initial= 7.376e+04 - final= 1983 - sigma= 14.2127 reduced Chi2: initial= 730.3 - final= 19.63 - sigma= 0.14072 Number of degrees of freedom = 101 --- Correlation matrix --i2 i1 х y i1 1 1 0.00021 0.00058 i2 1 -0.0011 -0.0029 1 -0.44 x 0.00021 -0.0011 1 0.00058 -0.0029 -0.44 1 V

Example: chromatic model + heterogeneous data / 1

Perrin et al, A&A 426, 279, 2004

 $I(\lambda, \theta) = B(\lambda, T_{\star}) \exp(-\tau(\lambda)/\cos(\theta)) + B(\lambda, T_{\text{layer}}) \left[1 - \exp(-\tau(\lambda)/\cos(\theta))\right]$ for $\sin(\theta) \le \emptyset_{\star}/\emptyset_{\text{layer}}$ and: $I(\lambda, \theta) = D(\lambda, T_{\text{layer}}) \left[1 - \exp(-\gamma(\lambda)/\cos(\theta))\right]$

 $I(\lambda, \theta) = B(\lambda, T_{\text{layer}}) \left[1 - \exp(-2\tau(\lambda)/\cos(\theta)) \right]$

- Why this example in particular ?
 - Fitting procedure is difficult
 - Need to improve procedures for "general users" (accessible ?)
 - How LITpro performs ?
 - Fitting interferometric + photometric data
 - Assess how it can help the fitting process

Example: chromatic model + heterogeneous data / 2

Perrin et al, A&A 426, 279, 2004

- squared visibilities : 4 sub-bands in K band (IOTA)
- magnitudes : J, H, K, L bands (Whitelock et al 2000)

Perrin et al. fitting procedure

- 1) (R_*,R_L) from gridding
 - fit all other parameters from fixed sampled values (R_{*},R_L)
 - arbitrary initial values of other parameters
- 2) (T_*, T_L) from gridding + intersection with K photometry
 - Difficult to use the other bandwidths
- 3) Fit 4 optical depths from fixed other parameters
- 4) Compare photometry with other bandwidths: J, H, L.

Simultaneous fitting of all the data

- 1) Overall size of the object ?
 - Radius of uniform disk: 18 mas
- 2) Overall temperature ?
 - For an uniform disk: 1540K
- 3) Fit from this initial values
 - Initial values of optical depths set to zero => uniform disk

0

May be useful (and reassuring) to use physical arguments for the first guess...

Comparison of results

		Fit with relative										
Parameter	Perri	n et al.	Simultane	ous fit	photor	netry		Fit with only				
R_{\star} (mas) 10.94 ± 0.85		11 ± 0.13		11 ± 0.19		/	relative	e photon	netry,			
$R_{\rm L}$ (mas) 25.00 ± 0.17		25.4 ± 0.16		25.4 ± 0.18			like the	e SED gi	iven by			
T_{\star} (K)	T_{\star} (K) 3856 ± 119		3694 ± 113		3778 ± 163			an opti	ical			
$T_{\rm L}$ (K) 1598 ± 24		1613 ± 35		1681 ± 174 🖌			interfe	rometer				
$ au_{2.03}$	$\tau_{2.03}$ 1.19 ± 0.01		1 ± 0.14		0.9 ± 0.35							
$ au_{2.15}$	$\tau_{2.15}$ 0.51 ± 0.01		0.42 ± 0.08		0.36 ± 0.17							
$ au_{2.22}$	$\begin{array}{c} 0.33 \pm 0.01 \\ 0.27 \pm 0.05 \\ 0.23 \pm 0.11 \end{array}$											
$ au_{2.39}$	1.37	± 0.01	1.2 ± 0.1	.13	1.08 ± 0.32							
γ	γ –		_	١	0.9 ± 0.2							
							-					
Correlation matrix												
		R_1	Rs_ratio	T_1	T_s	tau1	tau2	tau3	tau4			
	R_1	1	-0.66	-0.36	0.14	0.21	0.17	0.16	0.13			
Rs_	ratio	-0.66	1	0.71	-0.6	-0.67	-0.67	-0.66	-0.62			
	T_1	-0.36	0.71	1	-0.74	-0.94	-0.93	-0.93	-0.92			
	T_s	0.14	-0.6	-0.74	1	0.91	0.91	0.92	0.92	_		
	tau1	0.21	-0.67	-0.94	0.91	1	0.99	0.99	0.99			
	tau2	0.17	-0.67	-0.93	0.91	0.99	1	0.99	0.99			
	tau3	0.16	-0.66	-0.93	0.92	0.99	0.99	1	0.99			
	tau4	0.13	-0.62	-0.92	0.92	0.99	0.99	0.99	1			

Conclusions on the adventure

- Local minima even with uniform disk
 - cuts in χ^2 space
 - change first guess
 - check χ_r^2 if variations are significant
- Model-fitting algorithm has no brain
 - use yours: look carefully at the data: (u,v) coverage, baselines
- Degeneracies may appear
 - check covariances of parameters
 - check ON/OFF normalization of total energy
- Quality of the fit / model
 - $-\chi^2$
 - understand errors *and correlations* on parameters
 - various plots

Ready for the practice?

M. Tallon & I. Tallon-Bosc

8th VLTI summer school — Cologne — Sept 6-13, 2015

Your road map: 4 exercises

-

- 1. Fit of a simple model on one file (Arcturus)
 - easy fits, easy problem
 - explore the software
- 2. Fit with parameter sharing on several files (Arcturus)
 - more evolved model
- 3. Fit with degeneracies (binary)
 - explain them !
- 4. Fit on AMBER data
 - you are alone (almost)
- 5. More tricky data for fun (and to check your expertise)
- 6. Fit of a star + environment

