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Introduction to model-fitting


Michel Tallon, Isabelle Tallon-Bosc 
CRAL, Lyon France 
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Outline

1.  Elements on model-fitting theory 
–  understand a few concepts 
–  understand the assumptions 
–  getting hints useful for the practice 

2.  Digression on the correlations of data 

3.  LITpro software 
–  short presentation of the main features 

4.  On the adventure of model-fitting 
–  examples and hints 

5.  Short introduction to the practice 
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Elements on model-fitting theory

•  understand the concepts 
•  understand the assumptions 
•  getting hints useful for the practice 
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Model fitting actors

•  What we have 
–  interferometric data (here OIFITS) and uncertainties on data 

•  OI_VIS2 squared visibility amplitude 
•  OI_VIS complex visibility (amplitude and phase) 
•  OI_T3 triple product (amplitude and phase) 

–  other data : SED (next OIFITS2), absolute photometry, etc. 
–  priors: all possible models of object 

•  What we want 
–  identity the observed object with a model 
–  estimate object parameters and uncertainties on the parameters 
–  easy 

•  What we need 
–  tools for model-fitting 
–  know what we are doing (no black magic !) 

d

m(x)  
 x  
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Model fitting principle

parameters 
x model of object model of data 

"coordinates of data" 
(u, v, λλ, t) 

data 
d 

fitting tool 
                              data - model 
norm. residuals =  
                               uncertainty 

m(x) Nparam Ndata

so-called “the model”
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Criterion for the best parameters

•  best parameters maximize the probability of the data (knowing the model) 

•  where 
   d  data (random quantities, known statistics) 
   x  parameters 
   m(x)  model (of data): ~ expected values of data 

•  number of parameters < number of data 
–  difference from image reconstruction 

•  priors are not objective 
–  we have strong prior: the model of the object! 
–  fundamental difference from image reconstruction 
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assumption: Gaussian statistics

•  data have Gaussian statistics: 

•  where 
    r = d – m(x)  residuals 

      covariance matrix of residuals 

•  maximize Pdf   minimize argument of the Gaussian 
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assumption: data statistically independent

•  Cr is a diagonal matrix: 

•  thus we need to minimize χ2(x): 

 where  ei(x) normalized residual: random variable with 
          standard normal distribution 

 => χ2 law 
  

•  Independency in real world ? 
–  calibrator 
–  normalization by incoherent flux 

a.k.a non-linear 
weighted 
least squares 

covariances of 
data not 
measured  
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χχ2 law: definition
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with

number of degrees of freedom: 
expected value: 

variance: 

Nfree = Ndata - Nparam 
E{ χ2(xbest) } = Nfree 

Var{ χ2(xbest) } = 2 Nfree 

PDF of
χ2 law 

PDF of
χ2 law 

ei(xbest) : standard normal 
distribution N(0,1) 

Assume model is good ! 
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χχ2 law: reduced χ2

•  statistics is very sharp ! 
–  confidence level not very useful 

•  in practice, statistics cannot be used to accept or rule 
out a model 

–  modeling errors may be high 
–  noise level may be badly estimated 

•  can be used to compare two models: 

 n=1

 n=2

 n=3

 n=4

 n=5

 n=10

 n=20

 n=50

 n=100

 0  1  2  3
 0

 1

 2

 3

number of degrees of freedom: 
expected value: 

variance: 

Nfree = Ndata - Nparam 
E{χr

2(xbest)} = 1 

Var{χr
2(xbest)} = 2 / Nfree 

Assume model is good ! 

reduced χ2 : 

keep in mind 
var. of χ2�
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Errors on fitted parameters / 1

•  We have seen : 

  =>  Cx ? 

•  If a linear model: 

  => 
 
•  Correlation matrix:   
 

xbest = arg minx

[
d − m(x)

]T
.Cr
−1.

[
d − m(x)

]
r = d − m(x)

Cr = 〈 (r − 〈r〉) (r − 〈r〉)T 〉 = Cd

m(x) = H.x

Cr = H 〈 (x − 〈x〉) (x − 〈x〉)T 〉 HT

Cr = H.Cx.HT

Cx = (HT.Cr
−1.H)−1

Γi, j =
Ci, j

σi σ j
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Errors on fitted parameters / 2

•  But the model m(x) is highly non-linear ! => linearisation… 

•  Relation between errors on data and errors on parameters 

•  But: 
–  assume modeled data are the expected value of data (i.e. the fitted model is good) 
–  linear approximation of the model 
–  this only translates the statistical errors from data to the parameters 
–  … and we are optimistic: we consider the equality to the Cramér-Rao lower bound 

m(x) ≈ m(xbest) +
[∂m
∂x

(xbest)
]
(x − xbest)

H =
∂m
∂x

(xbest) Hi, j =
∂mi

∂x j
(xbest)

Cx ≈ (HT.Cr
−1.H)−1

,    i.e.

Cx ≈
[ [∂m
∂x

(xbest)
]T

.Cr
−1.

[∂m
∂x

(xbest)
] ]−1

Assume fitted model is good ! 
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Errors on fitted parameters / 3

•  General theorem of Cramér-Rao lower bound 

•  We come back to χ2 using Gaussian assumption: 

with log-likelihood:

x

α χ2(x) 

δx

To get the idea, in 1 dimension:

xbest

ρ�
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Errors on fitted parameters: rescaling

•  The model is good (assumption), but: 
–  χ2 is bad (>> Nfree) 
–  errors on parameters may be good (only statistics) ! 

we look for α such that:

⇒

⇒
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Model fitting principle

parameters 
x model of object model of data 

"coordinates of data" 
(u, v, λλ, t) 

data 
d 

fitting tool 
                              data - model 
norm. residuals =  
                               uncertainty 

m(x) Nparam Ndata

so-called “the model”
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Outline of the optimization

•  Needs 
–  Minimize (iteratively!) χ2(x) (sum of squares) 
–  Non-linear, non-convex 

•  Local optimization with Newton method 
–  step from a local expansion at second order 

•  need of gradients (Jacobian matrix) 
•  need of second derivatives (Hessian matrix) 

–  but step may be too long 
•  outside region where quadratic approximation is valid 

•  Control of the length of the step 
–  add a constrain that deforms the cost function 

•  Levenberg-Marquardt algorithm 
–  we minimize a sum of squares 
–  we only need gradients 

•  finite differences are ok 
–  Hessian is approximated 

•  we only keep product of derivatives 

=> We are currently looking for 
a local minimum 

x

χ2(x) 

expansion
step

Newton step may be too long
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Local optimization with Newton method

•  Second order expansion of the "cost function" we want to minimize 

where 

 
•  Local quadratic approximation around x. 

•  Optimal step 

•  + Method to prevent too large steps 
–  at each step, reduce the "trust region" if quadratic approx is not good 

 

f (x + δx) = f (x) + δxT.g(x) +
1

2
δxT.H(x).δx + o(‖δx‖2)

g(x) ≡ ∇ f (x)

H(x) ≡ ∇∇ f (x)

f (x + δx) − f (x) ≈ q(δx) ≡ δxT.g(x) +
1

2
δxT.H(x).δx

δxquad = arg minδx q(δx) = −H(x)−1.g(x)

(gradient)

(a.k.a. Hessian matrix)

gi(x) =
∂ f (x)

∂xi

Hi, j(x) =
∂ f (x)

∂xi∂x j
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Levenberg-Marquardt method

•  Same ideas, but made specific to χ2(x) function 

•  Expressions of gradient and Hessian matrix 

•  + Approximation of Hessian matrix 

•  + Method to prevent too large steps… 
•  + Method to take bounds into account… 

ei(x) =
di − mi(x)

σi
f (x) = χ2(x) =

Ndata∑
i=1

e2
i (x) with

gk(x) =
∂ f
∂xk

(x) = 2

Ndata∑
i=1

∂ei(x)

∂xk
ei(x)

Hk,l(x) =
∂ f (x)

∂xk∂xl
= 2

Ndata∑
i=1

∂ei(x)

∂xk

∂ei(x)

∂xl
+ 2

Ndata∑
i=1

∂ei(x)

∂xk∂xl
ei(x)

Hk,l(x) ≈ 2

Ndata∑
i=1

∂ei(x)

∂xk

∂ei(x)

∂xl
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Summary on theory

•  OI-FITS data 
–  with errors on data, but no covariance 

•  model of object ↔ model of data 
•  assumption of Gaussian statistics of residuals 
•  assumption of statistical independency of data 

–  no really true in real world 
•  χ2 law 

–  assume fitted model is good 
–  sharp statistics 
–  use reduced χ2 for comparing two models on same data 

•  errors on parameters 
–  somehow optimistic (Cramér-Rao lower bound achieved) 
–  estimated from data errors, rescaled for systematic errors 
–  correlations of parameters are estimated 

•  Optimization 
–  Local minimization 
–  Need of gradients only (finite differences is ok, but beware at parameter scales) 
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Digression on correlations of data
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Appearance of independence

•  simulated data
•  model is perfect
•  model is outside the error bars 

(1 sigma) for 32% of the data
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ei(x) =
di − mi(x)
σi

Normalized residuals

1 sigma

•  easier to compare data with 
various error bars

•  show  the true weight of data

Beware : only one realization here !
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Data with adjacent correlations: 50%

•  50% correlation 
coefficient, only 
between adjacent points. 

•  Similar effect as spectral 
correlations in real data 

•  more alignments of 
successive points 

•  less dispersion of 
residuals 
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Beware : only one realization !
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Data with adjacent correlations: 70%

•  correlation coefficient: 
–  70% between adjacent 

points. 
–  25% with next points 

•  Similar effect as (more) 
spectral correlations in 
real data 

•  yet more alignments of 
successive points 

•  less dispersion of 
residuals 
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Beware : only one realization !
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Data with global correlations: 70%

•  70% correlation between 
any points => more 
correlations 

•  Similar effect as noise on 
normalization (incoherent 
flux, calibrator) 

•  less dispersion of 
residuals 
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Beware : only one realization !
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Examples on real data

GI2T, Vakili et al 1997

CHARA/VEGA, Berio et al 2011
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Summary on correlation

•  Several ways to get correlated data 

•  When assuming independent data, correlations make χ2 smaller 

•  Thus don't trust χ2, confidence level, etc. 
–  can be used to compare different models (reduced χ2) or assess the progress of 

the fit. 
–  cannot be used to accept or rule out a model. 
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LITpro model fitting software
for optical interferometry



 CRAL:  I. Tallon-Bosc, P. Berlioz-Arthaud, M. Tallon 
 IPAG:  H. Beust, L. Bourgès, G. Duvert, S. Lafrasse, J.-B. Le Bouquin, 

  G. Mella 
 LAGRANGE:  A. Domiciano de Souza, N. Nardetto, M. Vannier 
 

CRAL, Lyon France — IPAG, Grenoble, France — Lagrange, Nice/Grasse, France 
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What is LITpro ?

•  Parametric model fitting software for interferometry
–  LITpro: Lyon Interferometric Tool prototype

–  Conceived and developed up-to-now at CRAL in Lyon

–  Graphical User Interface developed at JMMC (Jean-Marie Mariotti Center)

–  Maintained and improved by the "model-fitting" group at JMMC (several labs in France)

•  Aim: "exploit the scientific potential of existing interferometers", e.g. VLTI

•  Complementary to image reconstruction
–  Sparse (u,v) coverage

–  Reconstructed images identify models

–  Model fitting extracts measured quantities
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Leading requirements of LITpro

•  Accessible to "general users" + flexible for "advanced users" 
–  Opposite needs: 

•  General users want simplicity (stepping stone) 
•  Advanced users want a powerful tool (pioneering work) 

–  Exchanges: 
• general users     —(needs)—›  advanced users 
• general users   ‹—(training)—  advanced users 

–  Progress must benefit to everybody (share experiences) 

•  Concentrate on the model of the object 
–  Easy implementation of new models. 
–  Only need to compute the Fourier transform of the object specific intensity on given 

coordinates (u, v, λλ, t) 
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Leading requirements ⇒⇒ implementation

•  Accessible to astronomers + flexible for advanced users 
–  flexible ⇒ high level language (Yorick) 

•  easy modifications and adds in the software 
•  "expert layer" 

–  accessible ⇒ GUI 
•  new abilities exposed once they are validated in the "expert" layer 

•  Concentrate on the model of the object 
–  From Fourier transform of the object: 

•  Modeled data (interferometric, spectroscopic, photometry, …) 
•  Images 

–  LITpro also provides 
•  Modeling builder (with GUI or filling a form) 
•  Models of data 
•  Fitter "engine" 
•  Tools for analysis 
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Types of data

•  OIFITS 
–  Squared visibilities (VIS2) 
–  Complex visibilities (VISAMP, VISPHI) 
–  Bispectrum (T3AMP, T3PHI) 

•  Others 
–  Spectral Energy Distribution (dispersed fringes mode) 
–  Photometry (see example) 
–  … 
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Setting up the fitting process / principle

•  Through the GUI 

data files,  
+ function 1: parameter1 = "p1",   
+ function 2: parameter1 = "p2",  
+  

Associate data 
with a model  

other data files,  
+ function 1: parameter1 = "p3",   
+ function 3: parameter1 = "p4",  
+  

As many groups 
as you want  

other data files,  
+ disk: diameter = "d1", x="x", y="y"   
+ disk: diameter = "d2", x="x", y="y"  
+  

As many groups 
as you want  

"p1" —› starting value, bounds, fixed or fitted, units 
"p2" —› starting value, bounds, fixed or fitted, units 
        
"r1" —›  starting value, bounds, fixed or fitted, units 
        

Configuration 
of parameters 

fit altogether 
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Fitting process

•  Levenberg-Marquardt algorithm (modified) 
–  Combined with a Trust Region method 
–  Bounds on the parameters 
–  Partial derivatives of the model by finite differences 

•  More latter… 
–  Search of global minimum 
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Implementation of the GUI

•  Implemented in JAVA 
–  Web service 
–  Links with other services 

(JMMC) 
•  Virtual Observatory 
•  Data explorer 
•  User feedback 
•  … 

•  GUI just tells "expert 
layer" (Yorick) what to do 

•  First public release: October 
2009 
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Work in progress

•  LITpro 
–  First public release Octobre 2009 

•  High in the list for near future 
–  Easy implementation of "user models" 
–  Fit of the spectrum (OIFITS2) 
–  Tools for multichromatic modeling (e.g. dynamics) 
–  Search for global minimum of χ2�

–  Cooperation between Image reconstruction and Model fitting 
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On the adventure of model fitting

•  Local minimum 
–  example of an uniform disk 

•  Observe your data… the Guru way 
–  useful for initial guess (local minimum) 

•  Degeneracies 
–  on the total energy 

•  Example of a "heterogeneous" model-fitting  
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Beware of local minima !

•  local minima exists even for a uniform disk, depending on data 
•  what to do ? 

–  change first guess 
–  cuts in χ2 sub-spaces 
–  use bounds 
–  do not forget the low frequencies (or just confirm what we already know…) 

 10  20  30  40  50

10+3

10+4

10+5

10+6

d (mas)

χ
2

Chi2 minimum (=713.154) at d=20.1186

fit of an 
uniform disk: 

χr
2=1e4

cut in χ2 
space

0.0 0.5 1.0 1.5 2.0
10+7

10−4

10−2

10+0

spatial frequency in 1/rad

sq
ua

re
d 

vi
si

bi
lit

y 
(V

IS
2)



M. Tallon & I. Tallon-Bosc 8th VLTI summer school — Cologne — Sept 6-13, 2015 38

Observe your data !
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Observe your data !
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Modulation = binary (or >2 components) 

0.33 

Minimum of modulation gives intensity ratio 
of the components: 

— Starting from a good first guess may be decisive — 

Attenuation = components resolved 

binary convolved by an extended function 

Fourier transform multiplied by a window 
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Binary with what ?
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… with background

Δu

           ρ = 1/Δu
Here:
  Δu ~ 2  10+8  1/rad
  ρ ~ 5  10-9 rad ~ 1 mas

Separation of the components:

Φmain =
1
2

(√
V2

max +

√
V2

min

)

Φsecondary =
1
2

(√
V2

max −

√
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)

Φbackground = 1 −
√

V2
max

r =

√
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max −

√
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min√
V2

max +

√
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min

(flux ratio of the 
components)

(flux in background)

(flux in main 
component)

(flux in secondary 
component)
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Size of various object shapes

•  Δu : width at half maximum (rad-1) 

• typical FWHM of the object : 
fwhm [mas] ~ 108 / Δu 

• gaussian is the smallest : 
fwhm [mas] ~ 0.6 x 108 / Δu 
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Degeneracy on total energy

•  this degeneracy does not change χ2 

•  huge errors because of no curvature of χ2(xbest) for i1+i2 
•  this prevents reading the values of i1 and i2 
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fit of a binary Model of the binary
•  main component at (0,0) with intensity i1
•  secondary at (x,y) with intensity i2
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Degeneracy on total energy: solution

•  FAQ: 
–  We could construct a normalized model ! 
–  Yes, but we want to combine all sorts of functions… 
–  We could combine normalized functions ! 
–  Not always possible ! Ex: disk with constant amplitude (spot on a star) 

•  When total energy is not fixed by the data, we add this constraint: 

•  But the added term MUST BE ZERO at the end of the fit ! 
–  If not: χ2 is changed and quantities are wrong ! 

•  Other degeneracies in practice 
–  translation of the map (unless phase reference) 
–  symmetries if no phase 
–  … 

This drives total 
energy to unity
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Degeneracy on total energy: solved
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Example: chromatic model
+ heterogeneous data / 1

•  Why this example in particular ? 
–  Fitting procedure is difficult 

•  Need to improve procedures for "general users" (accessible ?) 
•  How LITpro performs ? 

–  Fitting interferometric + photometric data 
•  Assess how it can help the fitting process 

Perrin et al, A&A 426, 279, 2004
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Example: chromatic model
+ heterogeneous data / 2

•  squared visibilities : 4 sub-bands in K band (IOTA) 
•  magnitudes : J, H, K, L bands (Whitelock et al 2000) 
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Perrin et al, A&A 426, 279, 2004

RLeo RLeo 
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Perrin et al. fitting procedure

1)  (R*,RL) from gridding 
•  fit all other parameters from fixed sampled 

values (R*,RL) 
•  arbitrary initial values of other parameters 

2)  (T*, TL ) from gridding + intersection with 
K photometry 
•  Difficult to use the other bandwidths 

3)  Fit 4 optical depths from fixed other 
parameters 

4)  Compare photometry with other 
bandwidths: J, H, L. 
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Simultaneous fitting of all the data

1)  Overall size of the object ? 
•  Radius of uniform disk: 18 mas 

2)  Overall temperature ? 
•  For an uniform disk: 1540K 

3)  Fit from this initial values 
•  Initial values of optical depths set to zero 

=> uniform disk 
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May be useful (and reassuring) to use physical arguments for the first guess…
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Comparison of results

Fit with relative
Parameter Perrin et al. Simultaneous fit photometry
R� (mas) 10.94 ± 0.85 11 ± 0.13 11 ± 0.19
RL (mas) 25.00 ± 0.17 25.4 ± 0.16 25.4 ± 0.18
T� (K) 3856 ± 119 3694 ± 113 3778 ± 163
TL (K) 1598 ± 24 1613 ± 35 1681 ± 174
τ2.03 1.19 ± 0.01 1 ± 0.14 0.9 ± 0.35
τ2.15 0.51 ± 0.01 0.42 ± 0.08 0.36 ± 0.17
τ2.22 0.33 ± 0.01 0.27 ± 0.05 0.23 ± 0.11
τ2.39 1.37 ± 0.01 1.2 ± 0.13 1.08 ± 0.32
γ – – 0.9 ± 0.2

Fit with only 
relative photometry, 
like the SED given by 
an optical 
interferometer 

R_l Rs_ratio T_l T_s tau1 tau2 tau3 tau4

R_l 1 -0.66 -0.36 0.14 0.21 0.17 0.16 0.13

Rs_ratio -0.66 1 0.71 -0.6 -0.67 -0.67 -0.66 -0.62

T_l -0.36 0.71 1 -0.74 -0.94 -0.93 -0.93 -0.92

T_s 0.14 -0.6 -0.74 1 0.91 0.91 0.92 0.92

tau1 0.21 -0.67 -0.94 0.91 1 0.99 0.99 0.99

tau2 0.17 -0.67 -0.93 0.91 0.99 1 0.99 0.99

tau3 0.16 -0.66 -0.93 0.92 0.99 0.99 1 0.99

tau4 0.13 -0.62 -0.92 0.92 0.99 0.99 0.99 1

Correlation matrix 
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Conclusions on the adventure

•  Local minima even with uniform disk 
–  cuts in χ2 space 
–  change first guess 
–  check χr

2 if variations are significant 
•  Model-fitting algorithm has no brain 

–  use yours: look carefully at the data: (u,v) coverage, baselines 
•  Degeneracies may appear 

–  check covariances of parameters 
–  check ON/OFF normalization of total energy 

•  Quality of the fit / model 
–   χ2�

–  understand errors and correlations on parameters 
–  various plots 
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Ready for the practice?
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Your road map: 4 exercises

1.  Fit of a simple model on one file (Arcturus) 
–  easy fits, easy problem 
–  explore the software 

2.  Fit with parameter sharing on several files (Arcturus) 
–  more evolved model 

 
3.  Fit with degeneracies (binary) 

–  explain them ! 
 
4.  Fit on AMBER data 

–  you are alone (almost) 

5.  More tricky data for fun (and to check your expertise) 

6.  Fit of a star + environment 


