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1 Introduction

The objective of this practical session is to give students a feel for working with some interfer-
ometric visibilities in order to determine the angular diameter of a star and its uncertainty. In
combination with the distance to the star and some asteroseismic information we will subse-
quently determine the mass of a star. Then we will apply what we have learnt to α Cen A. If
there is time at the end we will use stellar evolution tracks to estimate the age of a star (Section
5.2). There is also an optional section on the analysis of time series signals if you prefer to do
this (Section 7).

This practical is done using the computing language IDL. If you are unfamiliar with IDL, all
of the commands that you will need to successfully complete this practical are given in this
handout. However, it may take you a bit longer to complete the practical.

To begin, type the following at the command prompt:
idl

Once IDL has started, then do the following command to load in some variables and to print
out some basic information:
@start

If at any stage you forget the commands to use in IDL, you can either look through this handout,
or type @start and this will print out information to the screen.

2 Drawing visibility curves

If you have done @start in IDL, then you will have loaded two arrays: one called xx and the other
called ll. These correspond to the baselines and the effective wavelengths of the interferometric
observations. To illustrate them you can do the following:
plot, xx

plot, ll
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In these two arrays we have defined a continuous baseline coverage, and this will allow us to
play around with looking at how the visibility curves change for different angular diameters.

In order to determine the visibility curves (squared visibilties) corresponding to an angular diam-
eter and projected baseline, we have an IDL function, called udangdiam. This function calculates
the uniform disk angular diameter, given some parameters. Do the following commands, and
explain what you are plotting each time.

plot, xx/ll, udangdiam(0.5,xx,ll)

plot, xx/ll*1e-8, udangdiam(0.5,xx,ll)

plot, xx/ll*1e-8, udangdiam(0.5,xx,ll), xran=[0,6]

oplot, xx/ll*1e-8, udangdiam(0.75,xx,ll), col = 200

oplot, xx/ll*1e-8, udangdiam(0.3,xx,ll), lines= 2

xar = xx/ll*1e-8

yar = udangdiam(0.26,xx,ll)

oplot, xar, yar, col=200, line=3

——————————————————————————————————————
——————————————————————————————————————
——————————————————————————————————————
——————————————————————————————————————
——————————————————————————————————————
——————————————————————————————————————

Here we have used a function called ’udangdiam’, meaning uniform disk angular diameter. This
function requires a set of 3 inputs and returns a variable which is calculated using the 3 input
variables. In udangdiam the first argument is the angular diameter in milliarcseconds (mas)
and this is a constant. The second argument (xx) defines the baselines (in metres) and this
argument is as long as we wish it to be. For observations, we have one baseline for each visibility
point. The third argument (ll) is the wavelength in which the instrument works. This is also
given in metres and is necessarily the same length as xx. The function calculates the squared
visibilities. In the last example, yar are the squared visibilities corresponding to all of the input
’baselines/lambda’ for a uniform disk of angular diameter 0.26 mas.

In the examples above we sampled the visibilty curve at 1000 points. However, normally we can
not do this, and we must be able to select the optimal telescopes and instruments in order to
sample the curve as best as possible.

The following illustrates how we can sample the visibility curve by using different baselines
(different telescope configurations) and different wavelengths (different instruments, blue, red,
and IR).

plot,xx/ll*1e-8, udangdiam(0.5,xx,ll)
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print,x2,l2

oplot,x2/l2*1e-8,udangdiam(0.5,x2,l2),ps=6

print,x3,l3

oplot,x3/l3*1e-8,udangdiam(0.5,x3,l3),ps=5

——————————————————————————————————————
——————————————————————————————————————
——————————————————————————————————————
——————————————————————————————————————
——————————————————————————————————————
——————————————————————————————————————

In the observations for x2 and l2, you can see that the observations were sampled using two
different baselines, in other words, different telescope configurations. The baselines are 100m
and 160m, and we use the same wavelength (or instrument).

In the second example, we are using the same baseline (200m) but we have obtained visibility
points using instruments that operate in the blue, red, and IR (at λ = 550nm, 735nm, and
1150nm).

1. Can you determine what wavelength we’d need to work with if we want to sample in the first
lobe? (using a 200m baseline).
——————————————————————————————————————
——————————————————————————————————————
2. Is this feasible? Why?
——————————————————————————————————————
——————————————————————————————————————
3. If the angular diameter is expected to be 0.9 mas and we work with the visible interferometer
at 7.35e-7 m, what baselines would we need to obtain squared visibilities around 0.6 and 0.1?

——————————————————————————————————————
——————————————————————————————————————

Use the following example to help you:

plot,xx/ll*1e-8, udangdiam(0.9,xx,ll)

plot,xx/ll*1e-8, udangdiam(0.9,xx,ll),xran=[0,5]

x2=[20,200] ; try these baselines

oplot,x2/l2*1e-8,udangdiam(0.9,x2,l2),ps=6

4. The following are two observation points using an instrument operating at 7.35e-7m. The
two baselines are 55m and 120m, and their observed squared visibilities are 0.60 and 0.05. Can
you determine the uniform disk angular diameter?
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——————————————————————————————————————
——————————————————————————————————————

If you would like to create a postscript figure you can do the following commands before your
plotting commands

set_plot,’ps’

device,filename=’myplot.ps’

And then after you have finished plotting your figure, do:

device,/close

set_plot,’x’

2.1 Limb-darkened angular diameters

Now we will repeat some of the above exercises but using the function ldangdiam which means
the limb-darkened angular diameter. In reality stars are not uniform disks, unfortunately, and
we observe a profile of brightness from the center to the limb. The amount of limb-darkening
changes the center-limb contrast and is characterised by a coefficient µ. To call the ldangdiam

function, do the following:

ldc = 0.5

plot,xx/ll*1e-8, ldangdiam(0.9,xx,ll,ldc),xran=[0,5], linestyle=2

1. Compare the visibility curves using the same angular diameter but the different functions. At
what projected baseline is the difference largest? And by how much?

——————————————————————————————————————
——————————————————————————————————————
2. At what limb-darkening coefficient is the largest difference between the uniform disk and
limb-darkened diameter less than 0.01?

——————————————————————————————————————
——————————————————————————————————————

2. Compare different visibility curves using different limb-darkening coefficients (e.g. µ = 0.4 -
0.7)1.

1In ADS, look for Claret (2000), on-line data, and select ’atlasco’ catalogue. Here you can specify the logg,
Teff and [M/H] of the star (or specify one or none of these) or in ’Coeff’ write ’u’ and you will get a table with
the linear limb-darkening coefficients ’u’
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3. What is the largest difference in visibilities (using the last example) when we use a coefficient
of 0.45 and 0.65?

——————————————————————————————————————
——————————————————————————————————————

4. The following are two observation points using an instrument operating at 7.35e-7m. The
two baselines are 55m and 120m, and their observed squared visibilities are 0.94 and 0.74. Can
you determine the limb-darkened angular diameter? Use a limb-darkening coefficient of 0.65

——————————————————————————————————————
——————————————————————————————————————

5. Read this question, but skip it if you are going slowly, and come back to it at the

end.

If you have access to ADS on-line, go to the Claret (2000) on-line catalogue of limb-darkening
coefficients. If you have never used ADS, you can go directly to the following webpage to browse
www.cdsads.u-strasbg.fr/abstract_service.html. If you would like help to get to the on-
line data, just ask. Choose a star of log g = 4.0, Teff = 5500 K, [M/H] = 0.0 dex, and the
coefficient ’u’ (this coefficient is for the linear limb-darkening models). How does the coefficient
change if we observe in the blue, red, and IR? At which bands is it more important?
How do the coefficients change if log g is 4.5 dex? if Teff = 6000 K? if [M/H] = 0.5dex?
In terms of precisions in observations (0.1 dex for log g and [M/H], and 200 K for Teff)?
Which is the most important parameter here?

——————————————————————————————————————
——————————————————————————————————————
——————————————————————————————————————
——————————————————————————————————————
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3 Fitting angular diameters from interferometric data

In the following section we will read in some visibility data and determine their angular diameters.

3.1 Easy data

Using the files data0a.txt, data0b.txt and data0c.txt in the directory ’data’, find the angular
diameter that best fits the data. Use the command readcol to read in the columns of data in
each file:
readcol, ’data/data0a.txt’, vis2, err2, base, lambda

1. Use the coefficients 0.6 for files a and b, and the coefficient 0.4 for c. Plot the visibility data
for each set and estimate the limb-darkened angular diameter. Use the following commands to
help you:

plot, base/lambda*1e-8, vis2, ps=2, xran=[0,10]

oploterr, base/lambda*1e-8, vis2, err2

oplot, xx/ll*1e-8, ldangdiam(0.3, xx,ll,0.6),col=200

——————————————————————————————————————
——————————————————————————————————————
——————————————————————————————————————
——————————————————————————————————————
——————————————————————————————————————
——————————————————————————————————————

2. Can you give a reason why the the coefficients change? even though we use the same wave-
length?

——————————————————————————————————————
——————————————————————————————————————

3.2 Data with errors

Now we will work with some data with errors. The following files contain visibility data:
data1.txt, data2.txt, data3.txt and data4.txt. Begin with data1.txt.

1. Read in the data, plot them, and try to estimate the limb-darkened angular diameters. You
can use the limb-darkening coefficient 0.6. There is a useful IDL command to plot the yrange of
interest; yran = [0,1]. Don’t forget to plot the error bars.
2. For each set of data, estimate the angular diameter and the error (by eye).
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3. What is the difference between data1.txt, data2.txt, and data3.txt?

——————————————————————————————————————
——————————————————————————————————————

4. What is the difference between data3.txt and data4.txt?

——————————————————————————————————————
——————————————————————————————————————

3.3 Estimating error bars

Now we will look at a way to estimate the true error bars. Let’s begin with data1.txt. 1. Read
and plot these data and overplot the visibility curve with the best angular diameter.

There is a way to quantify how well the data match the theoretical data and that is by comparing
them directly. In the following example, AD needs to be replaced with the value that you obtain
for the angular diameter.

plot, base/lambda*1e-8, vis2, ps=2, xran=[0,10], yran = [0,0.2]

oplot, base/lambda*1e-8, ldangdiam(AD, base, lambda, 0.6), ps=2, col=200

plot, base/lambda*1e-8, vis2 - ldangdiam(AD, base, lambda, 0.6), $

ps = 6, xran = [0, 10], ytitle = ’Data - Model’, $

xtitle=’Projected Baseline (x 1e-8 m)’

oplot,[0,10],[0,0],linestyle=2

plot, base/lambda*1e-8, (vis2 - ldangdiam(AD, base, lambda, 0.6))/err2, $

ps = 6, xran = [0,10]

oplot,[0,10],[0,0],linestyle=2

2. What is the difference between the last two plots?

——————————————————————————————————————
——————————————————————————————————————

To quantify how alike the data and the model are, we calculate its χ2 = (yi−ym)2

σ2

i

where yi are

the squared visibilities, σi are the errors, and ym are the theoretical or model values.

print, total ( (vis2 - ldangdiam(AD, base, lambda, 0.6))^2 / err2^2)
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dof = n_elements(vis2) - 1

reducedchisq = total ( (vis2 - ldangdiam(AD, base, lambda, 0.6))^2 / err2^2)/ dof

print,reducedchisq

Now you can calculate the reduced χ2 for a range of angular diameters, and plot the results as
a function of angular diameter. I have a created a function called chisq which allows us to do
this easily. Follow the example below:

angdiamrange = findgen(20)*0.01+0.35 ;create an array of angular diam.

plot, angdiamrange, ps = 1 ;to see the values we are sampling

rchisq = chisq(vis2, err2, base, lambda, 0.6, angdiamrange)

plot,angdiamrange,rchisq, ytit = ’!7v!6!a2!n!iR!6’, xtit=’angular diameter (mas)’

3. Find the angular diameter corresponding to the minimum χ2
R. You can change the sampling

of the angular diameters as you wish, e.g. angdiamrange = findgen(100)*0.005+0.30.

——————————————————————————————————————
——————————————————————————————————————

For a function with one degree of freedom we can define the uncertainties on the fitted parameter
i.e. the angular diameter, as the range of angular diameters for which its χ2

R value is less than
the minimum value of χ2

R + 1. Do
oplot, [0.2,1.0], replicate(min(rchisq)+1, 2), lines=2

to see the values of the angular diameter that satisfy this criteria. Now you can define the
angular diameter and its 1σ uncertainty.

4. Calculate the angular diameter and its uncertainties for the data in data2.txt, data3.txt, and
data4.txt. What are the differences and why?

——————————————————————————————————————
——————————————————————————————————————
——————————————————————————————————————
——————————————————————————————————————
——————————————————————————————————————
——————————————————————————————————————
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4 Calculating the radius and its error

Once we have the angular diameter, denoted θ, and the parallax (or distance) to the star, then
we can calculate the star’s radius:

R = 107.5 ×
θ

π
(1)

where π is the parallax in mas, and θ is also given in mas. The result is the radius R in solar
radii (R⊙).

1. Calculate the radius of the star using the angular diameter that you have determined using
the data from the file data3.txt. Its parallax is 51.55 ± 0.09 mas.
2. Use a standard propagation of errors formula2 to determine the uncertainty on the radius.
3. Compare the radii of the star using data3.txt and data4.txt.

——————————————————————————————————————
——————————————————————————————————————
——————————————————————————————————————
——————————————————————————————————————
——————————————————————————————————————
——————————————————————————————————————

2if f = f(a, b) then σ2

f = σ2

a( ∂f

∂a
)2 + σ2

b ( ∂f

∂b
)2 where σ denotes uncertainty/error.
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5 The mass of the star

5.1 The asteroseismic mass

As we have learnt in the lesson, the asteroseismic quantity known as the mean large frequency
separation 〈∆ν〉 has been shown to scale with the mean density 〈ρ〉 of the star:

〈∆ν〉

〈∆ν〉⊙
≈

√

ρ

ρ⊙
=

√

(M/M⊙)/(R/R⊙)3 (2)

where 〈∆ν〉⊙ is the solar value (〈∆ν〉⊙ = 134.9 µHz.) From an asteroseismic analysis of our
target star, the following value has been determined: 〈∆ν〉 = 149.5 ± 0.9 µHz.

1. Rearrange the equation above to calculate the mass of the star (in solar masses) by using your
previously determined radius.
2. Use a standard propagation of error formula to determine the uncertainty in the mass.
3. If I want to have half the uncertainty on the mass, how small do the errors in the seismic
data and/or the radius have to be? How can these errors be achieved?

——————————————————————————————————————
——————————————————————————————————————
——————————————————————————————————————
——————————————————————————————————————
——————————————————————————————————————
——————————————————————————————————————

5.2 Models

If you have still about 30 minutes left, you can do this section, otherwise skip

to question 6.1 and then come back to it, or continue to Section 7 for something

different!.

If asteroseismic data are not available, we must rely on stellar models to estimate the mass of the
star. Here we will work with some stellar models to try to determine the mass. The files in the
directory models contain theoretical data showing the evolution of a stellar model. There are
tracks for different masses, e.g. m090 is a 0.90 M⊙ star, and different metallicities, e.g. z016 is a
star with an metallicity fraction of 0.016. The three metallicities satisfy the observed metallicity
constraint: [M/H] = 0.06 ± 0.10 dex.

For each *.dat file there are three columns: age (in Gyr), luminosity (in solar luminosity), and
effective temperature (in K). You can read in the data as follows:
readcol, ’models/m100_z024.dat’, age, lum, teff
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1. Plot the evolution track in a HR diagram.
2. Now plot the luminosity of the star as it evolves.
3. Repeat for the effective temperature. (at the end of your plot command use ,/ynozero)
4. Read in a new evolution track and overplot its evolving effective temperature.
5. Using the effective temperature only (5578 ± 100 K) can you determine the mass of the star.?
Remember that we have tracks of certain masses, and you may need to interpolate between tracks
to have a better estimate of the mass.

——————————————————————————————————————
——————————————————————————————————————
——————————————————————————————————————
——————————————————————————————————————
——————————————————————————————————————
——————————————————————————————————————

Plot a HR diagram but using radius on the y-axis. You need to calculate R from L and Teff

first3. You can overplot the error box using the following command:

tt = [5578, 100]

rr = [AD, ERROR] ;where AD = your angular diameter and ERROR = the uncertainty

oplot, tt(0)+tt(1)*[-1,-1,1,1,-1], rr(0)+rr(1)*[-1,1,1,-1,-1]

1. Can the mass of the star be as low as 0.8 M⊙? Can it be as high as 1.1 M⊙? Why?
2. Can you determine more or less the limiting range of mass?

——————————————————————————————————————
——————————————————————————————————————
——————————————————————————————————————

3The Stefan-Boltzmann constant is 5.67037e-5 erg cm−2 s−1 K−4, L⊙ = 3.846e33 erg s−1 and R⊙ = 6.96e5
km.
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6 The mass and radius of α Cen A

In the directory alphacena you will find two data files for the star α Cen A. One file contains
interferometric data and the other contains asteroseismic frequencies, with some information
about the units (be careful!) The distance to the α Cen system is 1.34 ± 0.01 pc.

1. Determine the interferometric radius and the asteroseismic mass of α Cen A.
2. Using the models provided, can you estimate an age for this star?

——————————————————————————————————————
——————————————————————————————————————
——————————————————————————————————————

7 Determining oscillation frequencies from time series data

In this section we will work with time series signals, in particular, understanding frequencies,
periodicities, and calculating the Fourier Transform. All of the data files are in the directory
’data’.

1. Open the file ’ts1a.dat’ and read in the time series data. The first column is time in seconds,
and the second column is height in metres.

What is the total length of time of the data?
How many data points are there? print, n_elements(x)

What is the time sampling? (the time between each data point)?
What is the smallest periodicity (highest frequency) that we can determine with this time sam-
pling? (smallest period = 2*time sampling)
What is the oscillation period in seconds? (How long does it take to complete an oscillation
period?)
What is the frequency of this signal? (Frequency = 1/Period)
——————————————————————————————————————
——————————————————————————————————————
——————————————————————————————————————

2. Repeat for ts1b.dat, again time is given in seconds.
——————————————————————————————————————
——————————————————————————————————————
——————————————————————————————————————
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Using the program myfft.pro calculate the Fourier Transform of both of the time signals. To do
this you need to do the following command: myfft, time, height, freq, amp. Here time

and height are the independent and dependent variables, and time has to be in seconds (Re-
member this!). To plot the FT, you do plot,freq,amp.

3. What are the frequencies present in the signals?
Are they the same as those that you calculated?
——————————————————————————————————————
——————————————————————————————————————

If you would like to determine the values of points on the graph, in IDL you can do cursor,

xpt, ypt and then click on the graph. xpt and ypt give you the x- and y-coordinates of where
you clicked.

4. The file ts2.dat contains differential magnitudes of a star observed over one night. The ob-
servations were obtained every two minutes. Plot the time series signal.
Can you determine the oscillation periods present? (zooming in may help)
Calculate its Fourier Transform and determine the frequencies present in the signal.
What are the frequencies?
What are the differences in the frequencies?

——————————————————————————————————————
——————————————————————————————————————
——————————————————————————————————————

5. Repeat for file ts3.dat (noise in this data), calculate ∆ν and estimate νmax.
If Teff = 5700 ± 150 K, can you solve for the mass and radius? (without knowing the radius).
If the radius is what you obtained earlier, what does this tell you about the mass?

——————————————————————————————————————
——————————————————————————————————————
——————————————————————————————————————
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