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But, (fortunately) the universe 
is not that simple. 

1.1 Momentum and Continuity Equations 5

1.1.2 Hydrostatic Equilibrium

If there is no fast radial motions, we have a situation of hydrostatic equilibrium. This
is the general situation of most stars. The internal pressure gradient is balancing the
gravity everywhere in the star. The equations in vectorial and scalar forms are

∇∇∇P = ! g and
1
!

d P
d r

= −GMr

r2 , (1.5)

consistently with definitions (1.3). This equation says that at any level in a star in
equilibrium the gradient of pressure sustains the matter against the gravity force
by volume unity. Equation (1.4) is to be taken rather than (1.5) if the ratio |r̈/g|
is not negligible. In practice, this applies only to stellar pulsations, early stages of
star formation and advanced phases of evolution. The above equation of hydrostatic
equilibrium (1.5) may also be found very simply by considering a thin shell between
radius r and r + dr, with pressures P and P + dP, respectively. Let Mr be the mass
inside radius r (Fig. 1.1). The difference of pressure dP is

dP = −!gdr = −!
GMr

r2 dr , (1.6)

which just gives (1.5).

1.1.3 Mass Conservation and Continuity Equation

In spherical symmetry, the change of the mass Mr(t) in a sphere of radius r can be
written as

dMr(r, t) = 4π r2 !dr−4π r2 !v dt. (1.7)

The first term on the right represents the change of mass due to a variation of radius
r at a given time t, the second term expresses the flux of mass out of the sphere of
constant r due to an outward motion with velocity v > 0. The differential dMr(r, t)
can also be written as

dMr(r, t) =
(

∂Mr

∂ r

)

t
dr +

(
∂Mr

∂ t

)

r
dt . (1.8)

Comparing with (1.7), we make the identifications,
(

∂Mr

∂ r

)

t
= 4π r2 ! and

(
∂Mr

∂ t

)

r
= −4π r2 !v . (1.9)

– The first expression is the definition of the local density !(r). It also allows us to
move from variable r to Mr and reciprocally at a given time.
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20 2 The Mechanical Equilibrium of Rotating Stars

and the equatorial radii, with a maximum angular velocity Ω 2
max = 0.7215π G!,

where ! is the mean density (see Sect. 4.4.2). Interestingly enough, for all stellar
masses the rotational energy of the Roche model amounts to at most about 1% of
the absolute value of the potential energy of the models considered with their real
density distributions. Except for the academic case of stars with constant density or
nearly constant density, the Roche approximation better corresponds to the stellar
reality. Recent results from long-baseline interferometry [94, 465] support the ap-
plication of the Roche model in the cases of Altair and Achernar, which both rotate
very fast close to their break-up velocities (see Sect. 4.2.3). These new possibilities
of observations open interesting perspectives.

Here, we consider models of real stars, with no a priori given density distributions
and obeying a general equation of state. The properties of rotating stars depend on
the distribution Ω(r) in the stellar interiors. The first models were applied to solid
body rotation, i.e., Ω = const. throughout the stellar interior. More elaborate models
consider differential rotation, in particular the case of the so-called shellular rotation
[632], i.e., with a rotation law Ω(r) constant on isobaric shells and depending on the
first order of the distance to the stellar center (see Sect. 2.2). The reason for such a
rotation law rests on the strong horizontal turbulence in differentially rotating stars,
which imposes a constancy of Ω on isobars [632]. In the vertical direction, the
turbulence is weak due to the stable density stratification.

Interestingly enough, recent models with rotation and magnetic fields give ro-
tation laws Ω(r) rather close to solid body rotation (Sect. 13.6), nevertheless with
some significant deviations from constant Ω . Thus, whether or not magnetic fields
play a role, it is necessary to account for rotation laws which are not constant in
stellar interiors during evolution.

2.1.2 Hydrostatic Equilibrium for Solid Body Rotation

We first consider the angular velocity Ω = as constant throughout the star. Let us
assume hydrostatic equilibrium and ignore viscous terms. The Navier–Stokes equa-
tion (1.2) becomes with account of the centrifugal acceleration

1
!

∇∇∇P = −∇∇∇Φ +
1
2

Ω 2∇∇∇(r sinϑ)2 , (2.1)

according to (B.24) and following remarks. ϖ = r sinϑ is the distance to the rota-
tion axis (Fig. 2.1). The above expression of the centrifugal force gives a projection
Ω 2ϖ sinϑ along vector r and a projection Ω 2ϖ cosϑ along vector ϑϑϑ . The quan-
tity Φ is the gravitational potential, which is unmodified by rotation in the Roche
approximation,

g = −∇∇∇Φ = −GMr

r2
r
r

. (2.2)
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Fig. 2.1 Some geometrical parameters in a rotating star. The angle ε is the angle between the
vector radius and the normal −geff to an equipotential

The components of g are (−g, 0, 0) and g = ∂Φ
∂ r (cf. 1.35). If Ω is constant or

has a cylindrical symmetry, the centrifugal acceleration can also be derived from a
potential, say V . One has

−∇∇∇V = Ω 2 ϖϖϖ and thus V = −1
2

Ω 2 ϖ2 . (2.3)

The total potential Ψ is

Ψ = Φ +V , (2.4)

and with (1.44) one has

∇2Ψ = ∇2Φ +∇2V with ∇2Φ = 4π G! . (2.5)

In cylindrical coordinates, one can write

(∇2V )ϖ =
1
ϖ

∂
∂ϖ

(
−ϖ2Ω 2) = −2Ω 2 (2.6)

and thus the Poisson equation with rotation becomes

∇2Ψ = 4π G!−2Ω 2 . (2.7)

Barotropic star: the equation of hydrostatic equilibrium becomes

1
!

∇∇∇P = −∇∇∇Ψ = geff. (2.8)=	
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22 2 The Mechanical Equilibrium of Rotating Stars

The effective gravity geff results from both gravitation and centrifugal acceleration.
Care must be given on how Φ and Ψ are defined, since one often finds expressions
with a different sign. The above expression implies that the pressure is constant
on an equipotential, i.e., one has P = P(Ψ). Thus, the equipotentials and isobars
coincide in this case and the star is said to be barotropic, otherwise it is said to
be baroclinic (Sect. 2.2). With ∇∇∇P = (dP/dΨ)∇∇∇Ψ , (2.8) becomes (1/!)dP/dΨ =
−1. Thus, the density is also a function ! = !(Ψ) of Ψ only. Through the equation
of state P = P(!,T ), one also has T = T (Ψ). The quantities !, P, T are constant
on the equipotentials Ψ = const. The same conclusions are valid for Ω constant on
cylindrical surfaces around the rotation axis.

2.1.3 Stellar Surface and Gravity

The stellar surface is an equipotential Ψ = const., otherwise there would be “moun-
tains” on the star and matter flowing from higher to lower levels. The total potential
at a level r and at colatitude ϑ (ϑ = 0 at the pole) in a star of constant angular
velocity Ω can be written as

Ψ(r,ϑ) = −GMr

r
− 1

2
Ω 2 r2 sin2 ϑ . (2.9)

One assumes in the Roche model that the gravitational potential Φ = −GMr/r of
the mass Mr inside radius r is not distorted by rotation. The inner layers are con-
sidered as spherical, which gives the same external potential as if the whole mass is
concentrated at the center.

Let us consider a star of total mass M and call R(ϑ) the stellar radius at colat-
itude ϑ . Since the centrifugal force is zero at the pole, the potential at the stellar
pole is just GM/Rp, where Rp is the polar radius. This fixes the constant value of
the equipotential at the stellar surface, which is given by

GM
R

+
1
2

Ω 2 R2 sin2 ϑ =
GM
Rp

. (2.10)

A more tractable form is given below (2.18). The shape of a Roche model is illus-
trated in Fig. 2.2 for different rotation velocities (the radii for non-rotating stars of
different masses and metallicities Z are given in Fig. 25.7). Figure 2.3 illustrates
the variation of the ratio of the equatorial radius to the polar radius for the Roche
model as a function of the parameter ω = Ω/Ωcrit. We see that up to ω = 0.7, the
increase of the equatorial radius is inferior to 10%. The increase of the equatorial
radius essentially occurs in the high rotation domain.

The effective gravity resulting from the gravitational potential and from the cen-
trifugal force is given by (2.8). If er and eϑ are the unity vectors in the radial and
latitudinal directions, the effective gravity vector at the stellar surface is
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geff =

[(
− GM

R2(ϑ)
+Ω 2R(ϑ)sin2 ϑ

)2

+Ω 4R2(ϑ)sin2 ϑ cos2 ϑ
] 1

2

, (2.12)

which can also be written as in (2.20).

2.1.4 Critical Velocities

The critical velocity, also called break-up velocity, is reached when the modulus of
the centrifugal force becomes equal to the modulus of the gravitational attraction
at the equator. The maximum angular velocity Ωcrit, which makes geff = 0 at the
equator (ϑ = π/2) is thus from (2.12)

Ω 2
crit =

GM
R3

e,crit
, (2.13)

where Re,crit is the equatorial radius at break-up. If one introduces this value of
Ωcrit in the equation of the surface (2.10) at break-up, one gets for the ratio of the
equatorial to the polar radius at critical velocity,

Re,crit

Rp,crit
=

3
2

. (2.14)

At break-up, the equatorial radius is equal to 1.5 times the polar radius. The equato-
rial break-up velocity is thus

v2
crit,1 = Ω 2

crit R2
e,crit =

GM
Re,crit

=
2GM

3Rp,crit
. (2.15)

This expression is the one quite generally used; however, formally it applies to solid
body rotation. The index “1” indicates the classical critical velocity, to distinguish
it from a second value vcrit,2 which applies to high mass stars with a high Eddington
factor (see Sect. 4.4.2). If we now introduce a non-dimensional rotation parameter
ω , defined as the ratio of the angular velocity to the angular velocity at break-up,

ω =
Ω

Ωcrit
which gives ω2 =

Ω 2 R3
e,crit

GM
. (2.16)

One can also write
Ω 2 =

8
27

GMω2

R3
pcrit

, (2.17)

and the equation of the surface (2.10) becomes with x = R/Rp,crit

1
x

+
4
27

ω2 x2 sin2 ϑ =
Rp,crit

Rp(ω)
. (2.18)

At the vcrit the equatorial to polar ratio  
(flattening) is Re/Rp=1.5 
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Fig. 2.1 Some geometrical parameters in a rotating star. The angle ε is the angle between the
vector radius and the normal −geff to an equipotential

The components of g are (−g, 0, 0) and g = ∂Φ
∂ r (cf. 1.35). If Ω is constant or

has a cylindrical symmetry, the centrifugal acceleration can also be derived from a
potential, say V . One has

−∇∇∇V = Ω 2 ϖϖϖ and thus V = −1
2

Ω 2 ϖ2 . (2.3)

The total potential Ψ is

Ψ = Φ +V , (2.4)

and with (1.44) one has

∇2Ψ = ∇2Φ +∇2V with ∇2Φ = 4π G! . (2.5)

In cylindrical coordinates, one can write

(∇2V )ϖ =
1
ϖ

∂
∂ϖ

(
−ϖ2Ω 2) = −2Ω 2 (2.6)

and thus the Poisson equation with rotation becomes

∇2Ψ = 4π G!−2Ω 2 . (2.7)

Barotropic star: the equation of hydrostatic equilibrium becomes

1
!

∇∇∇P = −∇∇∇Ψ = geff. (2.8)
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Fig. 2. Effective temperature maps for D = 0.78 (model A in Table 1), β = 0.25 and different inclinations. The polar (maximum) and equatorial
(minimum) effective temperatures are Tp = 35 000 K and Teq = 25 100 K, respectively. Abscissas (y) and ordinates (z) are normalized by the
equatorial radius Req. Note that the projected geometrical deformation increases with higher inclinations but the stellar size in they direction is
constant. Since the local radiative surface flux is defined by F(θ) = σT 4

eff(θ) this figure gives and idea of the projected brightness changes from
pole to equator.

2.3. Numerical model

Since the intensity maps are projections of the 3D stellar sur-
face onto the sky (yz plane) a non-equally spaced projected
stellar grid is used in the adopted numerical model. We thus
developed a Fourier transform algorithm adapted to unequally
spaced points to evaluate the complex visibilities, avoiding any
interpolation on the discrete intensity maps which would result
in more time consuming calculations and losses in numerical
precision.

A discrete form of the Eq. (12) is obtained by replacing the
double integral by a summation on the visible grid points with
coordinates y j and z j. The index j ranges from 1 to the num-
ber of visible grid points N. In addition, the projected visible
surface of the grid S vis, j is introduced as a weighting parameter
that prevents aliasing due to the unequally spaced points dis-
tribution. The discrete Fourier transform of the sky-projected
monochromatic brightness distribution is then computed as:

Ĩλ( fy, k, fz, l) =
N∑

j=1

Iλ(y j, z j)e−i2π(y j fy, k+z j fz, l)S vis, j (17)

where fy, k and fz, l are the discrete spatial frequency points.
The integrations are carried out for equally spaced points in
the Fourier plane, so that the trigonometric functions can be
evaluated as a combination of summations and multiplications
of the step and initial frequency points (Kurtz 1985). This pro-
cedure is less time consuming than a classical Discrete Fourier
Transform which calculates explicitly the trigonometric func-
tions for each spatial frequency point.

An additional gain in calculation time is obtained because
we can calculate specific regions in the Fourier space with any
desired sampling. This is generally not possible with the stan-
dard Fast Fourier Transform algorithms for which we are con-
strained to calculate large images in order to obtain an accept-
able sampling.

In order to evaluate the intensity maps Iλ figuring in
Eq. (17) we used the code BRUCE (Townsend 1997) which
creates a stellar grid with local values of effective tem-
perature, gravity, velocity field, projected surface and sur-
face normal direction. In the next step of the modelling
process the codes TLUSTY and SYNSPEC (Hubeny 1988;

Hubeny & Lanz 1995) are used to generate a grid of synthetic
local specific intensities for different values of effective tem-
perature (Teff), gravity (g), chemical abundance, microturbu-
lent velocity (Vturb) and cosine of the angle between the the
local surface normal and the observer (µ). Throughout this pa-
per specific intensity grids were calculated for solar metallicity,
Vturb = 3 km s-1, and steps in Teff, log g and µ of 500 K, 0.1 dex
and 0.05, respectively. At each stellar grid point a quadrilin-
ear interpolation on the synthetic spectra is applied in order to
build discrete intensity maps for each wavelength bin.

The results presented in Sect. 3 are based on stellar models
with parameters for the polar regions (Rp, Tp and gp) corre-
sponding to a spectral type around B0V (Table 1). The remain-
ing free parameters (D, β, i and ξ) are in fact the parameters
most closely related to the stellar characteristics for which the
OLBI is more sensitive, i.e., the non uniform projected bright-
ness distribution and the geometrical deformation.

Table 1. Some relevant parameters for the two adopted rotation mod-
els which correspond to a highly (D = 0.78) and a medium (D = 0.88)
deformed early type star. The adopted polar parameters are Rp = 6 R#,
Tp = 35 000 K and log gp = 4.085 dex (⇒ M = 16 M#).

Req Veq log geq T a
eqModel D

(R#) (km s-1)
Veq

Vc (dex) (K)
A 0.78 7.694 473.13 0.81 3.508 25 103
B 0.88 6.819 349.43 0.60 3.836 30 314

a for β = 0.25.

Two stellar rotation scenarios were chosen correspond-
ing to rapid and intermediate rotation rates: Veq % 80%Vc

(⇒ D = 0.78) and Veq % 60%Vc (⇒ D = 0.88). Consistent
with the adopted polar parameters, calculations were per-
formed for gravity darkening coefficients corresponding to
early type stars (β = 0.25). Effective temperature maps for
model A in Table 1 (D = 0.78) with β = 0.25 are shown by
Fig. 2 for different inclinations.

Although not theoretically predicted for hot stars, the case
β = 0 is also considered in this paper to better distinguish
the individual effects of gravity darkening and geometrical

Stellar	
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∫

Ω

∂ I
∂ r

cos2 ϑ dΩ −
∫

Ω

∂ I
r∂ϑ cosϑ sinϑ dΩ =

∫

Ω
! j cosϑ dΩ −

∫

Ω
! κI cosϑ dΩ . (3.13)

The first term on the left is equal to c∂Prad/∂ r according to the definition (C.11). In
the regions of a star where the LTE hypothesis is valid, the second term on the left
is zero, since the intensity I = B(T ) varies only with radius r, therefore in this case
∂ I/∂ϑ = 0. This is not true in distorted stars, but in most cases the horizontal gradi-
ent is negligible with respect to the vertical gradient. The integration of this second
term leads to (c/r)(3Prad −u). The atomic emission mechanisms are isotropic, thus
the first term on the right is also equal to zero. The second term on the right is
−!κ F , i.e., the energy transmitted in all directions by units of volume and time.
Therefore, in the general case (3.13) yields

∂Prad

∂ r
+

1
r

(3Prad −u)+
!κ F

c
= 0 . (3.14)

In the quasi-isotropic case (Appendix C.1.1) , i.e., when the anisotropic component
I1 of the intensity is very small with respect to the isotropic one, Prad = (1/3)u, thus
(3.14) becomes

dPrad

dr
+

!κ F
c

= 0 . (3.15)

This basic equation relates the flux to the derivative of the radiation pressure. It can
also be written for a specific frequency ν or a specific wavelength λ . In such cases
one has, for example, for an interval of frequency dν ,

dPrad,ν
dr

dν +
!κν Fν

c
dν = 0 , (3.16)

or with λ instead of ν . The opacity κν or κλ at the considered frequency or wave-
length is considered. The flux at frequency ν is related to the total flux by (3.19)
below.

We can now apply (3.15) in the case of LTE, with the expressions for the black
body with a local T (Appendix C.1.1). As Prad = (1/3)aT 4, one gets dPrad/dr =
(4/3)aT 3 (dT/dr). In a star of luminosity Lr at level r, the radiative flux at level r
is F = Lr/(4π r2), thus (3.15) becomes

F =
Lr

4π r2 = −4acT 3

3κ !

dT
dr

. (3.17)

This expression is fundamental for stellar structure, because radiation is gener-
ally the main process for the transport of energy in stars. It allows us to express
the radiative equilibrium. The radiative flux has the form F = −Crad dT/dr, it is
proportional to the thermal gradient, with a coefficient of radiative conductivity
Crad = 4acT 3/(3κ !).

From	
  radia0ve	
  transfer	
  in	
  LTE	
  the	
  flux	
  within	
  the	
  star	
  is:	
  

In	
  rigid	
  rota0on	
  all	
  surfaces	
  coincide	
  (equipoten0als,	
  isobars,	
  temperature	
  and	
  density)	
  
so	
  we	
  have	
  the	
  von	
  Zeipel	
  rela0on	
  for	
  the	
  gravity	
  darkening	
  effect	
  (von	
  Zeipel	
  1924):	
  

F (θ) ∝ geff(θ) ∝ T 4
eff(θ) Teff(θ) ∝ geff(θ)

0.25

More	
  generally,	
  the	
  gravity	
  darkening	
  coefficient	
  is	
  considered	
  as	
  a	
  free	
  parameter	
  to	
  
account	
  for	
  more	
  general	
  energy	
  transport	
  mechanisms.	
  Normalizing	
  by	
  the	
  polar	
  
effec0ve	
  temperature	
  and	
  effec0ve	
  gravity	
  we	
  thus	
  have:	
  	
  

Teff(θ) = Tp(geff(θ)/gp)
β Poles	
  brighter	
  

than	
  the	
  
equator.	
  

Rapid	
  rota0on	
  from	
  interferometry	
  

Interferometry	
  is	
  
very	
  sensi0ve	
  to	
  the	
  
surface	
  flaEening	
  
and	
  to	
  the	
  non-­‐
uniform	
  flux	
  
distribu0on.	
  

Several	
  rapid	
  
rotators	
  already	
  
observed	
  by	
  
different	
  
interferometers.	
  

G.T. van Belle: Interferometric observations of rapidly rotating stars Page 35 of 49

Fig. 14 Illustration of figures/images of rapid rotators produced over the past 10 years by PTI, NOI, the
CHARA Array, and VLTI. All illustrations are normalized to the same page scale—relative apparent sizes
are correct

Image	
  from	
  	
  
van	
  Belle	
  2012,	
  A&A	
  review	
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Rapid	
  rota0on	
  from	
  interferometry	
  

•  Geometrical	
  deforma0on	
  	
  
	
  	
  	
  	
  (Roche	
  approxima0on)	
  

"   Gravity	
  darkening	
  	
  
	
  	
  	
  	
  	
  (von	
  Zeipel	
  effect	
  )	
  

Intensity	
  map	
  

Complex	
  visibility	
  	
  
amplitude	
  |V|	
  

Complex	
  visibility	
  	
  
phase	
  φ	



Visibility	
  amplitude|V|	
  curves	
  

Domiciano	
  de	
  Souza	
  et	
  al.	
  2002,	
  A&A	
  	
  

without	
  
von	
  Zeipel	
  

with	
  
von	
  Zeipel	
  

81%vcrit	
  
λ	
  fixed	
  

y	
  

z	
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First	
  steps	
  in	
  interpre0ng	
  interferometric	
  observa0ons	
  	
  
of	
  rapidly	
  rota0ng	
  stars	
  

VLTI/VINCI	
  H-­‐	
  and	
  K-­‐band	
  squared	
  
visibiliFes	
  (V	
  2	
  )	
  of	
  the	
  fast-­‐
rotaFng	
  Be	
  star	
  Achernar	
  

m	
  

m	
  

Domiciano	
  de	
  Souza,	
  Kervella	
  et	
  al.	
  2003,	
  A&A	
  
Kervella	
  &	
  Domiciano	
  de	
  Souza	
  2006,	
  A&A	
  	
  

Be	
  star	
  Achernar	
  (α	
  Eridani)	
  

Physical	
  parameters:	
  

 Spectral	
  type	
  B3Ve-­‐B6Ve	
  

 Teff	
  ~	
  12000	
  K	
  (equator);18000K(poles)	
  

 Magnitude	
  V	
  =	
  0.46	
  (brightest	
  Be)	
  

 Distance	
  d	
  =	
  44	
  pc	
  =	
  143.5	
  AL	
  (Hipparcos;	
  
Perryman	
  et	
  al.	
  1997)	
  

 Mean	
  angular	
  diameter	
  ~	
  2.0	
  mas	
  

 Mass	
  ~6Msun	
  

 Req~9-­‐11Rsun	
  ;	
  Req/Rpole~1.4-­‐1.5	
  

 v	
  sin	
  i	
  ~	
  220-­‐290	
  km/s	
  (fast	
  rotator)	
  

 Be<-­‐>B	
  at	
  0me	
  scales	
  of	
  a	
  few	
  years	
  

Ar0st	
  view	
  	
  

Achernar	
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Limited	
  data	
  sets	
  and/or	
  measuring	
  physical	
  
parameters	
  	
  pre-­‐defined	
  models	
  	
  

Ar0st	
  view	
  	
  

Choose	
  and	
  test	
  different	
  models	
  based	
  on	
  physics,	
  angular	
  resolu0on,	
  and	
  data	
  quality	
  

Even	
  closer	
  to	
  reality	
  

Uniform/limb	
  darkened	
  disk	
   Uniform/limb	
  darkened	
  ellipse	
  

Rota0onal	
  flaEening,	
  limb	
  
darkening,	
  gravity	
  darkening	
  

Domiciano	
  de	
  Souza	
  et	
  al.	
  	
  
2002,	
  2003,	
  2012	
  

Stellar	
  rota0on	
  rate	
  es0ma0on	
  
Roche	
  model	
  

The	
  apparent	
  flaEening	
  ra0o	
  can	
  be	
  
considered	
  a	
  lower	
  limit	
  (real	
  i<90°)	
  to	
  the	
  
actual	
  ra0o	
  Req/Rpole:	
  

Veq/Vcrit=(3(1-­‐Rpole/Req))0.5	
  

Rota0on	
  velocity	
  at	
  the	
  equator	
  

Where	
  Vcrit	
  is	
  the	
  cri0cal	
  velocity	
  
Vcrit=(GM/(1.5Rpole))0.5	
  

Veq/Vcrit	
  >	
  (3(1-­‐1/flaEen_ra0o))0.5	
  	
  

Assuming	
  that:	
  

Ellipse	
  ~	
  Roche	
  model,	
  with	
  
gravity	
  and	
  limb	
  darkening	
  

346 A. Domiciano de Souza et al.: Modelling rapid rotators for stellar interferometry

We first develop the equations defining the stellar shape and
the emitted flux, as well as the observable quantities of stellar
interferometry. Further, we describe the numerical model used
throughout this paper.

2.1. Rotating star’s model

We will consider a Roche model for which the following as-
sumptions hold:

(a) uniform rotation with angular velocity Ω;
(b) all mass M is concentrated in a point at the center of the

star.

The stellar equipotential surfaces are then given by:

Ψ (θ) =
Ω2R2 (θ) sin2 θ

2
+

GM
R (θ)

=
GM
Rp

(1)

where R(θ) is the stellar radius at colatitude θ, Rp is the po-
lar radius and G is the gravitational constant. We are also as-
suming that rotation does not affect the polar radius of the star
(Collins 1963). In fact there is a slight decrease of Rp with ro-
tation (Collins & Harrington 1966) but that does not alter sig-
nificantly the results of this work.

Let Veq be the equatorial linear rotation velocity and Req

the equatorial radius. Thus, defining the normalized surface
radius as:

r (θ) ≡ R (θ) /Req, (2)

the degree of sphericity D of the star as:

D ≡ Rp

Req
= 1 −

V2
eqRp

2GM
=


1 +

V2
eqReq

2GM




−1

(3)

and using the relation Veq = ΩReq we can rewrite Eq. (1) as the
following cubic equation:

r3 (θ) − r (θ)
(

1
1 − D

)
1

sin2 θ
+
( D
1 − D

) 1
sin2 θ

= 0. (4)

Note that the degree of sphericity D is equal to 1 for a spherical
star and is less than 1 for a geometrically deformed rotating
star. The critical equatorial linear and angular velocities at the
equator are given respectively by:

V2
c =

GM
Rc
= GM

(
2

3Rp

)
and Ωc =

Vc

Rc
(5)

which implies Dc =
2
3 . Using Eqs. (3) and (5) the critical rota-

tion ratio is thus:
(

Veq

Vc

)2
= 3 (1 − D)⇒

(
Ω

Ωc

)2
= 2

(1 − D)
D

(
3
2

D
)3
· (6)

Following Kopal’s (1987) notation, the solution of Eq. (4) is
written as:

r (θ) = D
sin
(

1
3 arcsin (γ)

)

1
3γ

= D 2F1

(
1
3 ,

2
3 ; 3

2 ; γ2
)

(7)

where 2F1

(
1
3 ,

2
3 ; 3

2 ; γ2
)

is the hypergeometric series 2F1 with an
argument given by:

γ2 ≡ 2
(1 − D)

D

(
3
2

D
)3

sin2 θ =

(
Ω

Ωc
sin θ
)2
· (8)

The modulus of local effective surface gravity g = |∇Ψ| is
given by:

g (θ) =
GM
R2

p
D2
(

2
3D

)3 



r (θ)

(
Ω

Ωc

)2
sin θ cos θ




2

+




1
r2 (θ)

(
3
2

D
)3
− r (θ)

(
Ω

Ωc
sin θ
)2

2


1/2

· (9)

Equation (9) is written in the form g (θ) = gp gn (θ), where
gp

(
= GMR−2

p

)
is the polar gravity and gn (θ) is the effective sur-

face gravity normalized by the polar one. Note that, by consid-
ering Eqs. (6), (7) and (8), gn (θ) is totally defined by the degree
of sphericity D and the colatitude θ. Equation (9) is written in
a similar form as given by Collins (1965), but with the radius
R (θ) normalized by Req instead of Rp (Eq. (2)).

In order to complete the description of the physical model
we consider that the stellar atmosphere may be approximated
locally by a plane parallel model with adequate effective tem-
perature (Teff (θ)) and gravity (g (θ)). We remind that Teff (θ)
is related to the local stellar radiative flux F (θ) by F (θ) =
σT 4

eff (θ), where σ is the Stefan-Boltzmann constant. For ro-
tating stars von Zeipel’s (1924) theorem says that the local
flux is proportional to g, or alternatively, Teff ∝ g0.25. This
expression for the gravity darkening is strictly valid only for
conservative rotation laws (centrifugal force derivable from a
potential) and radiative flux in the diffusion approximation.
For stars with convective envelopes, Lucy (1967) showed that
Teff ∝ g0.08. More generally, conservative rotation laws result in
Teff ∝ gβ where the value of β depends on the different approx-
imations chosen for the radiative transfer, opacity laws, model
atmospheres, etc. The local effective temperature can thus be
written as:

Teff (θ) = Tp

(
g (θ)
gp

)β
= Tp g

β
n (θ) (10)

where Tp is the polar effective temperature.
Claret (1998) tabulated values of β for a wide range of stel-

lar models achieving a smooth transition between convective
and radiative energy transport mechanisms in stellar envelopes.
Pérez Hernández et al. (1999) applied a general law of the form
of Eq. (10) for A and F type stars where β has been consid-
ered constant for a given rotating star. However, the validity of
Eq. (10) remains questionable when the effects of differential
rotation are taken into account (Connon Smith & Worley 1974).
They showed that in this case no singular value of β describes
a physical stellar surface and that β exceeds the von Zeipel
value of 0.25. Claret (2000) gives an analytical expression for
the latitude dependence of β as a function of relevant stellar
parameters, notably, the atmospherical and internal structure
parameters and the adopted rotation law.



26/09/13	
  

7	
  

Stellar	
  photospheric	
  spots	
  
Stellar	
  spots	
  can	
  have	
  different	
  physical	
  origins,	
  such	
  as	
  	
  

convecFon,	
  magneFsm,	
  non-­‐radial	
  pulsaFons	
  

Whatever	
   their	
   origin,	
   stellar	
   interferometry	
   is	
   an	
   ideal	
   tool	
   to	
   study	
   stellar	
   spots,	
  
because	
   it	
   is	
   sensi0ve	
   to	
   the	
   detailed	
   intensity	
   distribu0on	
   over	
   the	
   stellar	
  
photosphere.	
  	
  

The	
   signature	
   of	
   spots	
   can	
   be	
   detected	
   on	
   visibility	
   amplitudes,	
   differen0al	
   phases,	
  
and	
  phase	
  closures.	
  

Haubois	
  et	
  al.	
  (2009),	
  Chiavassa	
  et	
  al.	
  (2010)	
  

Spots	
  from	
  convec0on	
  
Betelgeuse	
  (red	
  supergiant)	
  

Spots	
  from	
  
magne0c	
  ac0vity	
  

Rousselet-­‐Perraut	
  
et	
  al.	
  (2004)	
  

Spots	
  from	
  non-­‐
radial	
  pulsa0ons	
  

Jankov	
  et	
  al.	
  
(2001)	
  

Canopus (α Carinae) 

Apparent	
  visual	
  magnitude	
  -­‐0.7	
  	
  

(2nd	
  brightest	
  star	
  in	
  the	
  sky)	
  

Spectral	
  type	
  F0Ib	
  -­‐F0II	
  

Radius	
  =	
  71.4	
  Rsun	
  

Mass	
  =	
  9	
  Msun	
  

L	
  ~	
  13000	
  –	
  15000	
  Lsun	
  

Teff	
  ~	
  7300-­‐7600	
  K	
  

Distance	
  =	
  96	
  	
  pc	
  

As	
  an	
  example	
  of	
  interferometric	
  study	
  of	
  stellar	
  spots,	
  let	
  us	
  interpret	
  spectro-­‐
interferometric	
  observa0ons	
  of	
  the	
  blue	
  supergiant	
  Canopus	
  from	
  VLTI/AMBER	
  
observa0ons	
  in	
  low	
  spectral	
  resolu0on	
  in	
  the	
  H	
  and	
  K	
  bands.	
  

Domiciano	
  de	
  Souza	
  et	
  al.	
  2008,	
  A&A	
  

Stellar	
  photospheric	
  spots	
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Load	
  H-­‐	
  and	
  K-­‐band	
  OIFITS	
  data	
  files	
  into	
  LITpro	
  

Squared	
  visibili0es	
  and	
  
phase	
  closures	
  at	
  
spa0al	
  frequencies	
  
spanning	
  the	
  whole	
  
second	
  Airy	
  disk	
  lobe,	
  
and	
  parte	
  of	
  the	
  first	
  
and	
  third	
  lobe.	
  

Let	
  us	
  use	
  LITpro	
  to	
  determine	
  good	
  geometrical	
  
models	
  for	
  Achernar	
  and	
  Canopus	
  and	
  to	
  

measure	
  some	
  of	
  their	
  physical	
  parameters	
  

It is your turn to play now ! 
And may the fringe be with you… 


