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1.1 Momentum and Continuity Equations 5

1.1.2 Hydrostatic Equilibrium

If there is no fast radial motions, we have a situation of hydrostatic equilibrium. This
is the general situation of most stars. The internal pressure gradient is balancing the
gravity everywhere in the star. The equations in vectorial and scalar forms are

∇∇∇P = ! g and
1
!

d P
d r

= −GMr

r2 , (1.5)

consistently with definitions (1.3). This equation says that at any level in a star in
equilibrium the gradient of pressure sustains the matter against the gravity force
by volume unity. Equation (1.4) is to be taken rather than (1.5) if the ratio |r̈/g|
is not negligible. In practice, this applies only to stellar pulsations, early stages of
star formation and advanced phases of evolution. The above equation of hydrostatic
equilibrium (1.5) may also be found very simply by considering a thin shell between
radius r and r + dr, with pressures P and P + dP, respectively. Let Mr be the mass
inside radius r (Fig. 1.1). The difference of pressure dP is

dP = −!gdr = −!
GMr

r2 dr , (1.6)

which just gives (1.5).

1.1.3 Mass Conservation and Continuity Equation

In spherical symmetry, the change of the mass Mr(t) in a sphere of radius r can be
written as

dMr(r, t) = 4π r2 !dr−4π r2 !v dt. (1.7)

The first term on the right represents the change of mass due to a variation of radius
r at a given time t, the second term expresses the flux of mass out of the sphere of
constant r due to an outward motion with velocity v > 0. The differential dMr(r, t)
can also be written as

dMr(r, t) =
(

∂Mr

∂ r

)

t
dr +

(
∂Mr

∂ t

)

r
dt . (1.8)

Comparing with (1.7), we make the identifications,
(

∂Mr

∂ r

)

t
= 4π r2 ! and

(
∂Mr

∂ t

)

r
= −4π r2 !v . (1.9)

– The first expression is the definition of the local density !(r). It also allows us to
move from variable r to Mr and reciprocally at a given time.
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and the equatorial radii, with a maximum angular velocity Ω 2
max = 0.7215π G!,

where ! is the mean density (see Sect. 4.4.2). Interestingly enough, for all stellar
masses the rotational energy of the Roche model amounts to at most about 1% of
the absolute value of the potential energy of the models considered with their real
density distributions. Except for the academic case of stars with constant density or
nearly constant density, the Roche approximation better corresponds to the stellar
reality. Recent results from long-baseline interferometry [94, 465] support the ap-
plication of the Roche model in the cases of Altair and Achernar, which both rotate
very fast close to their break-up velocities (see Sect. 4.2.3). These new possibilities
of observations open interesting perspectives.

Here, we consider models of real stars, with no a priori given density distributions
and obeying a general equation of state. The properties of rotating stars depend on
the distribution Ω(r) in the stellar interiors. The first models were applied to solid
body rotation, i.e., Ω = const. throughout the stellar interior. More elaborate models
consider differential rotation, in particular the case of the so-called shellular rotation
[632], i.e., with a rotation law Ω(r) constant on isobaric shells and depending on the
first order of the distance to the stellar center (see Sect. 2.2). The reason for such a
rotation law rests on the strong horizontal turbulence in differentially rotating stars,
which imposes a constancy of Ω on isobars [632]. In the vertical direction, the
turbulence is weak due to the stable density stratification.

Interestingly enough, recent models with rotation and magnetic fields give ro-
tation laws Ω(r) rather close to solid body rotation (Sect. 13.6), nevertheless with
some significant deviations from constant Ω . Thus, whether or not magnetic fields
play a role, it is necessary to account for rotation laws which are not constant in
stellar interiors during evolution.

2.1.2 Hydrostatic Equilibrium for Solid Body Rotation

We first consider the angular velocity Ω = as constant throughout the star. Let us
assume hydrostatic equilibrium and ignore viscous terms. The Navier–Stokes equa-
tion (1.2) becomes with account of the centrifugal acceleration

1
!

∇∇∇P = −∇∇∇Φ +
1
2

Ω 2∇∇∇(r sinϑ)2 , (2.1)

according to (B.24) and following remarks. ϖ = r sinϑ is the distance to the rota-
tion axis (Fig. 2.1). The above expression of the centrifugal force gives a projection
Ω 2ϖ sinϑ along vector r and a projection Ω 2ϖ cosϑ along vector ϑϑϑ . The quan-
tity Φ is the gravitational potential, which is unmodified by rotation in the Roche
approximation,

g = −∇∇∇Φ = −GMr

r2
r
r

. (2.2)
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Fig. 2.1 Some geometrical parameters in a rotating star. The angle ε is the angle between the
vector radius and the normal −geff to an equipotential

The components of g are (−g, 0, 0) and g = ∂Φ
∂ r (cf. 1.35). If Ω is constant or

has a cylindrical symmetry, the centrifugal acceleration can also be derived from a
potential, say V . One has

−∇∇∇V = Ω 2 ϖϖϖ and thus V = −1
2

Ω 2 ϖ2 . (2.3)

The total potential Ψ is

Ψ = Φ +V , (2.4)

and with (1.44) one has

∇2Ψ = ∇2Φ +∇2V with ∇2Φ = 4π G! . (2.5)

In cylindrical coordinates, one can write

(∇2V )ϖ =
1
ϖ

∂
∂ϖ

(
−ϖ2Ω 2) = −2Ω 2 (2.6)

and thus the Poisson equation with rotation becomes

∇2Ψ = 4π G!−2Ω 2 . (2.7)

Barotropic star: the equation of hydrostatic equilibrium becomes

1
!

∇∇∇P = −∇∇∇Ψ = geff. (2.8)=	  
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The effective gravity geff results from both gravitation and centrifugal acceleration.
Care must be given on how Φ and Ψ are defined, since one often finds expressions
with a different sign. The above expression implies that the pressure is constant
on an equipotential, i.e., one has P = P(Ψ). Thus, the equipotentials and isobars
coincide in this case and the star is said to be barotropic, otherwise it is said to
be baroclinic (Sect. 2.2). With ∇∇∇P = (dP/dΨ)∇∇∇Ψ , (2.8) becomes (1/!)dP/dΨ =
−1. Thus, the density is also a function ! = !(Ψ) of Ψ only. Through the equation
of state P = P(!,T ), one also has T = T (Ψ). The quantities !, P, T are constant
on the equipotentials Ψ = const. The same conclusions are valid for Ω constant on
cylindrical surfaces around the rotation axis.

2.1.3 Stellar Surface and Gravity

The stellar surface is an equipotential Ψ = const., otherwise there would be “moun-
tains” on the star and matter flowing from higher to lower levels. The total potential
at a level r and at colatitude ϑ (ϑ = 0 at the pole) in a star of constant angular
velocity Ω can be written as

Ψ(r,ϑ) = −GMr

r
− 1

2
Ω 2 r2 sin2 ϑ . (2.9)

One assumes in the Roche model that the gravitational potential Φ = −GMr/r of
the mass Mr inside radius r is not distorted by rotation. The inner layers are con-
sidered as spherical, which gives the same external potential as if the whole mass is
concentrated at the center.

Let us consider a star of total mass M and call R(ϑ) the stellar radius at colat-
itude ϑ . Since the centrifugal force is zero at the pole, the potential at the stellar
pole is just GM/Rp, where Rp is the polar radius. This fixes the constant value of
the equipotential at the stellar surface, which is given by

GM
R

+
1
2

Ω 2 R2 sin2 ϑ =
GM
Rp

. (2.10)

A more tractable form is given below (2.18). The shape of a Roche model is illus-
trated in Fig. 2.2 for different rotation velocities (the radii for non-rotating stars of
different masses and metallicities Z are given in Fig. 25.7). Figure 2.3 illustrates
the variation of the ratio of the equatorial radius to the polar radius for the Roche
model as a function of the parameter ω = Ω/Ωcrit. We see that up to ω = 0.7, the
increase of the equatorial radius is inferior to 10%. The increase of the equatorial
radius essentially occurs in the high rotation domain.

The effective gravity resulting from the gravitational potential and from the cen-
trifugal force is given by (2.8). If er and eϑ are the unity vectors in the radial and
latitudinal directions, the effective gravity vector at the stellar surface is
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Stellar	  surface	  defined	  by	  the	  equipoten0als	  Ψ=const.	  

Break-‐up	  or	  cri0cal	  velocity	  	  is	  reached	  when	  Fgrav=-‐Fcent	  
(NOTE:	  this	  limit	  changes	  for	  very	  massive	  stars	  where	  
radia0on	  pressure	  is	  important)	  
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geff =

[(
− GM

R2(ϑ)
+Ω 2R(ϑ)sin2 ϑ

)2

+Ω 4R2(ϑ)sin2 ϑ cos2 ϑ
] 1

2

, (2.12)

which can also be written as in (2.20).

2.1.4 Critical Velocities

The critical velocity, also called break-up velocity, is reached when the modulus of
the centrifugal force becomes equal to the modulus of the gravitational attraction
at the equator. The maximum angular velocity Ωcrit, which makes geff = 0 at the
equator (ϑ = π/2) is thus from (2.12)

Ω 2
crit =

GM
R3

e,crit
, (2.13)

where Re,crit is the equatorial radius at break-up. If one introduces this value of
Ωcrit in the equation of the surface (2.10) at break-up, one gets for the ratio of the
equatorial to the polar radius at critical velocity,

Re,crit

Rp,crit
=

3
2

. (2.14)

At break-up, the equatorial radius is equal to 1.5 times the polar radius. The equato-
rial break-up velocity is thus

v2
crit,1 = Ω 2

crit R2
e,crit =

GM
Re,crit

=
2GM

3Rp,crit
. (2.15)

This expression is the one quite generally used; however, formally it applies to solid
body rotation. The index “1” indicates the classical critical velocity, to distinguish
it from a second value vcrit,2 which applies to high mass stars with a high Eddington
factor (see Sect. 4.4.2). If we now introduce a non-dimensional rotation parameter
ω , defined as the ratio of the angular velocity to the angular velocity at break-up,

ω =
Ω

Ωcrit
which gives ω2 =

Ω 2 R3
e,crit

GM
. (2.16)

One can also write
Ω 2 =

8
27

GMω2

R3
pcrit

, (2.17)

and the equation of the surface (2.10) becomes with x = R/Rp,crit

1
x

+
4
27

ω2 x2 sin2 ϑ =
Rp,crit

Rp(ω)
. (2.18)

At the vcrit the equatorial to polar ratio  
(flattening) is Re/Rp=1.5 
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Fig. 2.1 Some geometrical parameters in a rotating star. The angle ε is the angle between the
vector radius and the normal −geff to an equipotential

The components of g are (−g, 0, 0) and g = ∂Φ
∂ r (cf. 1.35). If Ω is constant or

has a cylindrical symmetry, the centrifugal acceleration can also be derived from a
potential, say V . One has

−∇∇∇V = Ω 2 ϖϖϖ and thus V = −1
2

Ω 2 ϖ2 . (2.3)

The total potential Ψ is

Ψ = Φ +V , (2.4)

and with (1.44) one has

∇2Ψ = ∇2Φ +∇2V with ∇2Φ = 4π G! . (2.5)

In cylindrical coordinates, one can write

(∇2V )ϖ =
1
ϖ

∂
∂ϖ

(
−ϖ2Ω 2) = −2Ω 2 (2.6)

and thus the Poisson equation with rotation becomes

∇2Ψ = 4π G!−2Ω 2 . (2.7)

Barotropic star: the equation of hydrostatic equilibrium becomes

1
!

∇∇∇P = −∇∇∇Ψ = geff. (2.8)

EffecFve	  gravity	  
(func0on	  of	  cola0tude)	  

Roche model 
Solid (rigid body) rotation and mass mainly concentrated in the center of the star: 
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Fig. 2. Effective temperature maps for D = 0.78 (model A in Table 1), β = 0.25 and different inclinations. The polar (maximum) and equatorial
(minimum) effective temperatures are Tp = 35 000 K and Teq = 25 100 K, respectively. Abscissas (y) and ordinates (z) are normalized by the
equatorial radius Req. Note that the projected geometrical deformation increases with higher inclinations but the stellar size in they direction is
constant. Since the local radiative surface flux is defined by F(θ) = σT 4

eff(θ) this figure gives and idea of the projected brightness changes from
pole to equator.

2.3. Numerical model

Since the intensity maps are projections of the 3D stellar sur-
face onto the sky (yz plane) a non-equally spaced projected
stellar grid is used in the adopted numerical model. We thus
developed a Fourier transform algorithm adapted to unequally
spaced points to evaluate the complex visibilities, avoiding any
interpolation on the discrete intensity maps which would result
in more time consuming calculations and losses in numerical
precision.

A discrete form of the Eq. (12) is obtained by replacing the
double integral by a summation on the visible grid points with
coordinates y j and z j. The index j ranges from 1 to the num-
ber of visible grid points N. In addition, the projected visible
surface of the grid S vis, j is introduced as a weighting parameter
that prevents aliasing due to the unequally spaced points dis-
tribution. The discrete Fourier transform of the sky-projected
monochromatic brightness distribution is then computed as:

Ĩλ( fy, k, fz, l) =
N∑

j=1

Iλ(y j, z j)e−i2π(y j fy, k+z j fz, l)S vis, j (17)

where fy, k and fz, l are the discrete spatial frequency points.
The integrations are carried out for equally spaced points in
the Fourier plane, so that the trigonometric functions can be
evaluated as a combination of summations and multiplications
of the step and initial frequency points (Kurtz 1985). This pro-
cedure is less time consuming than a classical Discrete Fourier
Transform which calculates explicitly the trigonometric func-
tions for each spatial frequency point.

An additional gain in calculation time is obtained because
we can calculate specific regions in the Fourier space with any
desired sampling. This is generally not possible with the stan-
dard Fast Fourier Transform algorithms for which we are con-
strained to calculate large images in order to obtain an accept-
able sampling.

In order to evaluate the intensity maps Iλ figuring in
Eq. (17) we used the code BRUCE (Townsend 1997) which
creates a stellar grid with local values of effective tem-
perature, gravity, velocity field, projected surface and sur-
face normal direction. In the next step of the modelling
process the codes TLUSTY and SYNSPEC (Hubeny 1988;

Hubeny & Lanz 1995) are used to generate a grid of synthetic
local specific intensities for different values of effective tem-
perature (Teff), gravity (g), chemical abundance, microturbu-
lent velocity (Vturb) and cosine of the angle between the the
local surface normal and the observer (µ). Throughout this pa-
per specific intensity grids were calculated for solar metallicity,
Vturb = 3 km s-1, and steps in Teff, log g and µ of 500 K, 0.1 dex
and 0.05, respectively. At each stellar grid point a quadrilin-
ear interpolation on the synthetic spectra is applied in order to
build discrete intensity maps for each wavelength bin.

The results presented in Sect. 3 are based on stellar models
with parameters for the polar regions (Rp, Tp and gp) corre-
sponding to a spectral type around B0V (Table 1). The remain-
ing free parameters (D, β, i and ξ) are in fact the parameters
most closely related to the stellar characteristics for which the
OLBI is more sensitive, i.e., the non uniform projected bright-
ness distribution and the geometrical deformation.

Table 1. Some relevant parameters for the two adopted rotation mod-
els which correspond to a highly (D = 0.78) and a medium (D = 0.88)
deformed early type star. The adopted polar parameters are Rp = 6 R#,
Tp = 35 000 K and log gp = 4.085 dex (⇒ M = 16 M#).

Req Veq log geq T a
eqModel D

(R#) (km s-1)
Veq

Vc (dex) (K)
A 0.78 7.694 473.13 0.81 3.508 25 103
B 0.88 6.819 349.43 0.60 3.836 30 314

a for β = 0.25.

Two stellar rotation scenarios were chosen correspond-
ing to rapid and intermediate rotation rates: Veq % 80%Vc

(⇒ D = 0.78) and Veq % 60%Vc (⇒ D = 0.88). Consistent
with the adopted polar parameters, calculations were per-
formed for gravity darkening coefficients corresponding to
early type stars (β = 0.25). Effective temperature maps for
model A in Table 1 (D = 0.78) with β = 0.25 are shown by
Fig. 2 for different inclinations.

Although not theoretically predicted for hot stars, the case
β = 0 is also considered in this paper to better distinguish
the individual effects of gravity darkening and geometrical
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∫

Ω

∂ I
∂ r

cos2 ϑ dΩ −
∫

Ω

∂ I
r∂ϑ cosϑ sinϑ dΩ =

∫

Ω
! j cosϑ dΩ −

∫

Ω
! κI cosϑ dΩ . (3.13)

The first term on the left is equal to c∂Prad/∂ r according to the definition (C.11). In
the regions of a star where the LTE hypothesis is valid, the second term on the left
is zero, since the intensity I = B(T ) varies only with radius r, therefore in this case
∂ I/∂ϑ = 0. This is not true in distorted stars, but in most cases the horizontal gradi-
ent is negligible with respect to the vertical gradient. The integration of this second
term leads to (c/r)(3Prad −u). The atomic emission mechanisms are isotropic, thus
the first term on the right is also equal to zero. The second term on the right is
−!κ F , i.e., the energy transmitted in all directions by units of volume and time.
Therefore, in the general case (3.13) yields

∂Prad

∂ r
+

1
r

(3Prad −u)+
!κ F

c
= 0 . (3.14)

In the quasi-isotropic case (Appendix C.1.1) , i.e., when the anisotropic component
I1 of the intensity is very small with respect to the isotropic one, Prad = (1/3)u, thus
(3.14) becomes

dPrad

dr
+

!κ F
c

= 0 . (3.15)

This basic equation relates the flux to the derivative of the radiation pressure. It can
also be written for a specific frequency ν or a specific wavelength λ . In such cases
one has, for example, for an interval of frequency dν ,

dPrad,ν
dr

dν +
!κν Fν

c
dν = 0 , (3.16)

or with λ instead of ν . The opacity κν or κλ at the considered frequency or wave-
length is considered. The flux at frequency ν is related to the total flux by (3.19)
below.

We can now apply (3.15) in the case of LTE, with the expressions for the black
body with a local T (Appendix C.1.1). As Prad = (1/3)aT 4, one gets dPrad/dr =
(4/3)aT 3 (dT/dr). In a star of luminosity Lr at level r, the radiative flux at level r
is F = Lr/(4π r2), thus (3.15) becomes

F =
Lr

4π r2 = −4acT 3

3κ !

dT
dr

. (3.17)

This expression is fundamental for stellar structure, because radiation is gener-
ally the main process for the transport of energy in stars. It allows us to express
the radiative equilibrium. The radiative flux has the form F = −Crad dT/dr, it is
proportional to the thermal gradient, with a coefficient of radiative conductivity
Crad = 4acT 3/(3κ !).

From	  radia0ve	  transfer	  in	  LTE	  the	  flux	  within	  the	  star	  is:	  

In	  rigid	  rota0on	  all	  surfaces	  coincide	  (equipoten0als,	  isobars,	  temperature	  and	  density)	  
so	  we	  have	  the	  von	  Zeipel	  rela0on	  for	  the	  gravity	  darkening	  effect	  (von	  Zeipel	  1924):	  

F (θ) ∝ geff(θ) ∝ T 4
eff(θ) Teff(θ) ∝ geff(θ)

0.25

More	  generally,	  the	  gravity	  darkening	  coefficient	  is	  considered	  as	  a	  free	  parameter	  to	  
account	  for	  more	  general	  energy	  transport	  mechanisms.	  Normalizing	  by	  the	  polar	  
effec0ve	  temperature	  and	  effec0ve	  gravity	  we	  thus	  have:	  	  

Teff(θ) = Tp(geff(θ)/gp)
β Poles	  brighter	  

than	  the	  
equator.	  

Rapid	  rota0on	  from	  interferometry	  

Interferometry	  is	  
very	  sensi0ve	  to	  the	  
surface	  flaEening	  
and	  to	  the	  non-‐
uniform	  flux	  
distribu0on.	  

Several	  rapid	  
rotators	  already	  
observed	  by	  
different	  
interferometers.	  

G.T. van Belle: Interferometric observations of rapidly rotating stars Page 35 of 49

Fig. 14 Illustration of figures/images of rapid rotators produced over the past 10 years by PTI, NOI, the
CHARA Array, and VLTI. All illustrations are normalized to the same page scale—relative apparent sizes
are correct

Image	  from	  	  
van	  Belle	  2012,	  A&A	  review	  
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Rapid	  rota0on	  from	  interferometry	  

•  Geometrical	  deforma0on	  	  
	  	  	  	  (Roche	  approxima0on)	  

"   Gravity	  darkening	  	  
	  	  	  	  	  (von	  Zeipel	  effect	  )	  

Intensity	  map	  

Complex	  visibility	  	  
amplitude	  |V|	  

Complex	  visibility	  	  
phase	  φ	


Visibility	  amplitude|V|	  curves	  

Domiciano	  de	  Souza	  et	  al.	  2002,	  A&A	  	  

without	  
von	  Zeipel	  

with	  
von	  Zeipel	  

81%vcrit	  
λ	  fixed	  

y	  

z	  
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First	  steps	  in	  interpre0ng	  interferometric	  observa0ons	  	  
of	  rapidly	  rota0ng	  stars	  

VLTI/VINCI	  H-‐	  and	  K-‐band	  squared	  
visibiliFes	  (V	  2	  )	  of	  the	  fast-‐
rotaFng	  Be	  star	  Achernar	  

m	  

m	  

Domiciano	  de	  Souza,	  Kervella	  et	  al.	  2003,	  A&A	  
Kervella	  &	  Domiciano	  de	  Souza	  2006,	  A&A	  	  

Be	  star	  Achernar	  (α	  Eridani)	  

Physical	  parameters:	  

 Spectral	  type	  B3Ve-‐B6Ve	  

 Teff	  ~	  12000	  K	  (equator);18000K(poles)	  

 Magnitude	  V	  =	  0.46	  (brightest	  Be)	  

 Distance	  d	  =	  44	  pc	  =	  143.5	  AL	  (Hipparcos;	  
Perryman	  et	  al.	  1997)	  

 Mean	  angular	  diameter	  ~	  2.0	  mas	  

 Mass	  ~6Msun	  

 Req~9-‐11Rsun	  ;	  Req/Rpole~1.4-‐1.5	  

 v	  sin	  i	  ~	  220-‐290	  km/s	  (fast	  rotator)	  

 Be<-‐>B	  at	  0me	  scales	  of	  a	  few	  years	  

Ar0st	  view	  	  

Achernar	  	  
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Limited	  data	  sets	  and/or	  measuring	  physical	  
parameters	  	  pre-‐defined	  models	  	  

Ar0st	  view	  	  

Choose	  and	  test	  different	  models	  based	  on	  physics,	  angular	  resolu0on,	  and	  data	  quality	  

Even	  closer	  to	  reality	  

Uniform/limb	  darkened	  disk	   Uniform/limb	  darkened	  ellipse	  

Rota0onal	  flaEening,	  limb	  
darkening,	  gravity	  darkening	  

Domiciano	  de	  Souza	  et	  al.	  	  
2002,	  2003,	  2012	  

Stellar	  rota0on	  rate	  es0ma0on	  
Roche	  model	  

The	  apparent	  flaEening	  ra0o	  can	  be	  
considered	  a	  lower	  limit	  (real	  i<90°)	  to	  the	  
actual	  ra0o	  Req/Rpole:	  

Veq/Vcrit=(3(1-‐Rpole/Req))0.5	  

Rota0on	  velocity	  at	  the	  equator	  

Where	  Vcrit	  is	  the	  cri0cal	  velocity	  
Vcrit=(GM/(1.5Rpole))0.5	  

Veq/Vcrit	  >	  (3(1-‐1/flaEen_ra0o))0.5	  	  

Assuming	  that:	  

Ellipse	  ~	  Roche	  model,	  with	  
gravity	  and	  limb	  darkening	  

346 A. Domiciano de Souza et al.: Modelling rapid rotators for stellar interferometry

We first develop the equations defining the stellar shape and
the emitted flux, as well as the observable quantities of stellar
interferometry. Further, we describe the numerical model used
throughout this paper.

2.1. Rotating star’s model

We will consider a Roche model for which the following as-
sumptions hold:

(a) uniform rotation with angular velocity Ω;
(b) all mass M is concentrated in a point at the center of the

star.

The stellar equipotential surfaces are then given by:

Ψ (θ) =
Ω2R2 (θ) sin2 θ

2
+

GM
R (θ)

=
GM
Rp

(1)

where R(θ) is the stellar radius at colatitude θ, Rp is the po-
lar radius and G is the gravitational constant. We are also as-
suming that rotation does not affect the polar radius of the star
(Collins 1963). In fact there is a slight decrease of Rp with ro-
tation (Collins & Harrington 1966) but that does not alter sig-
nificantly the results of this work.

Let Veq be the equatorial linear rotation velocity and Req

the equatorial radius. Thus, defining the normalized surface
radius as:

r (θ) ≡ R (θ) /Req, (2)

the degree of sphericity D of the star as:

D ≡ Rp

Req
= 1 −

V2
eqRp

2GM
=


1 +

V2
eqReq

2GM




−1

(3)

and using the relation Veq = ΩReq we can rewrite Eq. (1) as the
following cubic equation:

r3 (θ) − r (θ)
(

1
1 − D

)
1

sin2 θ
+
( D
1 − D

) 1
sin2 θ

= 0. (4)

Note that the degree of sphericity D is equal to 1 for a spherical
star and is less than 1 for a geometrically deformed rotating
star. The critical equatorial linear and angular velocities at the
equator are given respectively by:

V2
c =

GM
Rc
= GM

(
2

3Rp

)
and Ωc =

Vc

Rc
(5)

which implies Dc =
2
3 . Using Eqs. (3) and (5) the critical rota-

tion ratio is thus:
(

Veq

Vc

)2
= 3 (1 − D)⇒

(
Ω

Ωc

)2
= 2

(1 − D)
D

(
3
2

D
)3
· (6)

Following Kopal’s (1987) notation, the solution of Eq. (4) is
written as:

r (θ) = D
sin
(

1
3 arcsin (γ)

)

1
3γ

= D 2F1

(
1
3 ,

2
3 ; 3

2 ; γ2
)

(7)

where 2F1

(
1
3 ,

2
3 ; 3

2 ; γ2
)

is the hypergeometric series 2F1 with an
argument given by:

γ2 ≡ 2
(1 − D)

D

(
3
2

D
)3

sin2 θ =

(
Ω

Ωc
sin θ
)2
· (8)

The modulus of local effective surface gravity g = |∇Ψ| is
given by:

g (θ) =
GM
R2

p
D2
(

2
3D

)3 



r (θ)

(
Ω

Ωc

)2
sin θ cos θ




2

+




1
r2 (θ)

(
3
2

D
)3
− r (θ)

(
Ω

Ωc
sin θ
)2

2


1/2

· (9)

Equation (9) is written in the form g (θ) = gp gn (θ), where
gp

(
= GMR−2

p

)
is the polar gravity and gn (θ) is the effective sur-

face gravity normalized by the polar one. Note that, by consid-
ering Eqs. (6), (7) and (8), gn (θ) is totally defined by the degree
of sphericity D and the colatitude θ. Equation (9) is written in
a similar form as given by Collins (1965), but with the radius
R (θ) normalized by Req instead of Rp (Eq. (2)).

In order to complete the description of the physical model
we consider that the stellar atmosphere may be approximated
locally by a plane parallel model with adequate effective tem-
perature (Teff (θ)) and gravity (g (θ)). We remind that Teff (θ)
is related to the local stellar radiative flux F (θ) by F (θ) =
σT 4

eff (θ), where σ is the Stefan-Boltzmann constant. For ro-
tating stars von Zeipel’s (1924) theorem says that the local
flux is proportional to g, or alternatively, Teff ∝ g0.25. This
expression for the gravity darkening is strictly valid only for
conservative rotation laws (centrifugal force derivable from a
potential) and radiative flux in the diffusion approximation.
For stars with convective envelopes, Lucy (1967) showed that
Teff ∝ g0.08. More generally, conservative rotation laws result in
Teff ∝ gβ where the value of β depends on the different approx-
imations chosen for the radiative transfer, opacity laws, model
atmospheres, etc. The local effective temperature can thus be
written as:

Teff (θ) = Tp

(
g (θ)
gp

)β
= Tp g

β
n (θ) (10)

where Tp is the polar effective temperature.
Claret (1998) tabulated values of β for a wide range of stel-

lar models achieving a smooth transition between convective
and radiative energy transport mechanisms in stellar envelopes.
Pérez Hernández et al. (1999) applied a general law of the form
of Eq. (10) for A and F type stars where β has been consid-
ered constant for a given rotating star. However, the validity of
Eq. (10) remains questionable when the effects of differential
rotation are taken into account (Connon Smith & Worley 1974).
They showed that in this case no singular value of β describes
a physical stellar surface and that β exceeds the von Zeipel
value of 0.25. Claret (2000) gives an analytical expression for
the latitude dependence of β as a function of relevant stellar
parameters, notably, the atmospherical and internal structure
parameters and the adopted rotation law.
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Stellar	  photospheric	  spots	  
Stellar	  spots	  can	  have	  different	  physical	  origins,	  such	  as	  	  

convecFon,	  magneFsm,	  non-‐radial	  pulsaFons	  

Whatever	   their	   origin,	   stellar	   interferometry	   is	   an	   ideal	   tool	   to	   study	   stellar	   spots,	  
because	   it	   is	   sensi0ve	   to	   the	   detailed	   intensity	   distribu0on	   over	   the	   stellar	  
photosphere.	  	  

The	   signature	   of	   spots	   can	   be	   detected	   on	   visibility	   amplitudes,	   differen0al	   phases,	  
and	  phase	  closures.	  

Haubois	  et	  al.	  (2009),	  Chiavassa	  et	  al.	  (2010)	  

Spots	  from	  convec0on	  
Betelgeuse	  (red	  supergiant)	  

Spots	  from	  
magne0c	  ac0vity	  

Rousselet-‐Perraut	  
et	  al.	  (2004)	  

Spots	  from	  non-‐
radial	  pulsa0ons	  

Jankov	  et	  al.	  
(2001)	  

Canopus (α Carinae) 

Apparent	  visual	  magnitude	  -‐0.7	  	  

(2nd	  brightest	  star	  in	  the	  sky)	  

Spectral	  type	  F0Ib	  -‐F0II	  

Radius	  =	  71.4	  Rsun	  

Mass	  =	  9	  Msun	  

L	  ~	  13000	  –	  15000	  Lsun	  

Teff	  ~	  7300-‐7600	  K	  

Distance	  =	  96	  	  pc	  

As	  an	  example	  of	  interferometric	  study	  of	  stellar	  spots,	  let	  us	  interpret	  spectro-‐
interferometric	  observa0ons	  of	  the	  blue	  supergiant	  Canopus	  from	  VLTI/AMBER	  
observa0ons	  in	  low	  spectral	  resolu0on	  in	  the	  H	  and	  K	  bands.	  

Domiciano	  de	  Souza	  et	  al.	  2008,	  A&A	  

Stellar	  photospheric	  spots	  
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Load	  H-‐	  and	  K-‐band	  OIFITS	  data	  files	  into	  LITpro	  

Squared	  visibili0es	  and	  
phase	  closures	  at	  
spa0al	  frequencies	  
spanning	  the	  whole	  
second	  Airy	  disk	  lobe,	  
and	  parte	  of	  the	  first	  
and	  third	  lobe.	  

Let	  us	  use	  LITpro	  to	  determine	  good	  geometrical	  
models	  for	  Achernar	  and	  Canopus	  and	  to	  

measure	  some	  of	  their	  physical	  parameters	  

It is your turn to play now ! 
And may the fringe be with you… 


