

The Magdalena Ridge Observatory Interferometer

NEW MEXICO TECH

John Young

University of Cambridge

September 2013

- 1 Introduction The MROI project Science and technology drivers Technical requirements
- 2 Conceptual Design
- 3 Accomplishments and Current Status Unit Telescopes Fast Tip-Tilt Systems Beam Relay Delay Lines Beam Combiners Alignment
 - Controls
- 4 Conclusions

- 1 Introduction The MROI project Science and technology drivers Technical requirements
- 2 Conceptual Design
- 3 Accomplishments and Current Status Unit Telescopes Fast Tip-Tilt Systems Beam Relay Delay Lines Beam Combiners Alignment
 - Controls
- 4 Conclusions

September 2013

The What, Who, Where and Why of MROI

The Magdalena Ridge Observatory Interferometer: A telescope array dedicated to optical/IR synthesis imaging

Unique Features of MROI

- Focus on model-independent imaging
- · Operation at visible and near-IR wavelengths
- Baselines up to 350 m
- Limiting sensitivity goal H=14

Who is working on MROI?

- New Mexico Tech
 - Project Office
 - Engineering team Allen Farris, Andres Olivares, Chris Salcido
 - Site
- University of Cambridge
 - Vision
 - System Architects Chris Haniff, David Buscher
 - Sub-system development

NEW MEXICO TECH

- Capitalise on proven strengths of existing interferometers
- · Improve on their limitations, where tractable
- Science case built on model-independent imaging and realistic enhancements in limiting sensitivity and observing efficiency

- AGN astrophysics
 - Verification of the unified model, nuclear and extra-nuclear starbursts, BLR dynamics, jet counterparts
- Star and planet formation
 - Protostellar accretion, disk clearing as evidence for planet formation, emission line imaging of jets, outflows and magnetically channeled accretion. Detection of sub-stellar companions
- Mass-loss and dynamical systems
 - Convection and impact on mass loss, wind and shock geometries. Mass-loss in binaries. Stellar pulsations

- Imaging with 5 \times 5 resels for resolved-core objects, 10 \times 10 resels for compact-core objects
- Image dynamic range 100:1
- Point source fringe tracking sensitivity H = 14
- Wavelength coverage 0.6–2.4 μm
- Spectral resolution $R \approx 30, \approx 300, \gtrsim 5000$
- · Automated sequencing and operation (operator on site)

Outline

- 1 Introduction The MROI project Science and technology drivers Technical requirements
- 2 Conceptual Design
- Accomplishments and Current Status
 Unit Telescopes
 Fast Tip-Tilt Systems
 Beam Relay
 Delay Lines
 Beam Combiners
 Alignment
 Controls
- 4 Conclusions

Array configuration

MAGDALENA RIDGE OBSERVATORY

NEW MEXICO TECH

- 2–3*r*₀-sized telescopes without AO beyond tip-tilt
 - · Optimum size for tip-tilt corrected sensitivity
 - Larger AO-equipped telescopes would conflict with need to close-pack telescopes
 - Laser guide stars would be required for good AO sky coverage; cost of this conflicts with need for enough telescopes to image reliably
- 2–3*r*₀ in near-IR is 1–2 m

- Vacuum free-space beam transport
 - Avoids losses incurred by splitting bandpass and injecting into optical fibres
- Large beam size for long-distance propagation; small beam after delay lines to reduce cost and footprint

Beam relay

- Single stage, continously-variable system to minimize reflections and avoid switching overheads
 - Contrast with CHARA, NPOI scheme of switchable fixed delays plus short continuously-variable delay

Delay lines

- Visible ($\lambda <$ 1 $\mu m)$ and near-IR combiners
- Space for "guest" instrument
- Beam combiner concepts based on parallel combiners fed by a reconfigurable "fast switchyard"

- Group delay method allows coherencing on sources \sim 10 \times fainter than cophasing methods
 - · Short exposures needed in science beam combiners
- Separate fringe tracking and science combiners to allow optimization for their respective roles

Fringe tracking

Alignment

- Automated nightly alignment
- Parallel alignment of beam trains

- Automated operation
- Continuous collection and storage of engineering data
- Independently-developed subsystems integrated to form a distributed control system using custom protocols over Ethernet
- Central supervisory system handles configuration, sequencing and data collection

Optical train

- Detailed error budget used to apportion losses between optical surfaces
- Overall visibility loss factor 0.276 at H band
- Overall throughput 13%

September 2013

MRO

- 1 Introduction The MROI project Science and technology drivers Technical requirements
- 2 Conceptual Design
- 3 Accomplishments and Current Status Unit Telescopes Fast Tip-Tilt Systems Beam Relay Delay Lines Beam Combiners Alignment
 - Controls
- 4 Conclusions

September 2013

- Observatory site and infrastructure prepared
- · Successful design, tendering and construction of:
 - Beam Combining Facility
 - Unit Telescope #1
 - Telescope and beam relay piers close to array vertex
- Mitigated risks of innovative sub-system designs
 - Unit telescopes
 - Delay lines
 - · Fast tip-tilt systems

Unit Telescopes

- · Three mirror elevation-over-elevation mount
- Factory verification of pupil motion, vibration induced optical path fluctuations, M1/M2/M3 stability
 - Final WFE 62 nm rms

Telescope Enclosures

NEW MEXICO TECH

- Final design allows minimum 7.8 m UT spacing
- Enclosure supports telescope during relocation

Unit Telescopes Status

- UT#1 passed FATs, on-site integration in visitor and maintenance facility mid 2014
- UT#2 and UT#3 part-fabricated
- UT Enclosures designed

- One system per UT, mounted on Nasmyth optical table
- Uses "visible" light 350–1000 nm
- Fast tip-tilt correction using UT actuated secondary mirror
 - Tip-tilt zero point on FTT camera defined at start of night as part of interferometer automated alignment
- Narrow-field (60") target acquisition

MAGDALENA RIDGE OBSERVATORY

FTT Optical Design and Layout

- Transmissive design with custom cemented triplet lens
 - Angular stability tolerance 20 \times that for OAP mirror
 - Temperature-dependent focal length compensates for expansion of steel table top

- Prototypes of critical system components have been built and tested
- Laboratory test results validate design approach
 - Optomechanical stability within factor 2–3 of demanding requirements already demonstrated
 - Camera test results predict 49.6 Hz closed loop bandwidth at 900 Hz frame rate
- Final design and fabrication of first system underway
- Preliminary version of real-time control software done

Beam Relay System

MEXICO TECH

- Beam diameters 95 mm outside and through delay lines, 13 mm for beam combiners
- Engineering of support piers for MROI environment challenging; final design is bulky and hence expensive

MAGDALENA RIDGE OBSERVATORY New Mexico Tech

Beam Relay Status

· Partial Beam Relay System under test on site

- Delay range 0 to 380 m in vacuum, realized in single stroke with only three reflections
- Multiple innovations needed to make system affordable:
 - Delay carriage runs directly on inner surface of vacuum vessel; necessitates additional active control
 - Wireless communications
 - Inductive power supply

- Delay jitter < 15 nm rms over 10 ms; < 41 nm rms over 35 ms; < 55 nm rms over 50 ms (λ /40 rms over 2 t_0)
- Intra-night delay repeatability < 10 μ m; night-to-night < 100 μ m
- Slew speed: 30 m delay change in 30 s; full reposition in 5 min

The MROI Delay Line Trolley

- Trolley comprises **cat's eye** retroreflector flexure-mounted to motorised **carriage**
- · Cat's-eye driven by voice coil
- Carriage runs inside a 200 m evacuated pipe

The "Photon Torpedo"

Delay Lines Status

- First production trolley installed at MROI July 2013
- Site Acceptance Tests Oct/Nov 2013

MEXICO TECH

 Rework and manufacture of second production trolley in progress

- ICoNN: Infrared Coherencing Nearest-Neighbour tracker
- Nearest-neighbour combiner: only mixes beams from adjacent telescopes
- Design allows for up to 10 input beams
- Handles three nearest-neighbours in central telescope in "Y"

ICoNN Status

Beam combiner complete

AGDALENA RIDGE OBSERVATORY

NEW MEXICO TECH

- Final spectrograph optics due shortly
- Lab demonstration of closed-loop tracking in progress

- MROI will eventually have "visible" (0.6–1.0 μm) and near-IR (*JHK*) science combiners
- Development of near-IR combiner prioritized
- Various design concepts have been compared
- Designs use a fast optical switchyard to select subsets of beams, to maximize instantaneous signal-to-noise

- Scheme designed for nightly correction and beam tilt
 and shear
- Optical train split into three independent "sub-trains" whose optical axes must be co-aligned:
 - Inner rotation axis of unit telescope
 - Line of motion of delay line
 - · Optical axes of beam combiner
- A pair of flat mirrors between each sub-train provides the necessary degrees of freedom

Alignment Status

NEW MEXICO TECH

- Preliminary design complete
- Prototype components built and tested

- Main issue was integrating many diverse systems
- Solved by using standardised interface software automatically generated from a simple high-level description of the system
- Generated interface code provides functionality for:
 - Object construction and destruction
 - System configuration using data from a central database
 - Receiving commands
 - Publishing engineering monitor data, faults and alerts

Controls

Controls Status

- Initial versions of supervisory system components and graphical user interfaces
- Java version of system interface framework complete
- C version of system interface framework nearly complete

- Introduction
 The MROI project
 Science and technology drivers
 Technical requirements
- 2 Conceptual Design
- 3 Accomplishments and Current Status Unit Telescopes Fast Tip-Tilt Systems Beam Relay Delay Lines Beam Combiners Alignment
 - Controls
- 4 Conclusions

September 2013

- Pursuing Federal, State, and philanthropic sources
- Aim to demonstrate performance (esp. sensitivity) and possibly conduct a limited science programme
- Optimistic schedule:
 - 2014 UT #1 (inc. FTT #1) in visitor and maintenance facility
 - 2015 Enclosures #1 & #2, UT #2
 - · 2016 UT #3, first fringes with fringe tracking beam combiner
 - · 2017 UT #4, IR science beam combiner

- MROI concept found to be realizable as a detailed design
 - Relocatable telescopes, 350 m maximum baseline
 - Beam train with 13 reflections from sky to combiner input
- · Observatory infrastructure in place
- Major procurements and civil engineering done
- Biggest design risks (UTs, delay lines) retired
- Design and prototyping complete for most systems needed for first fringes

- · Schedule dependent on funding
- Partners welcome!
- Initial goal is to demonstrate performance with a compact sub-array on ${\sim}2016$ timescale
- · Leading to fundraising for an operationally-viable array
- · Possible job opportunities in a few months