The CHARA Array Mount Wilson Observatory

Theo ten Brummelaar

Associate Director Center for High Angular Resolution Astronomy Mount Wilson Observatory

Georgia State University

CHARA/GSU Participants & Funding

Principal Technical Staff: Theo ten Brummelaar*

Harold McAlister Stephen Ridgway Gail Schaefer* Laszlo Sturmann* Judit Sturmann* Nils Turner*

Affiliated GSU Faculty: Douglas Gies Todd Henry Russel White

*Mt. Wilson-based

Support Staff: Larry Webster, Site Manager* Chris Farrington, Operator* Steve Golden, Asst. Site Manager* Norm Vargas, Operator* Nic Scott, Operator/Grad-Student* Brenda Stith, Business Manager Dwayne Torres, Machinist

Construction Funding (~\$20 M): National Science Foundation Georgia State University W. M. Keck Foundation David & Lucile Packard Foundation

Current Science Funding (~\$1.0 M yr¹):

National Science Foundation Georgia State University College of Arts & Sciences Vice President for Research

The CHARA Consortium

NASA Exoplanet Science Institute

Layout of the CHARA Array

Vacuum Light Tubes I Feed Light from Each Telescope to the Central Lab

The 30 second CHARA tour

"Beam Combiners are us"

- CHARA CLASSIC 2 way open air J, H & K
- CHARA CLIMB 2x3 way open air J, H & K
- FLUOR 2 way fiber based K band
- MIRC 6 way fiber based imager J, H & K
- VEGA 4 way open air V,R,I R=30000
- PAVO 3 way aperture plane V,R,I
- CHAMP 6 beam fringe tracker J, H & K

CLIMB: CLassic Interferometry on Multiple Baselines

FLUOR: Fiber Linked Unit for Optical Recombination

High accuracy V² science

 Two telescopes so no phase...
 Broad K band (so far)

What is PAVO (A Spanish turkey) ?

• PAVO is an integral-field-unit for measuring spatially-modulated pupil-plane fringes.

• PAVO combines three beams for closure phase and has the highest sensitivity of all instruments in the visible wavebands.

• PAVO has been completed at CHARA and, weather pending, will be comissioned at SUSI next week.

tially-modulated pupil-plane fringes

VEGA: Visible spEctroGraph and polArimeter

Highest spectral resolution in the visible (R=30000).
Combines up to four beams
Uses a combination of Single Slit Spectroscopy, Speckle Interferometry and "Real" Interferometry.

spersed flat field

Dispersed fringes

NOAO open time since 2010

- Prompted in part by USCI activity and an expressed interest from NOAO/ReStar.
- 50-100 Hours of CHARA time allocated per year.
- Time awarded by an independent NOAO TAC.
- Over subscribed by 3.7 in 2010, 4.9 in 2011, and 2.5 in 2012.
- Many proposals came from people already interested in interferometry, less so now.
- Many proposals originated in Europe.

CHARA-AO Program

		Pro	Con	
More lens	let Bet	ter sampling	Worse SNR	
More actua	tor Bette	er performance	More expensive	
	lenslet c	onfiguration	1 DM configu	ration
Configuration 1	lenslet c 18-	onfiguration lenslet	n DM configu 31-actua	ration tor
Configuration 1 Configuration 2	lenslet c 18- 36-	onfiguration lenslet lenslet	n DM configu 31-actua 31-actua	tor tor

Status of the AO Program

• Phase I fully funded by NSF (\$1.2M)

• Phase I includes Wave Front Sensors on all telescopes, 'Slow' WFS in lab, and small Deformable Mirrors in the Lab for static corrections.

• Phase II (\$1.1M) will consist of adding large DMs at the telescopes and closing the loop.

• We will seek Phase II funding once we have had the first science results from Phase I.

*Measurements outlined in black are from the CHARA Array. Does not include new results presented next on K-M dwarfs.

Low Mass Stars in Particular are a Focus of Recent Work (Boyajian 2012 in press)

How do direct measurements compare to semi-empirical values?

Solid: Empirical Fit. Dash/Dot: Dartmouth 5 Gyr isochrones [Fe/H] = 0. Dotted: [Fe/H] = -0.5

First image of a main-sequence star (besides the Sun...)

- Altair (a Aql, V=0.7)
 - Nearby hot star (d=5.1pc, SType A7V, T=7850 K)
 - Rapidly rotating (v sin i = 240 km/s, \sim 90% breakup)

Spotted K giant ζ Andromeda

Doppler Imaging (Kovari et al. 2007) **CHARA-MIRC image** (Pedretti et al. 2010)

First Baby Step: Finding the Orientation

JDM.2008Sep02.Zet_And.fits

Stellar Diameters lead to Habital Zones : 55 Cancri A

Planet	K	<i>M</i> sin <i>i</i>	Р	а	е	ω
	(ms^{-1})	$(M_{\rm Jup})$	(days)	(AU)		(deg)
e	6.2(2)	0.0260(10)	0.736537(13)	0.01560(11)	0.17(4)	181(2)
b	71.4(3)	0.825(3)	14.6507(4)	0.1148(8)	0.010(3)	139(17)
с	10.2(2)	0.171(4)	44.364(7)	0.2403(17)	0.005(3)	252.(41)
f	5.4(3)	0.155(8)	259.8(5)	0.781(6)	0.30(5)	180.(10))
d	46.8(6)	3.82(4)	5169.(53)	5.74(4)	0.014(9)	186(8)

von Braun et al. (2011c)

Orbital parameters Dawson & Fabrycky (2010)

βLyrae – First Imagery: 4-frame movie Zhao et al. <u>Science</u> 2007.

β Lyrae – The Movie

Algol the Movie: Baron et al 2011.

Imaging a Be Star disk and the orbit of its faint companion

Eps Aur – Thrice in a lifetime? (Kloppenborg et. al. 2013 in press)

Eps Aur: The shape of the Disk.

How do I get Observing time at CHARA?

 NOAO Open Observing time for 2014 is <u>OPEN RIGHT NOW</u>

 The proposal deadline is Sept 26.

http://ast.noao.edu/sites/default/files/cfp2014a_0.pdf

http://www.noao.edu/gateway/chara/

- Through direct collaborations with one of us or one of our member groups.
 - Have a good idea? Come and talk to us.
- We plan to open up more time at CHARA through the new NSF/MSIP program. A large number of NOAO proposals will help.

CHARA Research Sponsored by

National Science Foundation W. M. Keck Foundation GSU College of Arts & Sciences State of Georgia NASA Exoplanet Science Inst. David & Lucile Packard Foundation

Visit Us on the Internet at

~~~~~~~~~~~~

GSU Astronomy Program www.chara.gsu.edu

The CHARA Array www.chara.gsu.edu/CHARA/

Mount Wilson Observatory www.mtwilson.edu

