DIFFERENTIAL PHASES @ AMBER FOR BE SHELL STARS

DANIEL FAES (BR) RODRIGO VIEIRA (BR), KLÁRA ŠEJNOVÁ (CZ), MASSINISSA HADJARA (DZ)

Credit: ESO/H.H.

INTRO + SCIENCE GOALS

• Interferometry measurements:

$$V(\boldsymbol{u}) = \frac{\iint I(\boldsymbol{r}, \lambda) \exp(-2\pi i \boldsymbol{u} \cdot \boldsymbol{r}) d^2 \boldsymbol{r}}{\iint I(\boldsymbol{r}, \lambda) d^2 \boldsymbol{r}} = |V| \exp(i\phi)$$

• Differential phases:

$$\phi_{\text{diff}}(\lambda, \lambda_{\text{r}}) = \phi(\lambda) - \phi(\lambda_{\text{r}})$$

INTRO + SCIENCE GOALS

- Be shell stars: contrast between disk emission and photospheric absorption within a line profile probes physical disk conditions.
- Radiative transfer modeling!

INTRO + SCIENCE GOALS

INTRO + SCIENCE GOALS

Model predictions !

TARGET LIST

- Bright Be shell stars (*Rivinius*+ 2006, A&A 459 137):
 - Observable Declination at VLTI & Right Ascension of the period (AirMass < 1.5)
 - Magnitude limits (correlated)
 - Not in AMBER GTO target list & ESO Archive *
 - Corresponding calibrators (Calvin or SearchCal)!

TARGET LIST

Targets										
Targets	Spectral type	RA[hms]	DE [°′ '']	V _{mag}	K _{mag}	K _{corr}				
eta Cen	B1.5Vne	14 35 30.42416	-42 09 28.1708	2.322	2.750	3				
eps Cap	B3V:p	21 37 04.83068	-19 27 57.6464	4.50	4.788	4.788				
omi Aqr	B7Ive	22 03 18.84403	-02 09 19.3067	4.70	4.661	4.74				
48 Lib	B8Ia/Iab	15 58 11.36869	-14 16 45.6894	4.943	4.591	4.99				

Calibrators									
Targets	Spectral type	RA[hms]	DE [°′ '']	V _{mag}	K _{mag}				
HIP 73273	B2III	14 58 31.92536	-43 08 02.2699	2.665	3.251				
HIP 106590	K1III	21 35 15.95659	-23 27 15.5353	6.394	3.724				
HIP 108506	K2V	21 58 54.98511	-04 22 23.1877	6.22	3.930				
HIP 78228	MOIII	15 58 26.67	-13 26 34.00	7.11	3.05				

GENERAL TECHNICAL SETUP

- AMBER Template Manual:
 - Instrumental configuration & DITs
- VLTI Configurations Overview (combinations of 3 Tel.):
 - UTs = all combinations.
 - ATs = 3 offered quadruplets

 ("large","medium" and "small" baselines,
 from ~130m to ~40m).

PROJECT SETUP

- Since we are interested on differential quantities (phases), observations can be done under "bad" sky conditions
 (AMBER limit = seeing <1.2" & sky coverage CLR) and CAL-SCI cycle.
- Service Mode.
- Bright objects = **ATs**; Using FINITO for better data reliability.
- Diff. Phases α Baseline length = "large" quadruplet A1-G1-K0-J3

PROJECT SETUP

- No time-critical observations.
- DIT (frame integration time) = 12s
- High-resolution requirement:

PROJECT SETUP

- We propose the execution in two times within a given night (2 position angles), separated by a few hours to increase Earth-rotation synthesis effect.
- Total time required: 5.33 hours
 2 PAs x 20min x (4 stars + 4 calibrators) = 320min

OBSERVABILITY

UV Coverage

IMMEDIATE OBJECTIVE

 AMBER is the ideal instrument to do spectro-interferometric measurements within a line (Δv ~ 25km/s).

• Goal: to measure the differential phases and interpret them with radiative transfer models.

END

