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Goal of astrophysics
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Theories

● Theory of stellar structure and evolution
● Theory of planet-formation and evolution
● Theory of galaxy evolution
● Cosmological theories 
● …..
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How asteroseismology helps (a lot)

The period of a sound wave           is the time it takes to traverse the star

                                                      

c_s = speed of sound and R = stellar radius.  We also know that

So substituting in, we get                                       or if we invert the equation we

get that the fundamental oscillation frequency is proportional to the mean density of 
the star.

R is measured from interferometry and  Π  is measured from asteroseismology, 
                 
                                        -> direct access to the mass of the star (and age)



Theories of stellar structure and 
evolution

470 kg/m3
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Cepheid pulsations in the SMC
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Period-Luminosity Relation for SMC
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– 1D waves, frequencies, period, amplitude
– Representation of signals by sinusoids
– Fourier Analysis, reconstruction of signal
– Frequency resolution, time sampling
– 1D, 2D, 3D 'spatial' waves
– Oscillation modes



Waves and Power Spectra

A wave is described by several characteristics

A = amplitude
λ = wavelength
Φ = phase
n = node or 'zero' or 'null'

If the wave covers a distance → λ (m, km, ...)
If the wave covers a time → period, Π (cycles/sec)..

We can relate this to a function of time, f(t) = A sin (t/λ) = A sin (tω) 
where ω is the cyclic frequency

Most physical processes can be represented by such cyclic behaviour.  

Can you think of any examples?



Waves and Power Spectra

Even signals that do not look sinusoidal can still be represented by sinusoids or sums 
of sinusoids with different amplitudes.

                                                      



Waves and Power Spectra
Joseph Fourier showed that by representing signals as a sum of trigonemtric 
functions, their analysis can be greatly simplified.  This gave way to Fourier Analysis.

The Fourier Transform is a function that allows us to represent the components in 
signals in a simple manner, namely as frequencies, amplitudes and phases.

                                         where

For an infinite continuous function f(t) we can calculate the Fourier coefficients f^ω by 
simply integrating the function times a wave of a frequency ω.

However, our signals s(t) are not continuous nor infinite, and so the Discrete Fourier 
Transform allows us to calculate the coefficients using the following formula:
 
                                                      

where A_v is the coefficient for the frequency v, and T is the number of points in s(t)



Waves and Power Spectra

Here we show the Fourier Transform (lower panel) of the boxcar signal (top).
Each peak shows the coefficient associated to a wave of a certain frequency



Waves and Power Spectra

Reconstructing the time signal using the first few coefficients of the DFT.



Waves and Power Spectra
A signal usually has units of time.  The natural unit is the second (s).  Frequency is 
the number of cycles per second c/s and is denoted by hertz (Hz).
The FT is shown in Hz.  It tells us the frequencies of the components of the signal



Waves and Power Spectra

Increasing the length of the signal gives better frequency resolution

                   Δf = 1/T                    – or a sharper peak in the FT

Δf  = 1/10 = 0.1 c/s = 0.1 Hz

Δf  = 1/1 = 1 c/s = 1 Hz



Waves and Power Spectra
The frequency resolution is very important if we wish to resolve frequencies which are 
similar.  

T = 20s

T = 500s



Waves and Power Spectra
A damped oscillation (left) is represented as a sum of similar frequencies (right).
Its damping exponent (how quickly it decays) determines the width of the signal in the FT.  



Waves and Power Spectra
The sampling time dt determines the length of the shortest periodicity or highest 
frequency present.  
In this figure we can easily resolve the frequency of 1Hz.  
The highest frequency v0 = 2 dt.

What is dt?
What is v0?



Waves and Power Spectra

Poorer sampling time.  This sinusoidal signal is no longer like a sinusoid.
However, we can still detect the oscillation frequency.



  

Waves in space

A wave on a string.  The red dots show the nodes or 'zeroes'.  
These are points where the medium does not displace. 



  

Waves in space

Different frequencies can be observed even for the same length of string.   

The different frequencies are characterised by the number of nodes on the 
string, and they are an integer number times the fundamental frequency.

If v is the speed of the wave, then f_0 = v/2L, where L is the length, then the 
nth harmonic f_n = nf_0 = nv/2L                                      (v=sqrt(T/rho)
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2D Waves: Drum

A 2-D example of oscillations: the fundamental and first overtone



  

3D Waves: Star

Each frequency corresponds
To a MODE (think of TYPE).  

A mode is described by 3 numbers

L = angular degree
N = radial order
M = azimuthal order

L, M describe the surface geometry of the 
mode, while N shows the number of 
zeroes between the surface and the 
center

In this figure we can understand the 
angular degree, L.



  

3D Waves: Star



  

Waves in a star: modes



  

Observing pulsations

Unfortunately we can not resolve the spatial scales of oscillations of most stars.
We observe 'integrated light' (see below).
For the data analysis, this makes the problem simpler, we just think of simple 
oscillations in time.



  

Observing pulsations

Even if we can resolve the frequencies, do we know which MODE of oscillation we 
are observing?  How do we assign l,m,n to each observed frequency?  
It depends on the star and the excitation and damping mechanisms.
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● Introduction/objectives 
● Waves and Power Spectra
● Stellar Pulsations across the HR diagram

– Types of pulsating stars
– Power spectra of Cepheids/delta Scuti/solar-like
– Excitation Mechanisms 



  

Oscillations across the HR diagram



  

Oscillations across the HR diagram

Cepheids



  

Brief History of Pulsations
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Different stars



  

Oscillations across the HR diagram

'Sun-like' stars
Delta Scuti stars

Cepheids



  

Power spectra showing oscillations in 
different stars
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Why do they pulsate?

The structure of the star determines the frequencies of the oscillation modes, 
the reasons for pulsation, the amplitudes of pulsation (atmosphere), and the 
restoring force (p,g modes)

Stars located in different regions in the HR diagram have differing structures thus 
differing pulsation types.

Excitation mechanisms:

  –  kappa mechanism: Balance between radiation pressure and gas pressure: 
under certain conditions He+ atmosphere loses e- and makes gas more opaque.  
The radiation pressure increases and causes the star to expand. He++ becomes 
He+ and cools (more transparent) and star contracts.

 – stochastic oscillations: convection zone's turbulent motions act as pistons to 
'ring' the star and this oscillate in its resonant modes

Different stars will show different types of pulsation spectra



Contents

● Introduction/objectives 
● Waves and Power Spectra
● Stellar Pulsations across the HR diagram
● Solar-like Oscillations: theory and observations
● Interferometric diameters





Contents

● Introduction/objectives 
● Waves and Power Spectra
● Stellar Pulsations across the HR diagram
● Solar-like Oscillations: theory and observations
● Interferometric diameters



Contents

● Introduction/objectives 

● Interferometric diameters
– Role of interferometry with seismic data
– Precision in radius
– Visibility curves
– Determining the angular diameter
– Visible and IR limits in angular resolution



  

Why Interferometry?
 
We have the following scaling relation

With asteroseismology we can measure           and with interferometry we 

can measure θ.  When we know the distance, we get R.  This means that we 

have direct access to M. 

How do we measure the average value of               ?



  

Calculating R from θ 

The angular diameter θ of a star is the projected diameter onto the sky. R = 
radius of the star and d is the distance.

Rearranging the equation and converting the radius to solar radii we get

where mas = milliarcsec and pi = parallax

Can you verify this equation?

Its error is given by 



  

Measuring θ with Interferometry

The visibility curve of an object with an angular diameter θ is determined by 
the distance between the two (or more telescopes) called the baseline B and 
the wavelength of the interferometric instrument λ 

.

where (pi = 3.14 here)

Note: The following few slides are covered in the practical session  



  

 Interferometry: visibility curves

The visibility curve (V squared) of a star with angular diameter θ and 
measured with a visible interferometer which works in the wavelength λ for a 
continuous baseline coverage (unrealistic). 

.
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 Interferometry: visibility curves

The visibility curve (V squared) of a star with angular diameter θ and 
measured with a visible interferometer which works in the wavelength λ for a 
continuous baseline coverage (unrealistic), with typical LIMITS 

.

  



  

 Interferometry: visibility curves

The visibility curve (V squared) of a star with angular diameter θ and 
measured with 10 equal-spaced baselines (30m - 270m) using a visible 
interferometer (blue) and a near IR interferometer (red)

.

  



  

 Interferometry: visibility curves

The visibility curve (V squared) of a star with angular diameter θ and 
measured with 10 equal-spaced baselines (30m - 270m) using a visible 
interferometer (blue) and a near IR interferometer (red)

.

  



  

 Interferometry: visibility curves

The visibility curve (V squared) of a star with angular diameter θ and 
measured with CHARA representative baselines (34m – 330 m) using a 
visible interferometer (blue) and a near IR interferometer (red)

.
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Theories of stellar structure and 
evolution
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5.7 Gyr

8.3 Gyr

[Fe/H] = 0.04 ± 0.10
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● Waves and Power Spectra: 1-3D waves, frequencies, 

representation of signals, Fourier analysis, frequency resolution, time 
sampling, fundamental frequency, oscillation modes (l,n,m)  

● Stellar Pulsations across the HR diagram: types of 
pulsating stars, observations, excitation mechanisms

● Solar-like Oscillations: theory and observations:  
asymptotic expression, large and small frequency separations, freq of 
max amplitude, seismic quantities and fundamental properties, 
observations, combining interfero+astero

● Interferometric diameters: precision in radius, visibility 
curves, determining AD, visible/IR limits on angular resolution



  

Conclusion
We discussed
1) why we should combine interfero+astero

2) how to measure and analyse time series of pulsations and its Fourier Transform

2) that for solar-like stars the asteroseismic quantity Δν can be easily measured, 
and this gives us direct access to the mean density of the star.

3) how to calculate angular diameters, and radii from interferometric data

4) by combining R and Δν we can access directly M

5) how knowing these fundamental properties is a requirement if we want to 
determine the age of stars, or study stellar evolution and structure.
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