School of Physics and Astronomy FACULTY OF MATHEMATICS AND PHYSICAL SCIENCES

Star Formation

René Oudmaijer (Leeds, UK)

VLTI School 2013 Barcelonnette

- In early stages of formation the dusty envelope is very optically thick even in IR
- Therefore spectrum peaks in Far-IR
- As envelope clears peak shift to shorter wavelengths until light from the star and accretion disk is revealed
- Eventually the disk is 'dispersed' leaving just the star

Problems, problems...

The stars are predicted to rotate faster than the speed of light...

Angular momentum problem

Introducing a disk surrounding the star may help

As would a rotating outflow

High resolution techniques (spectral, spatial, temporal) mostly limited to small numbers of bright objects

In-depth studies of individual targets inform follow-on studies employing lower resolution but larger, statistical, samples

Evolutionary Outline				IVERSITY OF LEEDS
Hot Core SED:	→ MYSO	→ UCHII	→ OB Star	
Sub-mm Radio:	→ Mid-IR	→ Mid/Near	r-IR → Near-IR/Visu	lal
No radio	\rightarrow Weak Radio \rightarrow Strong Radio			
Masers:			Class 0	Class I
CH₃OH	\rightarrow H ₂ O	→ OH	Cold Black Body Cold Black Body Submm 1 100 1000 Class II	Black Body 1 2 100 Class III
			Class II () () () () () () () () () ()	$\begin{array}{c} \text{Claw III} \\ \text{Claw III} \\ \text{Stellar Black Body} \\ \frac{1}{1 \cdot 2} \frac{1}{10} \\ \lambda(\mu m) \end{array}$

Massive Young Stellar Objects Luminous (>10⁴ L_☉) IR source Bipolar molecular outflow Compact, ionised wind, ν~100 km/s Distances of order kpc OIR faint How do they form? Accretion (disk) properties? Outflow and envelope properties?

Mid IR MIDI interferometry in 2013:

UNIVERSITY OF LEEDS

Massive Young Stellar Objects: emphasis on dusty mid-infrared emission Largest sample of MYSOs, Boley et al.: *uv* coverage

Mid IR MIDI interferometry in 2013: UNIVERSITY OF LEEDS

Largest sample of MYSOs, Boley et al

Geometric modelling not conclusive in determining nature MIR emission.

A take home message:

Geometric modelling not conclusive SED modelling degenerate \rightarrow Need combination with SED modelling to get more information

W33A and disk emission

Disk limits from N-band interferometry: Dust disk : $M < 0.01 M_{\odot}$, implies low accretion rate? Gas (accretion) disk can be hidden: $M_{\rm acc} < 10^{-3} \, \rm M_{\odot}/yr$ 0.4 - 42 05 Envelope Baseline: 4 P.A.: 16.04 Envelope + dust disk Invalope + a-disk 0.3 Visibilities 0.2 0.1 0.0 De Wit et al. 2010 10 12 11 8 9 13 Davies et al. 2010 Wavelength (μm)

OIR Interferometry & Star Formation UNIVERSITY OF LEEDS

- Continuum and line interferometry has come of age in this century
- Results promising, but have scratched the surface
- · Improved sensitivities will allow larger samples to be observed
- And imaging to be done
- (All in conjunction with sophisticated models)

Future bright!

Improved sensitivities New beamcombiners New instruments New interferometers

Magdalena Ridge Observatory Interferometer 10 elements – 340m baseline, optical, NIR