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Abstract

In this paper, we carried out the previous exercises using ASPRO (and an image
processing software for superposition of the graphs: GIMP) to give an idea of what
one should get with ASPRO when following the previous exercises. Please try to

do the exercises yourself before reading these corrections.
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Exercise 1: The diameter of a star.

Plotting a uniform disk visibility curve: The figure produced by ASPRO

should look like Fig. 1, left.

Zero visibility: The visibility for a uniform disk of diameter a is given by
the following expression:

V (ρ) = 2
J1(πaρ)

πaρ
(1)

ρ = B/λ (B and λ in meters) being the spatial frequency, a being the star
diameter (in radians), and J1 the 1st order Bessel function. Therefore, the
value for which the visibility becomes zero is B = 1.22λ/a.

Here, the visibility zeroes around the 280 m baseline. This gives an approxi-
mately 1.89 mas diameter for the star, close to the 2 mas input.
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Fig. 1. Left: The uniform disk visibility function cut from exercise 1. Right: The
place where one can infer a unique diameter from a single visibility measurement
for a uniform disk is where the measured contrast is above 0.15. Indeed, below 0.15,
several diameters can be inferred from this single visibility measurement (as shown
by the red line).

Diameter uniqueness: The right plot in Fig. 1 gives a hint of the answer:
There are parts of the visibility function which are monotonic (above the red
line). In these parts, one visibility gives a unique solution to the diameter of
the star. In the parts below the red line, a given visibility corresponds to many
different solutions (as the line crosses several points of the curve). Therefore,
there is a lower limit on the visibility value (V & 0.15) where one can infer a
unique diameter from a unique measurement.

Exercise 2: Binary.

Plotting a binary star visibility curve: The visibility and phase func-
tions of a binary star are periodic since the image is made of Dirac functions.
One can see what can be expected for a 4 mas-separation binary star in Fig. 2.
One can see that the visibility does not have a cosine shape, but has sharp
changes at visibility 0 for a 1 to 1 binary (black line).

Varying the flux ratio : For other flux ratios (0.8 in red, 0.5 in blue, and
0.1 in green), both the phase and visibility get smoother, and the contrast of
the variations gets dimmer. Please note that these are visibility plots made
with “AMP” and not “AMP2̂” in ASPRO.

Phase versus visibility: To see how visibility or phase can constrain a
binary star model, one can just try to change the baseline orientation and see
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Fig. 2. Left: The visibility amplitude for a separation of 4 mas and different flux
ratios (from the lower to the upper curves: 1 to 1 in black, 0.8 to 1 in red, 0.5 to 1
in blue, and 0.1 to 1 in green). Right: The visibility phase for the same separation
and flux ratios.

how visibility and phase vary. In Fig. 3, bottom-right, one can see the result
of such exercise. One has seen that the phase is sensitive to the contrast of
the binary (Fig. 2), as is the visibility, but it is also sensitive to the position
angle (both of the binary star and of the baseline) and the binary separation.
Therefore, the phase can be used instead of the visibility to constrain the
binary parameters!

Exercise 3: Circumstellar disk.

Plotting a Gaussian disk visibility curve: The example of this exercise
is a disk of 2x4 mas and a position angle of 60 degrees. The resulting UV map
and cuts in the UV plane are shown in Fig. 4.

Aspherity and visibility variations: As one can see, for a given baseline
and a varying position angle, the visibility goes up and down, the minimum
corresponding to the major axis and the maximum corresponding to the minor
axis. One has to note (and can check) that the phase function for such a model
is zero.

Exercise 4: Model confusion and accuracy.

Plotting several model visibilities: In Fig. 5 different plots are superim-
posed using the GIMP software. The uniform disk is in black, the Gaussian in
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Fig. 3. Top: UV map showing the previous binary star visibility modulus. This
visibility shows characteristic modulation stripes perpendicular to the binary ori-
entation. Bottom-Left: Visibility modulus as a function of base length for the
different projected stripes, in different colors (the number of sine arches increases
with the different orientations): red is 90◦ relative to the binary orientation, green
is 60◦, blue is 30◦ and black is 0◦. Bottom-right: Visibility phase as a function of
base length for the same stripes as before.

blue, and the binary in red.

Model confusion at small baselines: Two green lines represent the 100 m
and 200 m baselines. One can see the importance of multi-measurements at
different baselines to be able to disentangle the different objects’ shapes. With
only one visibility measurement, one will never be able to distinguish between
these different models. With the two visibility measurements, one can see that
it will be possible to disentangle the different models if both very different
baselines AND a sufficient accuracy can be reached.
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Fig. 4. Left: UV map showing the visibility amplitude for a 2x4 mas elongated
Gaussian disk. The black and blue lines correspond to the right part of the figure.
Right: Visibility versus base length for the minor (black, upper curve) and major
(blue, lower curve) axes of the Gaussian disk. Please note that the visibility is lower
in the direction of the major axis and greater in the minor axis direction.

Fig. 5. Illustration of model confusion for different baselines and models: blue (top
curve) is a Gaussian disk, red (bottom curve) is a binary star, and black (middle
curve) is a uniform disk. The first green vertical line represents a 100 m baseline.
If the accuracy is not better than about 0.01, then no distinction can be made
between the different models. For the 200 m baseline (second green vertical line), an
accuracy of 0.1 or better is sufficient to discriminate between the different models.
Note, however, that one needs more than 1 point to be able to really distinguish
between the models.

The role of measurement accuracy: Here, if one has visibility error bars
of 0.05, one can distinguish between the sources using the 100 and 200 m
baselines, but not with an accuracy of 0.3. This importance of accuracy in
model confusion is illustrated by Fig. 6. The 1st plot (on the left) is a central
point with 90% of the total flux contribution and a large (15mas) Gaussian disk
around, accounting for 10% of the flux. Errors bars of 0.1 would prevent one
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from finding the Gaussian component, and the measured visibility (0.9± 0.1)
would be compatible with a completely unresolved star. The right graph shows
the same but with the flux ratio inverted (90% of the flux to the disk and 10%
to the central star). In this case, the visibilities would be compatible with a
fully resolved, extended component, given an accuracy of 0.1 on the visibility,
and the point source (the central star) would not be detected. So, not only
the number of baselines but also the accuracy of the measurement is of high
importance to distinguish between different models.

Which baseline for which purpose: Here, one can see that since there
is an unresolved source in the object image (a central source), measuring the
visibility at long baseline directly provides the unresolvedflux/resolvedflux flux
ratio.

If one wants to get information on the disk itself (size, shape, etc.), the shorter
baselines are more appropriate, since the visibility will vary according to the
source shape.

Fig. 6. Left: Visibility cut for a point star accounting for 90% of the total flux
and a 15 mas Gaussian disk accounting for 10% of the flux. Right: Visibility cut
for a point star accounting for 10% of the total flux and a 15 mas Gaussian disk
accounting for 90% of the flux.

Exercise 5: Choosing the right baselines.

The idea here is to use the nice feature of ASPRO that is able to plot the
derivatives of visibility versus the different parameters of the input model. To
do so, one has to go to the UV explore panel, select U as X data and V as Y
data, and finally select d(AMP )/d(4) in the Plot what... part. This will plot
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the derivative of the visibility amplitude versus the 4th parameter (radius, as
shown in Table ??).

Fig. 7 shows the model visibility and its derivative, relative to the model size,
for a Gaussian disk and a uniform disk.

Uniform disk: The size used is 2 mas. The derivative peaks where the visi-
bility slope versus baseline is the largest. This means that for a small baseline
change, a large visibility change will be observed; i.e., the biggest constraint
will be applied to the corresponding model in the model fitting process.

One can see that the optimal baseline is 100 m for the uniform disk. One
should know that the optimal baseline to constrain a given model corresponds
to a visibility of about 50%. Very important to know: baselines that are too
short or too long will not reveal much information about the source size or
shape.

Gaussian disk: The size used is the same as before: 2 mas. The optimal
baseline is about 50 m for the Gaussian disk. Therefore, using different base-
lines, one will be able to both disentangle the model shape (Sharp - UD - or
smooth - Gauss - edges?) and constrain the typical size (as seen before).

Exercise 6: An unknown astrophysical object.

Loading and displaying a home-made model: Fig. 8 (top) shows the
model of a young stellar disk produced by F. Malbet. The star-to-disk contrast
here is 1 to 10.

Please note that, as for the previous disk model (Exercise 3), the disk is
elongated, and therefore, the large visibilities will correspond to the minor
axis of the model, whereas the low visibilities will correspond to the major
axis.

Computing the visibilities of a home-made model: The lower-left part
of Fig. 8 displays a UV map of the model shown in the upper part. This map
is very similar to the one shown in Fig. 4, which indicates that the disk mostly
looks like a Gaussian disk.
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Fig. 7. Top-left: Gaussian disk visibility map, as a function of UV coordinates.
Top-right: Visibility derivative versus the model size (FWHM), showing where the
visibility varies more with UV coordinates. Bottom-left: Visibility map, but using
a uniform disk. Bottom-right: Visibility derivative versus model size (FWHM) for
a uniform disk model.

Comparing visibilities for different wavelengths: The lower-right part
of Fig. 8 shows the visibility for the minor axis with different wavelengths: J
(black, lower curve), K (blue, middle curve), and N (red, upper curve). This
shows which wavelength to use to observe the object: the K-band allows both
high visibilities for the extended component and low visibilities for the detailed
structure of the disk, in the range of the VLTI offered baselines (16-130 m).

Exercise 7: Play with spectral variations, closure phases, etc.

This is a bonus exercise. To manage it, one will need the newest local version
of ASPRO to cope with closure phases (at the time of writing this correction,
the web version of ASPRO did not have all functionalities necessary to do this
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Fig. 8. Top: Image of the disk model used in exercise 6 (shown using the fv tool)
Bottom-Left: Visibility map showing the main elongation of the disk, perpendic-
ular to the main elongation of the visibility function. Bottom-Right: Visibility of
the disk for different wavelength regimes: red (top curve) is N-band, blue (middle
curve) is K-band, and black (bottom curve) is J-band.

Fig. 9. Left: Visibility plot as a function of wavelength for different baselines (in
red, green and blue). The global geometry of the model does not change, only the
flux ratios between the 3 components. Right: Closure phase plot as a function of
wavelength.
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exercise). Therefore, one is not obliged to reach this point.

Plotting visibilities and closure phase versus wavelength: In Fig. 9,
one can see the visibilities for a given observational setup (A0-D0-H0) and
the closure phase. The author has used, on purpose, an array with aligned
baselines to illustrate this exercise.

Qualitative understanding: There are a number of indicative clues to
qualitatively understand the shape of the observed object:

• The different visibilities are decreasing with baseline. Therefore, the object
is barely resolved by the interferometer. One cannot qualitatively distinguish
between a uniform disk, a Gaussian disk, or a binary star, but one can say
the object is resolved at the largest baseline (≈130m) and therefore has a
size of about 2mas.

• The non-zero closure phase gives information about the asymmetry of the
object. Here, one has a non-zero but very small closure phase. The only
simple model known from this practice session which gives a non-zero closure
phase is a binary star model. The fact that the closure phase is not 180
degrees gives the additional information that the flux ratio is not 1/1.

Therefore, only qualitatively looking at these data one can say:

• The object is likely to be a binary star,
• the separation is about 2mas,
• the flux ratio is not 1/1,
• so far, one cannot say if each component has been resolved or if there is a

third component.

Looking at the solution: Fig. 10 shows the image of the model used in this
exercise. As one can see, the components are somewhat resolved, but probably
not enough to be detected, and a third component is present. Therefore, the
qualitative analysis is not enough, and one has to perform a quantitative
analysis to characterize all of these components.
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Fig. 10. Image of the binary+wind-wind collision zone model used in this exercise.
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