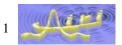


Introduction to model-fitting

Michel Tallon, Isabelle Tallon-Bosc, Eric Thiébaut

CRAL, Lyon France

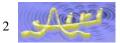


M.Tallon & I. Tallon-Bosc

VLTI summer school — Porquerolles — April 17-28, 2010

Outline

- 1. Elements on model-fitting theory
 - understand a few concepts
 - understand the assumptions
 - getting hints useful for the practice
- 2. LITpro software
 - short presentation of the main features
- 3. On the adventure of model-fitting
 - examples and hints
- 4. Short introduction to the practice



Elements on model-fitting theory

- understand the concepts
- understand the assumptions
- getting hints useful for the practice

d

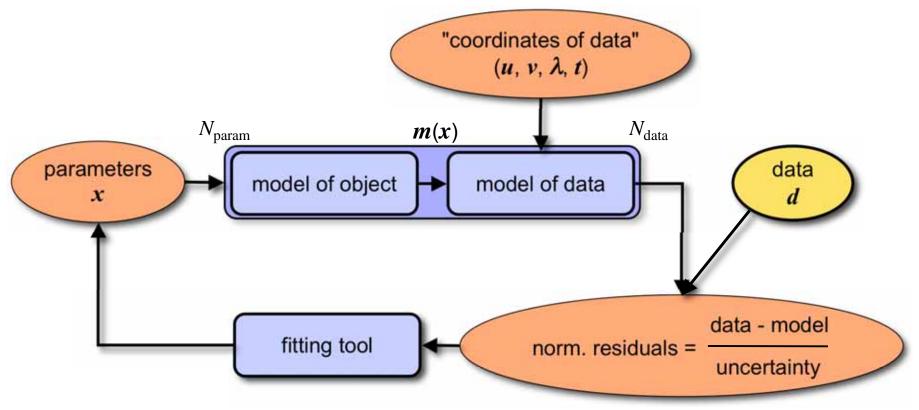
m(x)

x

Model fitting actors

- What we have
 - data (here OIFITS) and uncertainties on data
 - OI_VIS2 squared visibility amplitude
 - OI_VIS complex visibility (amplitude and phase)
 - OI_T3 triple product (amplitude and phase)
 - priors: all possible models of object
- What we want
 - identity the observed object with a model
 - estimate object parameters *and* uncertainties on the parameters
 - easy 🕑
- What we need
 - tools for model-fitting
 - know what we are doing (no black magic !)

Model fitting principle





Criterion for the best parameters

• *best* parameters maximize the probabitity of the data (knowing the model)

$$x_{\text{best}} = \arg \max_{x} \operatorname{Pdf}(d \mid m(x))$$

• where

- *d* data (random quantities)
- *x* parameters
- m(x) model (of data): ~ expected values of data
- number of parameters < number of data
 - difference from image reconstruction
- no objective priors
 - we have strong prior: the model of the object!
 - fundamental difference from image reconstruction

assumption: Gaussian statistics

• data have Gaussian statistics:

$$\operatorname{Pdf}(\boldsymbol{d} \mid \boldsymbol{m}(\boldsymbol{x})) = \frac{\exp\left(-\frac{1}{2} \boldsymbol{r}^{\mathrm{T}} \cdot \boldsymbol{C}_{\boldsymbol{r}}^{-1} \cdot \boldsymbol{r}\right)}{\sqrt{(2\pi)^{N_{\text{data}}} \det\left(\boldsymbol{C}_{\boldsymbol{r}}\right)}}$$

• where

$$r = d - m(x)$$
 residuals
 $C_r = \langle r.r^T \rangle - \langle r \rangle \langle r \rangle^T$ covariance matrix of residuals

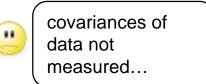
• equivalent to minimize argument of the Gaussian

$$\boldsymbol{x}_{\text{best}} = \arg\min_{\boldsymbol{x}} \left[\boldsymbol{d} - \boldsymbol{m}(\boldsymbol{x})\right]^{\mathrm{T}} \cdot \mathbf{C}_{r}^{-1} \cdot \left[\boldsymbol{d} - \boldsymbol{m}(\boldsymbol{x})\right]$$

assumption: data statistically independent

• C_r is a diagonal matrix:

$$\mathbf{x}_{\text{best}} = \arg\min_{\mathbf{x}} \left[\mathbf{d} - \mathbf{m}(\mathbf{x}) \right]^{\text{T}} \cdot \mathbf{C}_{\mathbf{r}}^{-1} \cdot \left[\mathbf{d} - \mathbf{m}(\mathbf{x}) \right]$$
$$= \arg\min_{\mathbf{x}} \sum_{i=1}^{N_{\text{data}}} \left(\frac{d_i - m_i(\mathbf{x})}{\sigma_i} \right)^2$$



• thus we need to minimize $\chi^2(x)$:

$$\chi^{2}(\mathbf{x}) = \sum_{i=1}^{N_{\text{data}}} \left(\frac{d_{i} - m_{i}(\mathbf{x})}{\sigma_{i}} \right)^{2} = \sum_{i=1}^{N_{\text{data}}} \frac{r_{i}^{2}(\mathbf{x})}{\sigma_{i}^{2}} = \sum_{i=1}^{N_{\text{data}}} e_{i}(\mathbf{x})^{2}$$

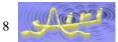
a.k.a non-linear weighted least squares

where

 $e_i(\mathbf{x})$ normalized residual: random variable with standard normal distribution

 $=>\chi^2$ law

- Independency in real world ?
 - calibrator
 - normalization by incoherent flux



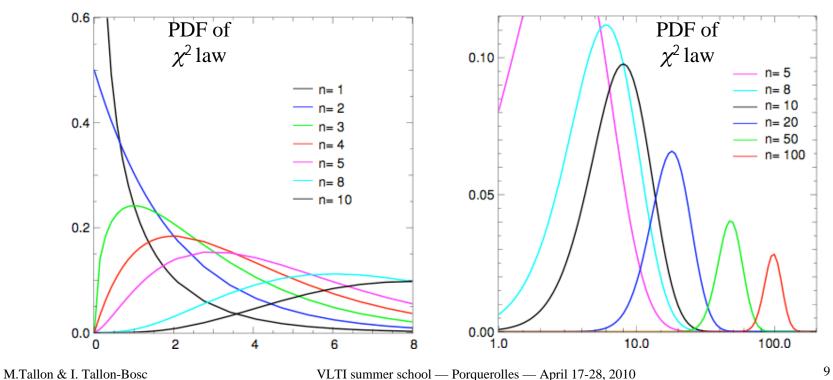
..

χ^2 law: definition

$$\chi^2(\boldsymbol{x}_{\text{best}}) = \sum_{i=1}^{N_{\text{data}}} e_i(\boldsymbol{x}_{\text{best}})^2 \quad \text{with} \quad e_i(\boldsymbol{x}) = \frac{d_i - m_i(\boldsymbol{x})}{\sigma_i}$$

$$e_i(\mathbf{x}_{best})$$
 : standard normal distribution $N(0,1)$

number of degrees of freedom: $N_{\text{free}} = N_{\text{data}} - N_{\text{param}}$ expected value: $E\{\chi^2(\boldsymbol{x}_{\text{best}})\} = N_{\text{free}}$ variance: $\operatorname{Var}\{\chi^2(\boldsymbol{x}_{\text{best}})\} = 2 N_{\text{free}}$



χ^2 law: reduced χ^2

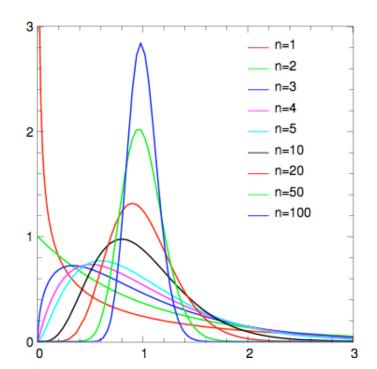
reduced χ^2 : $\chi^2_r = \frac{\chi^2}{N_{free}}$

number of degrees of freedom:

expected value:

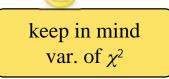
 $N_{\rm free} = N_{\rm data} - N_{\rm param}$ $E\{\chi_{r}^{2}(x_{best})\}=1$ variance: $\operatorname{Var}\{\chi_r^2(\boldsymbol{x}_{\text{best}})\} = 2 / N_{\text{free}}$

Assume model is good !



- statistics is very sharp ! •
 - confidence level not very useful
- in practice, statistics cannot be used to accept or rule ٠ out a model
 - modeling errors may be high
 - noise level may be badly estimated
- can be used to compare two models: ٠

 $\frac{\chi^2(\boldsymbol{m}_1)}{N} \longleftrightarrow \frac{\chi^2(\boldsymbol{m}_2)}{N}$



VLTI summer school — Porquerolles — April 17-28, 2010

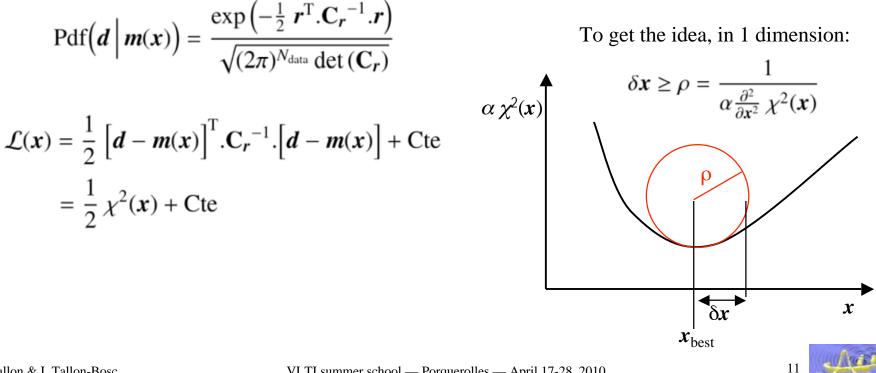
Errors on fitted parameters ?

general theorem of Cramér-Rao lower bound

 $\mathbf{C}_{\boldsymbol{x}} \geq \left[\nabla_{\boldsymbol{x}} \nabla_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}) \right]^{-1}$ with log-likelihood:

$$\mathcal{L}(\boldsymbol{x}) = -\log \operatorname{Pdf}(\boldsymbol{d} \mid \boldsymbol{m}(\boldsymbol{x}))$$

we come back to χ^2 using Gaussian assumption:



Errors on fitted parameters: computation

• Computation of curvature of log-likelihood

$$\mathbf{C}_{\mathbf{x}} \ge \left[\nabla_{\mathbf{x}} \nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}) \right]^{-1}$$
 with $\mathcal{L}(\mathbf{x}) = \frac{1}{2} \left[\mathbf{d} - \mathbf{m}(\mathbf{x}) \right]^{\mathrm{T}} \cdot \mathbf{C}_{\mathbf{r}}^{-1} \cdot \left[\mathbf{d} - \mathbf{m}(\mathbf{x}) \right] + \mathrm{Cte}$

• Linearization of the model around the best solution

$$m(x) \approx m(x_{\text{best}}) + \left[\frac{\partial m}{\partial x}(x_{\text{best}})\right](x - x_{\text{best}})$$

• Relation between errors on data and errors on parameters

$$\mathbf{C}_{\boldsymbol{x}} \geq \left[\left[\frac{\partial \boldsymbol{m}}{\partial \boldsymbol{x}}(\boldsymbol{x}_{\text{best}}) \right]^{\mathrm{T}} \cdot \mathbf{C}_{\boldsymbol{r}}^{-1} \cdot \left[\frac{\partial \boldsymbol{m}}{\partial \boldsymbol{x}}(\boldsymbol{x}_{\text{best}}) \right] \right]^{-1}$$

Assume fitted model is good !

- But:
 - assume modeled data are the expected value of data (i.e. the fitted model is good)
 - this only translates the statistical errors from data to the parameters
 - ... and we are optimistic: we consider the equality

Errors on fitted parameters: rescaling

- The model is good (assumption), but:
 - χ^2 is bad (>> $N_{\rm free}$)
 - errors on parameters may be good (only statistics) !

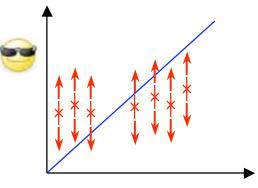
$$\chi^2(\boldsymbol{x}_{\text{best}}) = \sum_{i=1}^{N_{\text{data}}} \frac{r_i^2(\boldsymbol{x}_{\text{best}})}{\sigma_i^2} \gg N_{\text{free}}$$

we look for α such that:

$$\sum_{i=1}^{N_{\text{data}}} \frac{r_i^2(\boldsymbol{x}_{\text{best}})}{(\alpha \ \sigma_i)^2} = N_{\text{free}}$$

$$\Rightarrow \quad \alpha = \sqrt{\frac{\chi^2(\boldsymbol{x}_{\text{best}})}{N_{\text{free}}}} = \sqrt{\chi_r^2(\boldsymbol{x}_{\text{best}})}$$

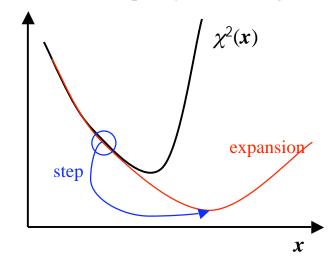
$$\Rightarrow \mathbf{C}_{\mathbf{x}} = \alpha^2 \left[\left[\frac{\partial \mathbf{m}}{\partial \mathbf{x}} (\mathbf{x}_{\text{best}}) \right]^{\mathrm{T}} \cdot \mathbf{C}_{\mathbf{r}}^{-1} \cdot \left[\frac{\partial \mathbf{m}}{\partial \mathbf{x}} (\mathbf{x}_{\text{best}}) \right] \right]^{-1}$$

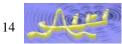


Outline of the optimization

- Needs
 - Minimize $\chi^2(\mathbf{x})$ (sum of squares)
 - Non-linear, non-convex
- Local optimization with Newton method
 - step from a local expansion at second order
 - need of gradients (Jacobian matrix)
 - need of second derivatives (Hessian matrix)
 - but step may be too long
 - outside region where quadratic approximation is valid
- Control of the length of the step
 - add a constrain that deforms the cost function
- Levenberg-Marquardt algorithm
 - we minimize a sum of squares
 - we only need gradients
 - finite differences are ok
 - Hessian is approximated
 - we only keep product of derivatives

Newton step may be too long

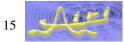




^{=&}gt; We are currently looking for a local minimum

Summary on theory

- OI-FITS data
 - with errors on data, but no covariance
- model of object \Leftrightarrow model of data
- assumption of Gaussian statistics of residuals
- assumption of statistical independency of data
 - no really true in real world
- χ^2 law
 - assume fitted model is good
 - sharp statistics
 - use reduced χ^2 for comparing two models on same data
- errors on parameters
 - Cramér-Rao, gaussian statistics
 - estimated from data errors, rescaled for systematic errors
 - correlations of parameters are estimated
- Optimization
 - Local minimization
 - Need of gradients only



LITpro model fitting software for optical interferometry

Tallon-Bosc, M. Tallon, E. Thiébaut, C. Béchet,G. Mella, S. Lafrasse, O. Chesneau, A. Domiciano,G. Duvert, D. Mourard, R. Petrov, M. Vannier

CRAL, Lyon France — LAOG, Grenoble, France — Fizeau lab, Nice/Grasse, France

M.Tallon & I. Tallon-Bosc

What is LITpro?

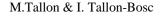
- Parametric model fitting software for interferometry
 - LITpro: Lyon Interferometric Tool prototype
 - Conceived and developed up-to-now at CRAL in Lyon
 - Graphical User Interface developed at JMMC (Jean-Marie Mariotti Center)
 - Maintained and improved by the "model-fitting" group at JMMC (several labs in France)
- Aim: "exploit the scientific potential of existing interferometers", e.g. VLTI
- Complementary to image reconstruction
 - Sparse (u,v) coverage
 - Reconstructed images identify models
 - Model fitting extracts measured quantities

Leading requirements of LITpro

- Accessible to "general users" + flexible for "advanced users"
 - Opposite needs:
 - General users want simplicity (stepping stone)
 - Advanced users want a powerful tool (pioneering work)
 - Exchanges:
 - general users $--(needs) \rightarrow advanced users$
 - general users <---(training)--- advanced users
 - Progress must benefit to everybody (share experiences)
- Concentrate on the model of the object
 - Easy implementation of new models.
 - Only need to compute the Fourier transform of the object specific intensity on given coordinates (u, v, λ, t)

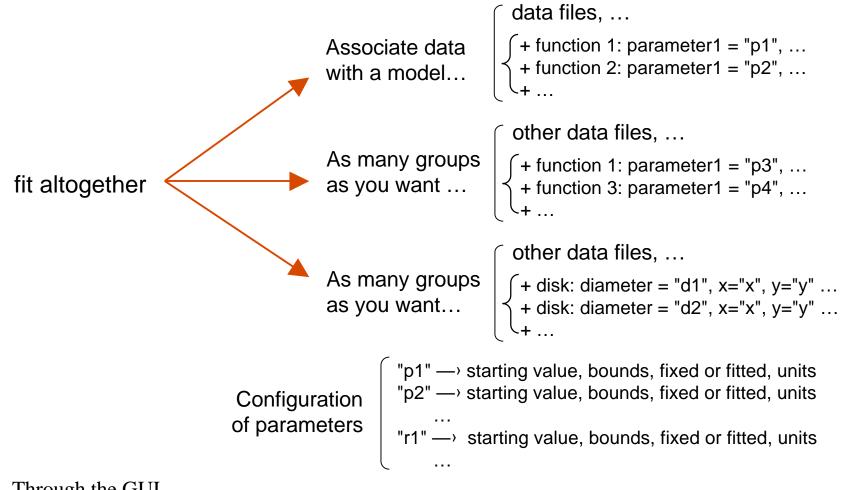
Leading requirements \Rightarrow implementation

- Accessible to astronomers + flexible for advanced users
 - flexible \Rightarrow high level language (*Yorick*)
 - easy modifications and adds in the software
 - "expert layer"
 - accessible \Rightarrow GUI
 - new abilities exposed once they are validated in the "expert" layer
- Concentrate on the model of the object
 - From Fourier transform of the object:
 - Modeled data (interferometric, spectroscopic, photometry, ...)
 - Images
 - LITpro also provides
 - Modeling builder (with GUI or filling a form)
 - Fitter "engine"
 - Tools for analysis



- Squared visibilities (VIS2)
- Complex visibilities (VISAMP, VISPHI)
- Bispectrum (T3AMP, T3PHI)
- Others
 - Spectral Energy Distribution (dispersed fringes mode)
 - Photometry (see example)
 - ...

Setting up the fitting process / principle



• Through the GUI or through a form (file editor)

Fitting process

- Levenberg-Marquardt algorithm (modified)
 - Combined with a Trust Region method
 - Bounds on the parameters
 - Partial derivatives of the model by finite differences
- More latter...
 - Search of global minimum



Implementation of the GUI

X ModelFitting V1.0.1	L1.beta 🕒 🕘 🕲 🗵							
File Edit Advanced He	lp							
New model Ctrl-N								
Load model Ctrl-L	Settings panel							
Save model Ctrl-S	Oifile list							
Quit Ctrl-Q	File[/home/mfgui/SPIE08/Obj1.fits]							
	File[/home/mfgui/SPIE08/Obj2.fits]							
	File[/home/mfgui/SPIE08/Obj1Second.fits]							
	Load oifiles							
	- Target list							
	Target[BSC1948]							
	Target[TARGET]							
	Add new target BSC1948 Remove							
	Fitter setup							
	standard							
	User info:							
	Created on Fri Jun 20 10:20:05 CEST 2008 by ModelFitting GUI rev. 1.0.11.beta							
	I can place some comments							
Run fit								

Status : New model ready for modifications

- Implemented in JAVA
 - Web service
 - Links with other services (JMMC)
 - Virtual Observatory
 - Data explorer
 - User feedback
 - ...
- GUI only tell "expert layer" (*Yorick*) what to do
- First public release: October 2009

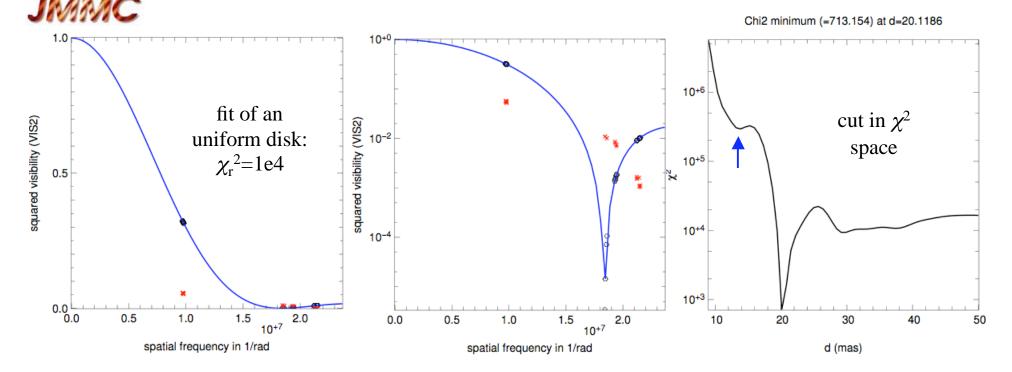
Work in progress

- LITpro
 - First public release Octobre 2009
- High in the list for near future
 - Search for global minimum of χ^2
 - Tools for multichromatic modeling (e.g. dynamics)
 - Cooperation between Image reconstruction and Model fitting

On the adventure of model fitting

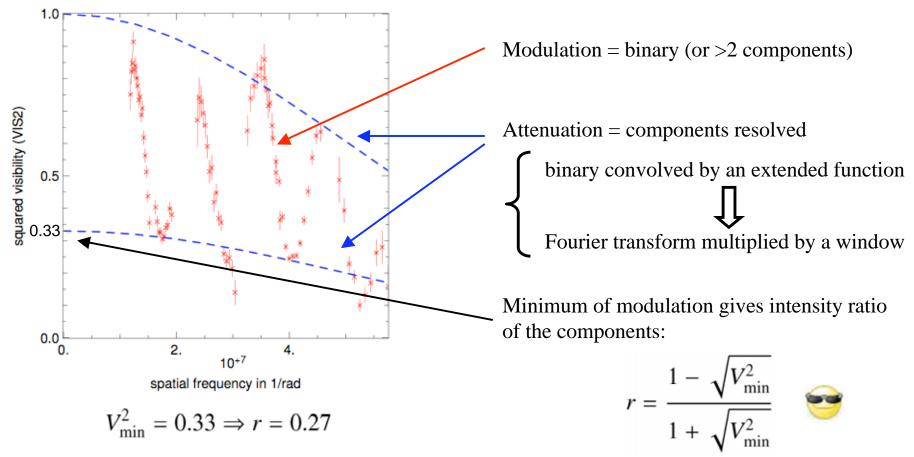
- Local minimum
 - example of an uniform disk
- Observe your data... the Guru way
- 9
 - useful for the initial guess (local minimum)
- Degeneracies
 - on the total energy
- Example of a "heterogeneous" model-fitting

Beware of local minima !



- local minima exists even for a uniform disk, depending on data
- what to do ?
 - change first guess
 - cuts in χ^2 sub-spaces
 - use bounds
 - do not forget the low frequencies (or just confirm what we already know...)

Observe your data !



- Starting from a good first guess may be decisive -

squared visibility (VIS2)

Degeneracy on total energy

fit of a binary Model of the binary 0 main component at (0,0) with intensity i1 secondary at (x,y) with intensity i2 Final values for fitted parameters and standard deviation: 0.8 i1 = 0.20152 +/- 9.95e+04 i2 = 0.9982 +/- 4.93e+05 x = mas 20.08 +/- 0.00631 mas v = 0 0.6 Chi2: initial= 7.376e+04 - final= 1983 - sigma= 14.2127 reduced Chi2: initial= 730.3 - final= 19.63 - sigma= 0.14072 Number of degrees of freedom = 101 0.4 -- Correlation matrix ---0.5 1.0 i1 i2 10^{+8} х y spatial frequency in 1/rad i1 0.0011 -0.0015 i2 0.0011 -0.0015 -0.44 0.0011 0.0011 х 1 -0.0015 -0.0015 -0.44ν

- this degeneracy does not change χ^2
- huge errors because of no curvature of $\chi^2(\mathbf{x}_{best})$ for i1+i2
- this prevents reading the values of i1 and i2

M.Tallon & I. Tallon-Bosc

Degeneracy on total energy: solution

- FAQ:
 - We could construct a normalized model !
 - Yes, but we want to combine all sorts of functions...
 - We could combine normalized functions !
 - Not always possible ! Ex: disk with constant amplitude (spot on a star)
- When total energy is not fixed by the data, we add this constraint:

$$\chi^2_{\star}(\boldsymbol{x}) = \chi^2(\boldsymbol{x}) + N_d \left(\frac{\sum_i \Delta \lambda_i \ m_i(\boldsymbol{x}, \boldsymbol{u} = 0)}{\sum_i \Delta \lambda_i} - 1\right)^2$$

This drives total energy to unity

- But the added term MUST BE ZERO at the end of the fit !
 - If not: χ^2 is changed and quantities are wrong !
- Other degeneracies in practice
 - translation of the map (unless phase reference)
 - symmetries if no phase

- ...

.

.

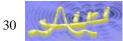
Degeneracy on total energy: solved

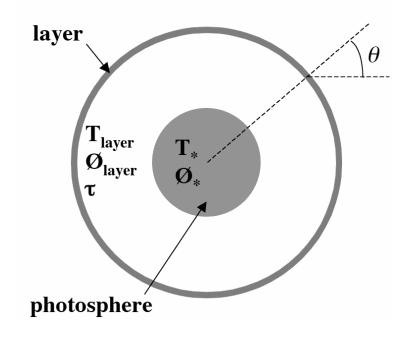
Final values for fitted parameters and standard deviation:

i1 = 0.83203 +/- 0.0812 i2 = 0.16797 +/- 0.0164 x = -6.6657 +/- 0.00441 mas y = 20.08 +/- 0.00631 mas

Chi2: initial= 7.376e+04 - final= 1983 - sigma= 14.2127 reduced Chi2: initial= 730.3 - final= 19.63 - sigma= 0.14072 Number of degrees of freedom = 101

--- Correlation matrix --i1 i2 х У i1 1 1 0.00021 0.00058 i2 1 1 -0.0011 -0.0029 x 0.00021 -0.0011 1 -0.44 0.00058 -0.0029 -0.44 v 1





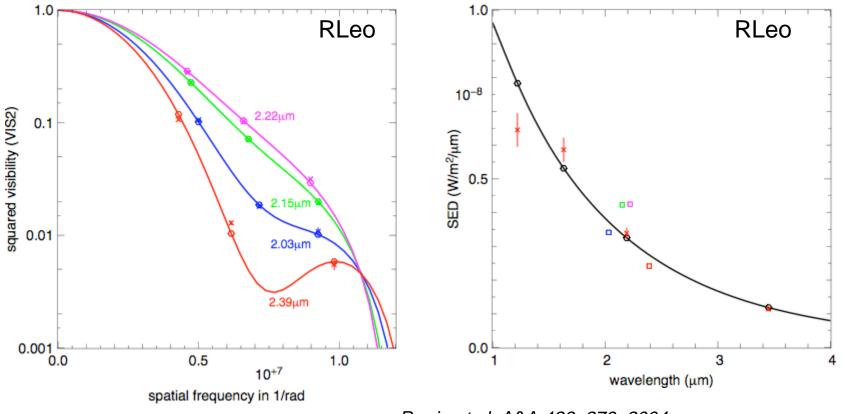
Example: chromatic model + heterogeneous data / 1

Perrin et al, A&A 426, 279, 2004

 $I(\lambda, \theta) = B(\lambda, T_{\star}) \exp(-\tau(\lambda)/\cos(\theta))$ $+B(\lambda, T_{\text{layer}}) \left[1 - \exp(-\tau(\lambda)/\cos(\theta))\right]$ for $\sin(\theta) \le \emptyset_{\star}/\emptyset_{\text{layer}}$ and: $I(\lambda, \theta) = B(\lambda, T_{\text{layer}}) \left[1 - \exp(-2\tau(\lambda)/\cos(\theta))\right]$

- Why this example in particular ?
 - Fitting procedure is difficult
 - Need to improve procedures for "general users" (accessible ?)
 - How LITpro performs ?
 - Fitting interferometric + photometric data
 - Assess how it can help the fitting process

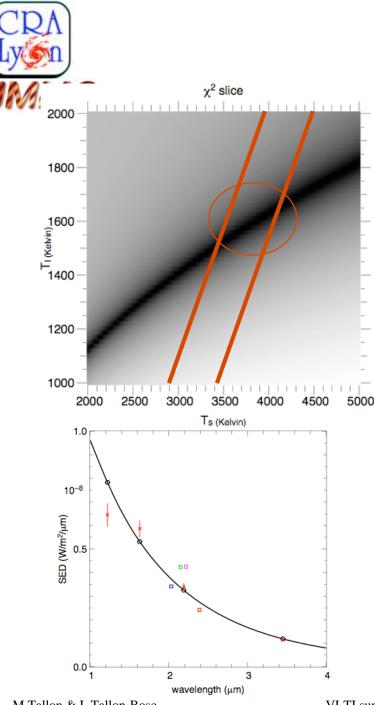
Example: chromatic model + heterogeneous data / 2



Perrin et al, A&A 426, 279, 2004

- squared visibilities : 4 sub-bands in K band (IOTA)
- magnitudes : J, H, K, L bands (Whitelock et al 2000)

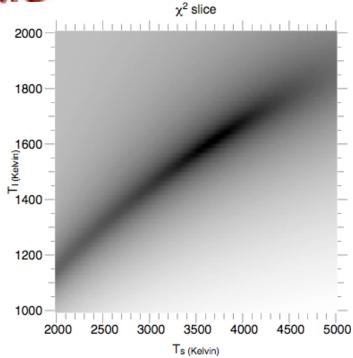
M.Tallon & I. Tallon-Bosc



Perrin et al. fitting procedure

- 1) $(\mathbf{R}_*, \mathbf{R}_L)$ from gridding
 - fit all other parameters from fixed sampled values (R_{*},R_L)
 - arbitrary initial values of other parameters
- 2) (T_*, T_L) from gridding + intersection with K photometry
 - Difficult to use the other bandwidths
- 3) Fit 4 optical depths from fixed other parameters
- 4) Compare photometry with other bandwidths: J, H, L.

Simultaneous fitting of all the data



- 1) Overall size of the object ?
 - Radius of uniform disk: 18 mas
- 2) Overall temperature ?
 - For an uniform disk: 1540K
- 3) Fit from this initial values
 - Initial values of optical depths set to zero => uniform disk

-

May be useful (and reassuring) to use physical arguments for the first guess...

Comparison of results

-					Fit with			Fit with				
Parameter	Perrin et al.		Simultaneous fit		photometry		Fit with only relative photometry,					
R_{\star} (mas)	10.94 ± 0.85		11 ± 0.13		11 ± 0.19							
$R_{\rm L}$ (mas)	25.00 ± 0.17		25.4 ± 0.16		25.4 ± 0.18			like the SED given by				
T_{\star} (K)	3856 ± 119		3694 ± 113		3778 ± 163			an optical interferometer				
$T_{\rm L}$ (K)	1598 ± 24		1613 ± 35		1681 ± 174							
$\tau_{2.03}$	1.19 ± 0.01		1 ± 0.14		0.9 ± 0.35							
$\tau_{2.15}$	0.51 ± 0.01		0.42 ± 0	.08	0.36 ± 0.17							
$\tau_{2.22}$	0.33	± 0.01	0.27 ± 0	.05	0.23 ± 0.11							
$\tau_{2.39}$	1.37	± 0.01	0.01 1.2 ± 0.13		1.08 ±	0.32						
γ	-		- 1		0.9 ± 0.2							
Correlation matrix												
		R_1	Rs_ratio	T_1	T_s	tau1	tau2	tau3	tau4			
	R_1	1	-0.66	-0.36	0.14	0.21	0.17	0.16	0.13			
Rs_	Rs_ratio		1	0.71	-0.6	-0.67	-0.67	-0.66	-0.62			
	T_1	-0.36	0.71	1	-0.74	-0.94	-0.93	-0.93	-0.92			
	T_s	0.14	-0.6	-0.74	1	0.91	0.91	0.92	0.92	_		
	tau1	0.21	-0.67	-0.94	0.91	1	0.99	0.99	0.99			
	tau2	0.17	-0.67	-0.93	0.91	0.99	1	0.99	0.99			
	tau3	0.16	-0.66	-0.93	0.92	0.99	0.99	1	0.99			
	tau4	0.13	-0.62	-0.92	0.92	0.99	0.99	0.99	1			
										Winds		

VLTI summer school — Porquerolles — April 17-28, 2010

35

Conclusions on the adventure

- Local minima even with uniform disk
 - cuts in χ^2 space
 - change first guess
 - check χ_r^2 if variations are significant
- Model-fitting algorithm has no brain
 - use yours: look carefully at the data: (u,v) coverage, baselines
- Degeneracies may appear
 - check covariances of parameters
 - check ON/OFF normalization of total energy
- Quality of the fit / model
 - chi2
 - understand errors and correlations on parameters
 - various plots

Ready for the practice ?

M.Tallon & I. Tallon-Bosc

VLTI summer school — Porquerolles — April 17-28, 2010

Your road map: 4 exercises

- 1. Fit of a simple model on one file (Arcturus)
 - easy fits, easy problem
 - explore the software
- 2. Fit with parameter sharing on several files (Arcturus)
 - more evolved model
- 3. Fit with degeneracies (binary)
 - explain them !
- 4. Fit on AMBER data
 - you are alone (almost)

