

aboratoire d'Études Spatiales et d'Instrumentation en Astrophysic

Astrometry and high-resolution imaging of the Galactic Center

Guy Perrin Pierre Kervella

Friends spotting us from outside the Galaxy

Very Long Baseline Interferometry

The size of Sgr A* at radio wavelengths

Law due to scattering by hot ionized gas.

Shen et al. (2005)

The mass of Sgr A*

A bit less than 3 million solar masses until recently.

The orbit of S_2 measured with NACO

Schödel et al. (2002)

Year: 1995.0

The Acceleration of Stars Orbiting the Milky Way's Central Black Hole

Data: Andrea Ghez, Jessica Lu (UCLA) Visualization: Dinoj Surendran, Randy Landsberg, Mark SubbaRao (UChicago / Adler / KICP)

UCLA/Keck Galactic Center Group

Orbits of nearby stars measured with SINFONI

Eisenhauer et al. (2005)

A blinking dark spot !

Genzel et al. (2003)

Luminosity of Sgr A* vs. time

Genzel et al. (2003)

Stellar black holes

Cassiopee A

Cygnus X-I

Black hole is formed by accretion of the mass lost by the companion (intermediate and low-mass stars)

Black hole is formed by implosion of star during supernova collapse (massive stars)

Supermassive black holes (10⁶ - 10⁹ M_{Sun})

What is the apparent size of a black hole ?

- Stellar black holes tiny: R_{BH} ~ few km at I parsec : 10⁻¹⁰ arcsec (smaller than a human cell seen from the Moon)
- Supermassive black holes huge: R_{BH} ~ few 10⁶-10⁹ km but very far away galaxies

Sgr A* is the largest one angular size-wise Schwarzshild radius: $10 \ \mu as = 1 \in coin on the Moon.$

The specifications of GRAVITY

- Wavefront correction (SR=35% at 30° from zenith) at K on a K=7 magnitude star (SR=10% on a K=10 star at zenith).
- OPD stabilization $(\lambda/10)$ on a K=10 star.
- 100 s exposure times to reach K=17 in wide band.
- Closure phase or phase reference imaging (quick and accurate) with 3 mas résolution with the UTs and 2 mas with the ATs.
- Narrow angle astrometry (2") with 10 µas accuracy in 5 minutes (primary K=10, secondary K=15 with the UTs).
- R=22, 500, 4000

VLTI

Principle of the instrument

Reference sources for GRAVITY near Sgr A*

Fibered delay line

Fiber wrapped on a piezo cylinder.

Applying a voltage changes the fiber length.

Le Verre Fluoré prototype

Imaging of the closest stars orbiting Sgr A*

Reconstructed image after a one night observation:

Imaging of the closest stars orbiting Sgr A*

Orbits after 15 months of observing:

Detection of the pericenter shift in the Schwarzschild metric

Narrow angle astrometry

Distance between interferogram:

 $\Delta opd = B.\Delta S$

Hence:

 $\Delta S = \Delta opd/B$

A 5 nm accuracy on Δopd with a 100 m baseline yields an accuracy of 10 µas on ΔS .

Motion of flares around Sgr A*

The hot spot as a test particle to explore space-time in a strong field

Scale ~ I R_{BH} = 10 µas accuracy Time scale = 10 min

Hot spot model on the last stable orbit.

Space-time around a black hole

But it looks different around a black hole

Mesuring the last stable orbit with GRAVITY

Black hole outburst Orbit inclination = 70° Schwarzschild black hole (J=0). Innermost stable circular orbit. Distance to observer = 50 R_{BH}

Detection of the hot spot motion on the Innermost stable circular orbit

- Full GRAVITY simulation with *realistic* noises
- 100 s exposure time for individual measurements

Red: hot spot in motion Blue: still hot spot

Vincent et al. (2010)

Detection of the hot spot motion on the Innermost stable circular orbit

Alternative scenarios will induce motions even easier to detect (10 μ as min⁻¹).

Magnetic reconnection at the base of jets Falcke & Markoff (2000) Star-disk interaction Nayakshin et al. (2004)

GRAVITY schedule

- December 2009: PDR
- \geq July 2010: δ PDR for adaptive optics
- Mid-2011: Final Design Review
- 2011 2013: Construction
- Mid-2013: first light
- \geq 2014: in operation