(c) UCLA Department of Physics and Astronomy Jun 05 08 03:58:48

CHARA array

2010 VLTI School Porquerolles, France

19/04/2010

Nathalie Thureau School of Physics and Astronomy University of St Andrews

CHARA array and BC's

- Operated by Georgia State University
- Mount Wilson, California, USA
- Latitude 34 13 33
- Longitude -118 03 26
- Y-shaped array
- 6 x 1m-telescopes
- Baselines 34-330m

Array overview

H.A. McAlister, An Overview of the CHARA Array

CHARA baselines

telescopes	east	north	height	baseline
S2-S1	-5.75	33.58	0.64	34.08
E2-E1	-54.97	-36.25	3.08	65.92
W2-W1	105.99	-16.98	11.27	107.93
W2-E2	-139.48	-70.37	3.24	156.26
W2-S2	-63.33	165.76	-0.19	177.45
W2-S1	-69.08	199.35	0.45	210.98
W2-E1	-194.45	-106.62	6.32	221.85
E2-S2	76.15	236.14	3.43	248.13
W1-S2	-169.32	182.74	-11.46	249.39
W1-E2	-245.47	-53.39	-8.03	251.34
W1-S1	-175.07	216.32	-10.82	278.5
E2-S1	70.40	269.72	-2.79	278.77
E1-S2	131.12	272.38	-6.51	302.37
W1-E1	-300.44	-89.64	-4.95	313.57
E1-S1	125.37	305.96	-5.87	330.71

CHARA angular resolution

$$\theta = \frac{\lambda}{B}$$

- B = 330m, $\theta(\lambda=0.5\mu m) = 0.3mas$, $\theta(\lambda=2.2\mu m) = 1.4mas$
- B = 34m, $\theta(\lambda=0.5\mu m)$ = 3.0mas, $\theta(\lambda=2.2\mu m)$ = 13.4mas
- High and low angular resolution equally important for image reconstruction

Telescopes

- Alt-Az mount
- Altitude limit 25 degrees
- Tip-tilt M2
- Tracking and tip-tilt correction at 470-800nm (up to V=12)

Beam relay

Vacuum tubes feed light from each telescope to the central laboratory

Optical path compensation PoPs

- Fixed delay intervals of 0, 36.6, 73.2, 109.7 and 143.1m
- In the vacuum

- Continuously variable delay
- Not in the vacuum system
- Cat's eye arrangement
- 46m precision aligned rails
- Tracking RMS <20nm, typical 10nm</p>

PoP delay range – 2 telescopes

PoP delay range – 6 telescopes

Beam combining laboratory

Beam combining laboratory

CHARA classic - CLIMB

CHARA classic - CLIMB

CHARA classic

- Two beams
- J,H, K
- Predicted magnitude limit K=8.5
- Current record for finding fringes is K=7.767
- Light detected by Rockwell PICNIC 256x256 array part of NIRO (Near Infra-Red Observer)
- Classic: 2 output beams 1px or 2x2px area

- Three beam combination
- J, H and K operation
- Three visibility amplitude measurement
- One closure phase measurement
- CLIMB-1 currently being tested
- In the future: Dual-CLIMB system
- Both on single target
- One in parallel with one of the other BCs
- Updated NIRO accommodate dual CLIMB 6x1px beams

FLUOR Fiber Linked Unit for Optical Recombination

- Single mode fibers combiner
- Demonstrator for fiber spatial filtering for accurate calibration of stellar interferometry data
- Photometry channels calibrate the interferograms against unbalanced intensities
- Works in K-band (2 2.4 μm)
- Precision on visibility measurements (<1%)</p>

FLUOR – JOUFLU Rejuvenation and upgrading of FLUOR

- Increase dynamic from 300 to higher as possible
- Spectral resolution
- Fringe tracking (CHAMP)
- Connect with VEGA
- Simultaneous multicolour observations with VEGA
- Automatisation of alignment procedure
- Remote mode
- New control system

MIRC Michigan Infra-Red Combiner

MIRC infrared table

- Combines 4 telescopes at present
- Works at H (1.65 micron) and K (2.2 micron)
- Demonstrated sensitivity: H~ 4.0, K~3.5
- Spectral resolution: R~ 44, 150, or 400
- Calibration: V2 error ~ 10%-20%; CP error ~ 2°-5°(for 6min obs.)
- New Photometric Channels seems to improve V2 error: ~ 5%
- Fringe tracker CHAMP expected to finish September 2010
- MIRC 6-telescope upgrade in 2010-2011

CHAMP CHARA-Michigan Phasetracker

- Will detect and correct pathlength fluctuations
 - "adaptive optics" for an interferometer
 - "freezes" the fringes to allow long integrations
- Operate in J, H, or K (1 to 2.4 microns)
- Separate fringe tracker from science combiners
- New instrument will improve sensitivity x10
 - enable imaging at visible wavelengths
 - extend sensitivity to image Young Stellar Objects
- Optimised for sensitivity: H=7-8
- Fringe phase measured simultaneously on 6 baselines
- up to 500Hz
- Commissioned one baseline in August 2009
- all 6 to be commissioned in summer 2010

PAVO Precision Astronomical Visible Observations

- Relay optics (Classic optical table)
- PAVO optics and detector

PAVO layout

M. Ireland, PAVO wiki

- Design for high sensitivity
- 3 beam combiner V² and closure phase measurements
- λ = 620-950nm, R~50
- Pupil-plane fringes
- IFU (Integral Field Unit) turns fringes into data cube = > one image of the fringes at each λ
- Group delay tracking

VEGA Visible spEctroGraph and polArimeter

VEGA spectrograph

- 2 to 4 beam combiner
- 3T/4T modes -> V² and closure phase measurements
- two photon counting detectors looking at two different spectral bands simultaneously
- optical design allows simultaneous recording of data, in medium spectral resolution, of the spectral region around Hα with the red detector and around Hβ with the blue detector
- a polarimeter can be placed just before the spectrograph grating

Example of VEGA data

γ Cas results around the H α line

BC's summary

Instruments	Faintest magnitude reached	Wavelength λ [μm]	R (λ/Δλ)	Visibility accuracy	Closure phase Accuracy [°]
Classic	7.5	1.50 - 2.50	N/A	5-10%	N/A
CLIMB		1.50 - 2.50			
FLUOR	6.0	2.20	N/A	1%	N/A
MIRC	4.5	1.50 - 2.40	40, 150, 400	≳10%	0.1-0.5
PAVO	8.2	0.66 - 0.95	40	2%	
VEGA	7.5 (LR) 5.5 (HR)	0.45 - 0.90	1700, 6000, 30000	3%	

CHARA science

CHARA classic Separate fringe packet observations

HD 157482 (V819 Her), David O'Brien

Classic Young Stellar Objects at CHARA

R. Milan-Gabet, CHARA year 6 meeting

Classic Young Stellar Objects at CHARA

A. Tannirkulam, 2008

R. Milan-Gabet, CHARA year 6 meeting

FLUOR High accuracy V² science

Polaris - very low amplitude Cepheid

- Detection of the hot dust (1000-1500K) in inner debris discs
- Survey of ~40 bright MS stars (K < 4) with known, cold debris discs or not</p>

V. Coudé du Foresto, CHARA year 6 meeting

FLUOR Circumstellar material in the Vega inner system

Fit of a uniform stellar disk + circumstellar disk

43

MIRC The "β Lyrae" system:

- β Lyrae: interacting and eclipsing binary (period 12.9 days)
- B6-8 II donor + B gainer in a thick disk
- V = 3.52, H = 3.35; distance ~300pc

CHARA-MIRC Image

Phase = 0.132

CHARA-MIRC Image

Phase = 0.210

Phase = 0.438

Phase = 0.438

Zhao et al. 2008

MIRC Epsilon Aurigae

http://spitzer.caltech.edu/news/1036-ssc2010-01-Centuries-Old-Star-Mystery-Coming-to-a-Close

MIRC uv coverage 2 configs per night (repeated 3 nights)

Credits: John Monnier

MIRC CP pre-eclipse

Credits: Brian Kloppenborg

MIRC Visibility and CP in eclipse

Credits: Brian

University of Michigan 2009 Epsilon Aurigae Eclipse

Credits: John Monnier

Epsilon Aurigae Eclipse (CHARA-MIRC)

- Adopting Hipparcos 625 pc distance
 - Semi-major axis ellipse 0.76±0.02 AU
 - Observed motion of disc 0.43±0.08 AU which implies V = 25.10±4.65 km.s⁻¹ with respect to the F star
- Using spectroscopic orbit parameters and assuming i = 88±2° the translational velocity for the F-star is 15.42±0.42 km.s⁻¹ relative to the centre of mass
- After subtracting the F-star's motion V_{disc} = 9.68±4.67 km.s⁻¹ relative to the centre of mass.

- fundamental stellar parameters
 - angular diameter with VEGA/CHARA with an accuracy is better than 2%
 - distance to cepheids
 - refine the theory of single-star formation and constrain possible scenarios of double star formation
 - geometrical structure of more evolved and interacting binaries such as disks, jets
- stellar activity
 - rotation
 - surface structures
 - polarisation
 - pulsation
- circumstellar environment studies
 - envelope of Be stars
 - closest Wolf Rayet

$VEGA \\ The \ H\alpha \ line \ forming \ regions \ of \ Deneb \\ \end{array}$

O. Chesneau, Time, spatial, and spectral resolution of the H α line-formation region of Deneb and Rigel with the VEGA/CHARA interferometer

$\label{eq:VEGA} VEGA \\ The \ H\alpha \ line \ forming \ regions \ of \ Deneb \\$

O. Chesneau, Time, spatial, and spectral resolution of the Hα line-formation region of Deneb and Rigel with the VEGA/CHARA interferometer

- A strong phase signal changing with baseline direction is observed across the Hα line, indicating a significant asymmetry of the line forming region at this time.
- The Sill 6371 line is marginally resolved by VEGA/ CHARA, but no phase signal is observed
- The Hα line forming region appears to be asymmetrical and time variable

Useful links

- http://www.chara.gsu.edu/CHARA/
- http://www.lesia.obspm.fr/astro/interfero/pages/fluor.html
- http://www.astro.lsa.umich.edu/~monnier/Research.html
- http://pavo.wikispaces.com/
- http://www-g.oca.eu/gemini/projets/vega/en/news/index.htm