Inner regions of young stellar objects revealed by optical long baseline interferometry

Fabien Malbet

Laboratoire d'Astrophysique de Grenoble

University of Grenoble / CNRS

VLTI Summer School - Porquerolles 21 April 2010

We start «seeing» disks with milli-arcsec resolution !!

Epsilon Aurigae Eclipse (CHARA-MIRC)

Kloppendorf et al. (2010)

Renard et al. (2010)

Outline

Introduction

- Physical conditions in the inner regions of YSOs
- Need for very high angular resolution
- Physical processes

Infrared interferometry

- Principles and observables
- Instruments available for inner regions studies
- Elements of bibliography

Inner disk physics

- Sizes of circumstellar structures
- Constraints on disk structure (T, z,...)
- Dust mineralogy
- Gas/dust connection
- Debris disks

Other AU-scale phenomena

- Outflows and winds
- Magnetosphere
- Binaries and multiple systems

Future prospects

INTRODUCTION

- Formation of stars, disks and planets
- Physical conditions in the inner regions of YSOs
- Need for very high angular resolution
- Physical processes

Formation of stars, disks and planets

Formation of stars, disks and planets

Formation of stars, disks and planets

Physical conditions in the close environment of young stellar objects

Physical phenomena

- Keplerian accretion disk: gas + dust
- Stars from K to B spectral types (4000K to 10000K)
- Strong outflowing wind
- Companions
- Magnetophere
- Protoplanets

Physical conditions

- Radius ranging from 0.1 AU to 10 AU
- Temperature ranging from 150 K to 4000 K
- Velocity ranging from 10 km/s to few 100 km/s

At 150 pc (Taurus), this corresponds to : $1\mu m \le \lambda \le 20\mu m$ and spatial scales between 0.5 et 70 mas

Instrumental requirements

Wavelength domain

Temperature ranges $\rightarrow \lambda \sim 1$ to 20 µm:

Angular resolution

Spatial scales

1.22 λ/D	0.1 AU	1AU	5AU	10AU
75pc	1.5mas	15mas	70mas	150mas
150pc	0.7mas	7mas	30mas	70mas
450pc	0.2mas	2mas	10mas	20mas

Instrumental requirements

Wavelength domain

Temperature ranges $\rightarrow \lambda \sim 1$ to 20 µm:

Angular resolution

Spatial scales

1.22 λ/D	0.1 AU	1AU	5AUiqi	10AU
75pc	1.5mas	15mas	70mas	escope
150pc	0.7mas	ricias Eron	30mas	tivenas Opt.
450pc	0.2mas	2mas ^{ne} t	10mas	20mas Cs

VLTI Summer school 2010 - Inner regions of YSOs revealed by interferometry - F. Malbet

VLTI Summer school 2010 - Inner regions of YSOs revealed by interferometry - F. Malbet

Infrared and visible Interferometry

- Principles and observables
- Instruments available for YSO studies
- Elements of bibliography on YSO science results

Basics of optical interferometry

Basics of optical interferometry

Spatial coherence

Zernicke-van Cittert theorem

Visibility = Fourier transform of the brightness spatial distribution

Visibilities

Uniform disk

Binary with unresolved components

Binary with resolved component

Facility	Instrument	Wavelength (microns)		ŧ tel.	Tel. Diam. (m)	Baseline (m)				
	Existing facilities									
ΡΤΙ	V ²	H, K		3	0.4	80-110				
ΙΟΤΑ	V², CP	H, K	3		0.4	5-38				
ISI	Heterodyne	11	2/3		1.65	4-70				
	V ²	K, L / spe <mark>ct</mark> ral		2	10	80				
N I	nulling	N		Z	10	00				
	AMBER: V ² , CP	1-2.5 / spectral	3	4 (0)	8.2	40-130				
VLII	MIDI: V², V	8-13 / spectral	2	4 (8)	1.8	8-200				
CHARA	V ² , CP, Imaging	1-2.5 (spectral)	2	/4 (6)	1	50-350				
		Future faci	litie	S						
LBT	V², nulling	1-12 µm		2	8.4	6-23				
MROI	V ² , CP, imaging	V, NIR	3/	6 (10)	1.4	7.5-340				

Facility	Instrument	Wavelength (microns)		ŧ tel.	Tel. Diam. (m)	Baseline (m)				
	Existing facilities									
PTI	V ²	H, K		3	0.4	80-110				
IOTA	V ² , CP	H, K		3	0.4	5-38				
ISI	Heterodyne	11	11 2		1.65	4-70				
	V ²	K, L / spe <mark>ct</mark> ral	2		10	80				
Γ λ Ι	nulling	N			10	80				
	AMBER: V ² , CP	1-2.5 / spectral	3		8.2	40-130				
VLII	MIDI: V², V	8-13 / spectral	2	4 (8)	1.8	8-200				
CHARA	V ² , CP, Imaging	1-2.5 (spectral)	2	/4 (6)	1	50-350				
		Future faci	litie	S						
LBT	V², nulling	1-12 µm		2	8.4	6-23				
MROI	V ² , CP, imaging	V, NIR	3/	6 (10)	1.4	7.5-340				

Facility	Instrument	Wavelength (microns)		tel.	Tel. Diam. (m)	Baseline (m)				
	Existing facilities									
PTI	V2	H, K		3	0.4	80-110-				
IOTA Sma	V ² , CP	H, K		3	0.4	5-38				
ISI	Heterodyne	11		2/3	1.65	4-70				
	V ²	K, L / spe <mark>ctral</mark>	2		10	90				
N I	nulling	N			10	00				
	AMBER: V ² , CP	1-2.5 / spectral	3	4 (0)	8.2	40-130				
VLII	MIDI: V², V	8-13 / spectral	2	4 (8)	1.8	8-200				
CHARA	V ² , CP, Imaging	1-2.5 (spectral)	2	/4 (6)	1	50-350				
		Future faci	litie	S						
LBT	V², nulling	1-12 µm		2	8.4	6-23				
MROI	V ² , CP, imaging	V, NIR	3/	6 (10)	1.4	7.5-340				

Facility	Instrument	Wavelength (microns)	# tel.	Tel. Diam. (m)	Baseline (m)					
	Existing facilities									
PTI	V ²	H, K	3	0.4	80-110-					
IOTA	V ² , CP	H, K	3	0.4	5-38					
ISI	Heterodyne	11	2/3	1.65	4-70					
	V ²	K, L / spe <mark>ct</mark> ral	2	10	20					
N I	nulling	N	2	10	00					
	AMBER: V ² , CP	1-2.5 / spectral	3	8.2	40-130					
VLII	MIDI: V², V	8-13 / spectral	2 4 (8)	1.8	8-200					
CHARA	V ² , CP, Imaging	1-2.5 (spectral)	2/4 (6)	1	50-350					
		Future faci	lities							
LBT	V², nulling	1-12 µm	2	8.4	6-23					
MROI	V ² , CP, imaging	V, NIR	3/6 (10)	1.4	7.5-340					

Facility	Instrument	Wavelength (microns)	# tel.	Tel. Diam. (m)	Baseline (m)				
Existing facilities									
PTI	V ²	H, K	3	0.4	80-110				
IOTA	V ² , CP	H, K	3	0.4	5-38				
ISI	Heterodyne	11	2/3	1.65	4-70				
	V ²	K, L / spectral	2	10	80				
	nulling	N Spectral	L	10	00				
	AMBER: V ² , CP	1-2resolution	3	8.2	40-130				
VLII	MIDI: V ² , V	8-13 / spectral	2 4 (8)	1.8	8-200				
CHARA	V ² , CP, Imaging	1-2.5 (spectral)	2/4 (6)	1	50-350				
		Future faci	lities						
LBT	V², nulling	1-12 µm	2	8.4	6-23				
MROI	V ² , CP, imaging	V, NIR	3/6 (10)	1.4	7.5-340				

Facility	Instrument	Wavelength (microns)	# tel.	Tel. Diam. (m)	Baseline (m)					
	Existing facilities									
PTI	V ²	H, K	3	0.4	80-110-					
IOTA	V ² , CP	H, K	3	0.4	5-38					
ISI	Heterodyne	11	2/3	1.65	4-70					
	V ²	K, L / spe <mark>ct</mark> ral	2	10	80					
N I	nulling	N	2	10	00					
	AMBER: V ² , CP	1-2.5 / spectral	3 5	8.2	40-130					
VLII	MIDI: V², V	8-13 / spectral		1.8	8-200					
CHARA	V ² , CP, Imaging	1-2.5 (spectral)	2/4 – (6)	1	50-350					
		Future faci	lities							
LBT	V², nulling	1-12 µm	2	8.4	6-23					
MROI	V ² , CP, imaging	V, NIR	3/6 (10)	1.4	7.5-340					

Interferometry publication OLBIN database

 Quick index for papers:
 Pre-2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | Preprints

 Search Publication Database :
 Toggle Tag Search

Bibliography in Stellar Interferometry in 2010

Catalogs | Review papers | Astrophysical results | Theory and predictions | Instrumentation | Related papers |

Catalogs

 Target star catalogue for Darwin: Nearby Stellar sample f Kaltenegger L., Eiroa C., Fridlund C. V. M.
 2010 - Astrophysics and Space Science, Volume 326, Issue .

Review papers

Astrophysical results

 Phase closure nulling of HD 59717 with AMBER/VLTI. Detection of the close faint companion Duvert G., Chelli A., Malbet F., Kern P.

VLTI Summer school 2010 - Inner regions of YSOs revealed by interferometry - F. Malbet

http://olbin.jpl.nasa.gov

Young stellar objects and debris disks in general interferometry

Total publications

Census of results

# Name	Туре	Instrument	Band	Spect. Resol.	Observable	References
1 FU Ori	FUOr	PTI, IOTA, MIDI	H, K, N	BB, LR	V ²	01, 15, 23
2 AB Aur	HAeBe	IOTA, PTI, CHARA, MIDI	H. K. N	BB. LR	V ² . CP	02. 04. 06. 10. 21. 22. 27. 39. 46. 49
3 T Tau N	TTS	PTI, MIDI	K. N	BB. LR	V ²	03. 51
4 SU Aur	TTS	PTI	ĸ	BB	V ²	03
5 MWC 147	HAeBe	IOTA PTI AMBER MIDI	HKN	BBIR	V ²	03 04 08 38
6 V380 Ori	HAeBe	IOTA	H	BB	V ²	04
7 MWC 166	HAeBe	IOTA	н	BB	V ² CP	04 22
8 Omera Ori	HAeBe	IOTA	нк	BB	V ²	04,22
9 MWC 863	HAeBe	IOTA KI	нк	BBIR	V ² CP	04 22 47
10 MWC 361	HAeBe	ΙΟΤΑ	нк	BB	V ² CP	04 22
11 V1685 Cvg	HAcBe		н к	BBID	V , 01	04,06,10,14,27
12 MWC 1080	HAeBe		нк	BB I R	V ² CP	04 06 10 22 27 47
12 MWC 1000	HACEC			DD, LIX	V ² CD	04, 08, 10, 22, 27, 47
14 1/1205 Ag	HAebe			DD, IVIN, LN	V, CF	04, 00, 10, 22, 23, 42, 44
14 V 1295 AQI	HAebe			DD, LK		04, 00, 10, 22, 27, 47
16 VE04 Coo M	HAEBE		Π, K, N	DD, LR	V, CF	04, 00, 09, 22
17 MMC 075	HAebe		I, K, L	DD, LK		04,00,02
17 MWC 275, H	плеве	IOTA, MIDI, KI, CHARA, AMBER	H, K, N	BB, LR, MR	V ² , CP	04, 09, 11, 14, 22, 39, 44, 46, 47, 56
	плеве		H, K	BB, LK	V-	04, 10, 27
19 LKHa 101	наеве		N	BB	V ²	00 40 07 47
20 VV Ser	НАеВе	PTI, KI	K	BB, LR	V ²	00, 10, 27, 47
21 AS 442	НАеВе	PII, KI	K	BB, LR	V ²	06, 10, 14, 27, 47
22 DG Tau	TTS	KI	K	BB, LR	V ²	07, 17, 47
23 V1057 Cyg	FUOr	PTI, KI	K	BB	V ²	08, 20
24 HD 142527	HAeBe	MIDI	N	LR	V ²	09, 11
25 HD 144432	HAeBe	MIDI, KI, IOTA	N, K, H	BB, LR	V², CP	09, 11, 14, 22, 47
26 HD 100546	HAeBe	MIDI, AMBER	K, N	LR	V ²	09, 57
27 HD 179218	HAeBe	MIDI	N	LR	V ²	09, 45
28 KK OPh	HAeBe	MIDI	N	LR	V ²	09
29 51 Oph	HAeBe	MIDI, AMBER, KI	K, N	LR, MR	V ² , nuller	09, 43, 54
30 CQ Tau	HAeBe	PTI	К	BB, LR	V ²	10, 27
31 MWC 120	HAeBe	PTI	К	BB, LR	V ²	10, 27
32 HD 158352	HAeBe	PTI	К	BB	V²	10
33 MWC 480	HAeBe	PTI, KI, IOTA	K, H	BB, LR, MR	V ² , CP	10, 22, 27, 29, 47
34 MWC 758	HAeBe	PTI, AMBER, KI	K. H	BB. LR	V ² . CP	10, 14, 27, 40, 47
35 HD 141569	HAeBe	PTI, KI	ĸ	BB. LR	V ²	10, 14, 47
36 RY Tau	TTS	PTI, MIDI, KI	K. N	BB. LR	V ² . CP	12, 22, 36, 47, 58
37 DR Tau	TTS	PTI MIDI	KN	BB I R	V^2	12 50
38 AS 207A	TTS	KI	K	BB	V ²	13
39 V2508 Oph	TTS	KI	K	BB	V ²	13
40 AS 205A	TTS	KI	К	BBIR	V ²	13 47
41 PX Vul	TTS	KI	к	BB	V^2	13
42 UX Ori	HAeBe	KI	K	BB	V^2	14
43 7CMa-NW/	HAeRo	KI AMBER	K	BBIR	$\sqrt{2}$	14 37
44 HD 58647	HAeRo	KI	K	BB	$\sqrt{2}$	14
45 HD 146666	HAeBe	KI	K	BB	V \/2	14
46 HD 140000	HACDO HACDO		K	DD	V \/2	14
40 10 143000	HACDO		K	DD	V \/2	14
47 10 150193	ПАеве		K	DD	V=	14
40 VVV VUI	плеве		K	DD	V-	14
49 AS 4//	наеве	KI KI	K	BB	V-	14
50 HD 98800B	TIS	KI	K	BB	V ²	10, 34
51 BP Tau	TIS	KI	K	BB	V ²	1/
52 DI Tau	TIS	KI	ĸ	BB	V ²	1/
53 GM Aur	ITS	KI	K	BB	V ²	17,58
54 LkCa15	ITS	KI	K	BB	V ²	17, 58
55 RW Aur A	TTS	KI	K	BBIR	V ²	17 32 47

# Name	Type	Instrument	Band	Spect Resol	Observables	Beferences
56 V/830 Tau	TTS	KI	K	BB		17
50 V050 Tau	TTC		KN		V \/2	10 21
57 TW Hya	FUOr		K, N	DD, LK	V \/2	20
50 7CMa SE	EUOr	KI	K	DD	V \/2	20
09 201018-3E	FUOr	MIDI	N		V \/2	20
61 HD 5000		MIDI	IN N		V \/2	19
62 HD 45677					V V ² CD	24
62 MMC 242		IOTA	п	DD	V, CF	22
64 UD 104227	HACDO		п К		V, CF	22
65 Thota1 Ori C	LINC	IOTA		DD		20, 44
66 Hop 2 1101		MIDI				20
67 CL Tau	TTC		IN K		V \/2	30
	TTC		ĸ	DD	V \/2	22
60 DK Tau A	TTC	NI KI	ĸ	DD	V ⁻	32
59 DK Tau B	TTC	KI	ĸ	BB	V ²	32
70 AA Iau	115	NI KI	ĸ	DD	V- 1/2	32
71 RVV AUF B	115	KI	ĸ	BB	V ²	32
72 V1002 Sco	115	KI	ĸ	BB	V ²	32
73 V 1331 Cyg	115	KI	ĸ	BB	V ²	32
74 DI Cep	115	KI	ĸ	BB	V ²	32
75 BM And	TIS	KI	K	BB	V ²	32
76 V773 Tau A	115	KI	K	BB	V ²	33
77 W33A	HMS	MIDI	N	LR	V ²	35
78 Harro 1-14c	TTS	KI	K	BB	V ²	41
79 HD 98922	HAeBe	AMBER	K	MR	V ²	44
80 V921 Sco	HAeBe	AMBER	K	MR	V ²	44
81 HD 101412	HAeBe	MIDI	N	LR	V ²	45
82 HD 135344	HAeBe	MIDI	N	LR	V ²	45
83 HD 142666	HAeBe	KI	K	LR	V ²	47
84 DQ Tau	TTS	KI	K	BB	V ²	48
85 GW Ori	TTS	MIDI	N	LR	V ²	50
86 HD 72106B	TTS	MIDI	N	LR	V ²	50
87 RU Lup	TTS	MIDI	N	LR	V ²	50
88 HBC 639	TTS	MIDI	N	LR	V ²	50
89 S CrA N	TTS	MIDI	N	LR	V ²	50
90 S CrA S	TTS	MIDI	N	LR	V ²	50
91 T Tau S	TTS	MIDI	N	LR	V ²	51
92 M8E-IR	HMS	MIDI	N	LR	V ²	53
93 R CrA	HAeBe	AMBER	К, Н	LR	V², CP	55
94 DM Tau	TTS	KI	K	BB	V ²	58
95 UX Tau A	TTS	KI	K	BB	V ²	58
1 Vega	Debris	CHARA/FLU	K	BB	V ²	d01
2 T Ceti	Debris	CHARA/FLU	K	BB	V ²	d02
3εEri	Debris	CHARA/FLU	K	BB	V ²	d02
4 β UMa	Debris	CHARA/FLU	K	BB	V ²	d03
5 η Crv	Debris	CHARA/FLU	K	BB	V ²	d03
6 σ Βοο	Debris	CHARA/FLU	K	BB	V ²	d03
7 α CrB	Debris	CHARA/FLU	K	BB	V ²	d03
8 γ Oph	Debris	CHARA/FLU	K	BB	V ²	d03
9ζAql	Debris	CHARA/FLU	K	BB	V ²	d03
10 α PsA, Fomalha	Debris	VLTI/AMBEF	K	BB, MR	DP, V ²	d04, d06
11 e Corvi	Debris	VLTI/MIDI	N	LR	V ²	d05
12 HD 69830	Debris	VLTI/MIDI	N	LR	V ²	d05
12 c Aur	Debrie		11	ID	imaga	407

 \rightarrow 95 young stellar objects observed and published to date, \rightarrow 13 debris disks observed and published to date, \rightarrow 58+7 refereed articles (65 total) in a decade

01	Malbet, Berger, Colavita et al.	1998	ApJ, 507, L149	FU Orionis Resolved by Infrared Long-Baseline Interferometry at a 2 AU Scale	1
02	Millan-Gabet, Schloerb, Traub et al.	1999	ApJ, 513, L131	Sub-Astronomical Unit Structure of the Near-Infrared Emission from AB Aurigae	1
03	Akeson, Ciardi, van Belle et al.	2000	ApJ, 543, 313	Infrared Interferometric Observations of Young Stellar Objects	3
04	Millan-Gabet, Schloerb & Traub	2001	ApJ, 546, 358	Spatially Resolved Circumstellar Structure of Herbig AE/BE Stars in the Near-Infrared	15
05	Tuthill, Monnier, Danchi et al.	2002	ApJ, 577, 826	Imaging the Disk around the Luminous Young Star LkHa 101 with Infrared Interferometry	1
06	Eisner, Lane, Akeson et al.	2003	ApJ, 588, 360	Near-Infrared Interferometric Measurements of Herbig Ae/Be Stars	5
07	Colavita, Akeson, Wizinowich et al.	2003	ApJ, 592, L83	Observations of DG Tauri with the Keck Interferometer	1
09	Leinert, van Boekel, Waters et al.	2004	A&A, 423, 537	Mid-infrared sizes of circumstellar disks around Herbig Ae/Be stars measured with MIDI on the VLTI	8
10	Eisner, Lane, Hillenbrand et al.	2004	ApJ, 613, 1049	Resolved Inner Disks around Herbig Ae/Be Stars	14
11	van Boekel, Min, Leinert et al.	2004	Nature, 432, 479	The building blocks of planets within the 'terrestrial' region of protoplanetary disks	3
12	Akeson, Walker, Wood et al.	2005	ApJ, 622, 440	Observations and Modeling of the Inner Disk Region of T Tauri Stars	2
13	Eisner, Hillenbrand, White et al.	2005	ApJ, 623, 952	Observations of T Tauri Disks at Sub-AU Radii: Implications for Magnetospheric Accretion and Planet Formation	4
14	Monnier, Millan-Gabet, Billmeier et al.	2005	ApJ, 624, 832	The Near-Infrared Size-Luminosity Relations for Herbig Ae/Be Disks	14
15	Malbet, Lachaume, Berger et al.	2005	A&A, 437, 627	New insights on the AU-scale circumstellar structure of FU Orionis	1
16	Boden, Sargent, Akeson et al.	2005	ApJ 635, 442	Dynamical Masses for Low-Mass Pre-Main Sequence Stars: A Preliminary Physical Orbit for HD 98800 B	1
17	Akeson, Boden, Monnier et al.	2005	ApJ 635, 1173	Keck Interferometer observations of classical and weak line T Tauri stars	7
18	Eisner, Chiang & Hillenbrand	2006	ApJ 637, L133	Spatially Resolving the Inner Disk of TW Hydrae	1
19	Abrahám, Mosoni, Henning et al.	2006	A&A 449, L13	First AU-scale observations of V1647 Orionis with VLTI/MIDI	1
20	Millan-Gabet, Monnier, Akeson et al.	2006	ApJ 641, 547	Keck Interferometer Observations of FU Orionis Objects	3
21	Millan-Gabet, Monnier, Berger, et al.	2006	ApJ 645, L77	Bright Localized Near-Infrared Emission at 1-4 AU in the AB Aurigae Disk Revealed by IOTA Closure Phases	1
22	Monnier, Berger, Millan-Gabet, et al.	2006	ApJ 647, 444	Few Skewed Disks Found in First Closure-Phase Survey of Herbig Ae/Be Stars	14
23	Quanz, Henning, Bouwman, et al.	2006	ApJ 648, 472	FU Orionis: The MIDI VLTI Perspective	1
24	Preibisch, Kraus, Driebe et al.	2006	A&A 458, 235	A compact dusty disk around the Herbig Ae star HR 5999 resolved with VLTI / MIDI	1
25	Malbet, Benisty, de Wit et al.	2007	A&A 464, 43	Disk and wind interaction in the young stellar object MWC 297 spatially resolved with VLTI/AMBER	1
26	Tatulli, Isella, Natta, et al.	2007	A&A 464, 43	Constraining the wind launching region in Herbig Ae stars: AMBER/VLTI spectroscopy of HD 104237	1
27	Eisner, Chiang, Lane, et al.	2007	ApJ 657, 347	Spectrally Dispersed K-Band Interferometric Observations of Herbig Ae/Be Sources: Inner Disk Temperature Profiles	11
28	Kraus, Balega, Berger, et al.	2007	A&A 466, 649	Visual/infrared interferometry of Orion Trapezium stars: Preliminary dynamical orbit and aperture synthesis imaging of the Theta 1 Orionis C syste	1
29	Eisner	2007	Nature, 447, 562	Water vapour and hydrogen in the terrestrial-planet-forming region of a protoplanetary disk	1
30	Lachaume, Preibisch, Driebe, et al.	2007	A&A 469, 587	Resolving the B[e] star Hen 3-1191 at 10 microns with VLTI/MIDI	1
31	Ratzka, Leinert, Henning, et al.	2007	A&A 471, 173	High Spatial Resolution Mid-Infrared Observations of the Low-Mass Young Star TW Hya	1
32	Eisner, Hillebrand, White, et al.	2007	ApJ 669, 1072	Near-Infrared Interferometric, Spectroscopic, and Photometric Monitoring of T Tauri Inner Disks	10
33	Boden, Torres, Sargent, et al.	2007	ApJ 670, 1214	Dynamical Masses for Pre-Main Sequence Stars: A Preliminary Physical Orbit for V773 Tau A	1
34	Akeson, Rice, Boden, A. et al.	2007	ApJ, 670, 1240	The Circumbinary Disk of HD 98800B: Evidence for Disk Warping	1
35	de Wit, Hoare, Oudmaijer et al.	2007	ApJ 6/1, L169	VLTI/MIDI 10µm Interferometry of the Forming Massive Star W33A	1
30	Schegerer, Wolf, Ratzka et al.	2008	A&A 478, 779	The T fauri star RY fauri as a case study of the inner regions of circumstellar dust disks	1
3/	LI Causi, Antoniucci & Tatulii	2008	A&A 479, 589	De-blasing interferometric visibilities in VLII-AMBER data of low SNR observations	1
38	Kraus, Preibisch & Unnaka	2008	ApJ 676, 490	Detection of an inner gaseous component in a Herbig Be star accretion disk: Near- and mid-infrared spectro-interferometry and radiative transfer	1
39	Tannirkulam, Monnier, Millan-Gabet et a	2008	Apj 077, Loi	Strong Near-Infrared Emission Interior to the Dust Sublimation Radius of Young Stellar Objects MWC 275 and AB Aur	2
40	Iselia, Tatulii, Natta et al.	2008	A&A 483, L13	Gas and dust in the inner disk of the Herbig Ae star MWC 756	1
41	Schaeler, Simon, Prato, et al.	2000	AJ, 130, 1009	MMC 207: a young high mass star relating at critical value ity	1
42	Acke, vernoeist, van den Ancker et al.	2000	A&A 400, 209	NIVIC 297. a young nigh-mass star folding at childar velocity Spatially resolving the bet CO around the young Po star 51 Ophiughi	1
43	Kraue Hofmann Paniaty at al	2000	AQA 409, 1101	The origin of hydrogon line amission for five Herbig Ac/Pe store anoticilly received by VI TI/AMPEP anostro interferemetry	5
44	Fodolo van den Aneker Acke et al	2000	A&A 409, 1157	The origin of hydrogen line emission for live merbig Ae/De stars spatially resolved by VET//AMDER speciro-interferometry	3
45	Tappirkulam Monpior Harriss of al	2000	AdA, 491, 009	A Tale of Two Herbig As Store, MM/C 275 and AR Aurigas: Comprehensive Models for Spectral Energy Distribution and Interforemetry	2
40	Fishor Graham Akoson et al	2000	ApJ, 009, 313	Spatially Resolved Spectroscopy of Sub-All-Sized Regions of T Tauri and Herbig Ae/Re Disks	15
18	Boden Akeson Sargent et al	2009	ApJ, 092, 509	Interferometric Evidence for Resolved Warm Dust in the DO Tau System	1
40	di Folco Dutrey Chesneau et al	2009	A&A 500 1065	The flared inner disk of the Herbig Ae star AB Aurigae revealed by VI TI/MIDI in the N-hand	1
50	Schegerer Wolf Hummel et al	2003	A&A 502 367	Tracing the notential planet forming regions around seven pre-main-sequence stars	7
51	Ratzka Schegerer Leinert et al	2003	A&A 502, 507	Spatially resolved mid-infrared observations of the triple system T Tauri	2
52	Radiand Akeson R Armandroff et al	2003	$\Delta n = 703 22$	First L-Band Interferometric Observations of a Young Stellar Object: Probing the Circumstellar Environment of MWC 419	1
53	Linz Henning Feldt et al	2009	A&A 505 655	Mid-infrared interferometry of massive young stellar objects. J. VI TI and Subaru observations of the enigmatic object M8E-IR	1
54	Stark Kuchner Traub et al	2009	Ap.I 703 1188	51 Onbiuchus: A Possible Beta Pictoris Analog Measured with the Keck Interferometer Nuller	1
55	Kraus Hofmann Malbet et al	2009	A&A 508 787	Revealing the sub-ALL asymmetries of the inner dust rim in the disk around the Herbig Ae star R Coronae Austrinae	1
56	Benisty, Natta, Isella, et al	2010	A&A, 511 A74	Strong near-infrared emission in the sub-AU disk of the Herbig Ae star HD 163296' evidence of refractory dust?	1
57	Benisty, Tatulli, Ménard, et al	2010	A&A, 511, A75	The complex structure of the disk around HD 100546. The inner few astronomical units	1
58	Pott, Perrin, Furlan, et al.	2010	ApJ, 710, 265	Ruling Out Stellar Companions and Resolving the Innermost Regions of Transitional Disks with the Keck Interferometer	5
d01	Absil di Folco Márand et al	2006	A&A 152 227	Circumstellar material in the Vega inner system revealed by CHADA/ELLIOD	1
d02	di Folco Absil Augereau et al	2000	Δ&Δ 175 213	A near-infrared interferometric survey of debris disk stars. I. Probing the bot dust content around É. Eridani and Î. Ceti with CHARA/ELLIOR	2
d02	Absil di Folco Márand et al	2007	A&A 487 1041	A near-infrared interferometric survey of debris disc stars. IL CHARA/FLUOR observations of six early-type dwarfs	6
d04	Le Rouquin Absil Reniety et al.	2000	Δ&Δ 408 1 /1	The spin-orbit alignment of the Fomalhaut planetary system probed by optical long baseline interferometry	1
d04	Smith Wyatt & Haniff	2000	A&A 503 265	Resolving the hot dust around HD69830 and n Corvi with MIDL and VISIR	2
d06	Absil Mennesson Le Bouquin et al	2009	Ap.J 704 150	An Interferometric Study of the Fomalhaut Inner Debris Disk. I. Near-Infrared Detection of Hot Dust with VI TI//INCI	1
d07	Kloppenborg Stencel Monnier et al	2010	Nature 464 870	Infrared images of the transiting disk in the ε Aurigae system	1
301					

YSOs + Debris disks observed (1998-2010)

INNER DISK PHYSICS

- Sizes of circumstellar structures
- Constraints on disk structure (T, z,...)
- Dust mineralogy
- Gas/dust connection
- Debris disks

Original disk concept

- Optically thick disk both for inner gas and outer dust
- Simple power-law temperature distribution (T α r^{-0.75}, T α r^{-0.5})
- Oblique disk heating

→ fits rather well spectral energy distributions (SEDs)

Inner region discussion

Inner rim shapes: how sharp is it?

Dust sublimation Isella & Natta (2005, A&A 438, 899) VS Dust settling & grain growth Tannirkulam et al. (2007, ApJ 661, 374)

Inner hole? but

- optically thick disk beyond the dust sublimation barrier
 e.g. TTS Akeson et al. (2006, ApJ 635, 1173)
 - disk halo with 0.15-0.8 optical depths

Inner region discussion

Inner rim shapes: how sharp is it?

Dust sublimation Isella & Natta (2005, A&A 438, 899) VS Dust settling & grain growth Tannirkulam et al. (2007, ApJ 661, 374)

Inner hole? but

- optically thick disk beyond the dust sublimation barrier
 e.g. TTS Akeson et al. (2006, ApJ 635, 1173)
 - disk halo with 0.15-0.8 optical depths

Vinkovic & Jurkic (2007, ApJ 658..462)

The geometry of the inner rim

The geometry of the inner rim

 If inclined disk: asymmetries (skewness) depending on dust characteristics Tannirkulam et al. (2007, ApJ 661, 374)

The geometry of the inner rim

- If inclined disk: asymmetries (skewness) depending on dust characteristics Tannirkulam et al. (2007, ApJ 661, 374)
- Closure phase is a powerful observable to probe such asymmetries Monnier et al. (2006, ApJ 646, 444)

FU Orionis

VLTI Summer school 2010 - Inner regions of YSOs revealed by interferometry - F. Malbet

FU Orionis

VLTI Summer school 2010 - Inner regions of YSOs revealed by interferometry - F. Malbet

FU Orionis

- The Hunghlest i ours have been observed
- FU Ori well constrained Quanz et al. (2006, ApJ 648, 472)

• Others like Z CMa appear more extended: background emission or companion? Millan-Gabet et al. (2006, ApJ 645, L77)

• Recent FUOr: V1647 Ori Ábrahám, Mosoni, Henning et al. (2006, A&A 449, L13)

A tool to probe the radial temperature distribution of disks

Commonly used analytic temperature-power-law disk models ($T \propto r^{-1/2}$ or $T \propto r^{-3/4}$) cannot describe the measured wavelength-dependence of the apparent size \rightarrow Detailed physical modeling required

Kraus et al. (2007, ApJ 676, 490)

MWC 147: a full disk model to understand NIR and MIR measurements

Kraus et al. (2007, ApJ 676, 490)

Effect of extended scattered light

- Ring radius fitting can lead to overestimated sizes
- Careful modeling must be performed including all sources of radiation

Vertical structure @ 10 microns

Vertical structure @ 10 microns

Vertical structure @ 10 microns

Dust mineralogy in HAeBe

Van Boekel et al. (2004, Nature, 432, 479)

Dust mineralogy in HAeBe

Van Boekel et al. (2004, Nature, 432, 479)

Dust mineralogy in HAeBe

Van Boekel et al. (2004, Nature, 432, 479)

... also in T Tauri disks!

Ratzka et al. (2007, A&A 471, 173)

 \rightarrow Inner disks (< 2 AU) have:

-larger silicate grains

-higher fraction of silicates is crystalline (40-100%)

51 Oph: NIR CO overtone emission

Farameter	Best nt value
Distance	131 pc
R_{\star}	$7~R_{\odot}$
M_{\star}	$3.8 M_{\odot}$
$T_{\rm eff}$	10000 K
Av	0.15
Accretion rate	$7.10^{-5} M_{\odot}/{ m yr}$
Disk outer radius	7 AU
Disk inner radius	$0.55 \ \mathrm{AU}$
Inclination	88°
Position Angle	78°

Tatulli, et al. (2007, in prep.)

51 Oph: NIR CO overtone emission

All observations fitted by the standard disk model! but it seems not to be physically possible

Parameter	Best fit Value
Distance	131 pc
R_{\star}	$7~R_{\odot}$
M_{\star}	$3.8 M_{\odot}$
$T_{\rm eff}$	10000 K
Av	0.15
Accretion rate	$7.10^{-5} M_{\odot}/{ m yr}$
Disk outer radius	$7 \mathrm{AU}$
Disk inner radius	0.55 AU
Inclination	88°
Position Angle	78°

Tatulli, et al. (2007, in prep.)

Tatulli, et al. (2007, in prep.)

2340

2320

0.40

0.35

0.30

Tatulli, et al. (2007, in prep.)

VLTI Summer school 2010 - Inner regions of YSOs revealed by interferometry - F. Malbet

Debris disks

Absil et al. (2006)

- Debris disks are difficult because of the contrast (<2%)
- Need for short baselines
- accurate interferometry

Differential phases on Fomalhaut

Fig.3. AMBER spectro-astrometric positions $p(\lambda)$ in the continuum (a) and across the Br- γ absorption line (b). Colors refer to the wavelength bin, as shown in Fig. 2. The signature of the rotating photosphere (c) is clearly detected and is compared to the debris disk and the planetary companion (d) imaged in the visible by Kalas et al. (2008). For the sake of clarity, the astrometric error ellipses are represented by their projection into the North and East directions.

OTHER AU-SCALE PHENOMENA

- Outflowing winds
- Magnetospheres
- Binaries and multiple systems

Nature of Bry in the HAe star HD104237

Disk truncated by magnetosphere

Gas within the disk

Outflowing wind

Tatulli et al. (2007, A&A 464, 55)
Disk/star interaction ?

A systematic study of the origin of the BrY emission in Herbig Ae/Be stars

A systematic study of the origin of the BrY emission in Herbig Ae/Be stars

- magnetospheric accretion
- disk wind
- X-wind or disk wind ?

A systematic study of the origin of the BrY emission in Herbig Ae/Be stars

- magnetospheric accretion
- disk wind
- X-wind or disk wind ?
- ➡ No correlation with L* as suggested by Eisner et al. 2007
- We are probing mostly outflows phenomena: Brγ indirect accretion tracer through accretion-driven mass loss?

Kraus et al. (2008, A&A 489, 1157)

Aperture synthesis imaging of the θ¹ Orionis C system with IOTA

HD 98800B: orbit and masses

FUTURE PROSPECTS

First steps to imaging

Isella & Natta (2005, A&A 438, 899)

Closure phase provides information on departure from centro-symmetry

Closure phases constrains disk geometry

R CrA

S. Kraus et al.: Revealing the sub-AU asymmetries of the inner dust rim in the disk around the Herbig Ae star R CrA 801

Kraus et al. (2009)

Firsteiniversages of a your grand sk around MWC 275

0.138

0.0419

0.161

0.0682

VLTI/AMBER

-10

Renard, Malbet, Benisty et al. 2010

Image reconstruction is tricky:

- # measures ~1500 with VLTI/AMBER: 3 AT configs
- artefacts due to the (u,v) plane coverage
- disk + ring model consistent with Benisty 2009
- 1/1000 contrast compared with first VLA images

\rightarrow First indices on the morphology of disks around young stars

Conclusion

- A major leap in less than 10 years:
 - ~100 objects observed so far,
 - +60 refereed papers (mainly with one baseline broadband observations, but it is changing).
 - new types of observations with spectral resolution, closure phases, imaging
- Observations are mature enough to allow detailed modeling.

More images?

mage simulations

Open issues in YSO physics

- NIR emitting zone larger than corotation / magnetospheric radii .
 What implications for disk/star connection?
- Which implications do these measurements have for the initial conditions of planetary formation?
- Need to combine NIR+MIR to secure the disk structure.
- Can we apply this technique to gas disk ?
- Origin of the **BrY emission**?
- Companions, formation of planets

A tool to study the inner regions of Young Stellar Objects

From Isella et al. (2007)