

Infrared interferometry of C-stars : a tool to study the stellar atmosphere and to constrain evolutionary models

Der Wissenschaftsfonds.

Claudia Paladini Institute für Astronomie der Wien Universität Österreich

Layout of this presentation

- AGB stars
- Why AGB stars? Why interferometry?
- Stellar parameter determination
 > mildly C-star variable with UKIRT & PTI
 > dynamic objects with AMBER
- Study of the geometry of the mass-loss process
 > HERSCHEL+MIDI+VISIR
 > AMBER+NACO follow-up
- Conclusion & future perspectives

Evolutionary Tracks off the Main Sequence

AGB carbon stars

- $1 < M < 4 M_{\odot}$
- C-O core and He/H burning shell, a convective envelope
- [C/O] > 1
- Presence of CO, C₂, C₂H₂, C₃, CN, HCN
- SiC dust, amorphous carbon

Schematic view of an AGB star (adapted by J. Hron & M. Lederer) after an idea from T. Le Bertre.

Why studying C-stars?

Important for galactic evolution:

- 70% material returned to ISM comes from AGB-stars
- C-stars are the main source of carbonaceous material
- ... as well as for stellar evolution:
- understand the complicate interaction of pulsation and the stellar atmosphere
- gain inside dynamical processes of dust formation and mass-loss

Why using interferometry?

Very bright in the infrared, close by, extended atmosphere to look through

- High angular resolution allows resolving the close circumstellar structure
 - understanding mass loss processes
 - studying the stratification and different opacity sources
- Complementary with other techniques (photometry and spectroscopy) to give observational constraints for model atmospheres and evolutionary models

Stellar parameter determination

- Basic properties & evolutionary status of a star can be determined knowing mass, luminosity, radius, chemical composition.
 - Thanks to interferometry, it is possible to give mass estimates not only for binaries
- Wittkowski et al. (2001, 2004); Neilson & Lester (2008) determined stellar parameters for a sample of AGB stars
 - constraints for model atmosphere
 - constraints for evolutionary models
 - BUT: parallax indetermination a major problem...

Determination of stellar parameter for mildly variable C-stars*

- 5 mildly variable stars selected
- bright objects (K < 3)
- low variability amplitude (semiregular, irregular variables)
- (very) low mass-loss values from literature

HK Lyr, DR Ser, Z Psc, RV Mon, CR Gem

UKIRT/UIST spectra (*IJHKL* bands) R = 400-2400

PTI & IOTA (for Z Psc) K broad-band visibility

*Paladini C., van Belle T.G., Aringer B., Hron J., Reegen P., Lebzelter T., Davis C.J., A&A referee process

Hydrostatic model atmospheres

Recent new grid of ~ 730 **COMARCS** models (Aringer et al. 2009) based on *MARCS code* (Gustaffson et al., 1975; 2008) used in Jørgensen et al. (1992), Aringer et al. (1997)

- 1-D models (spherically symmetric models)
- hydrostatic equilibrium, LTE & chemical equilibrium
- treatment of molecular absorption with opacity sampling technique
- spherical radiative transfer code: spectrum+spatial intensity

Parameters: temperature, mass, C/O, log g, metallicity (solar)

Spectroscopic analysis

- **Temperature (main parameter)** χ^2 fit comparing the full UKIRT spectra and the grid of models (quite precise, especially using the 3.1 µm feature C₂H₂+HCN)
- C/O ratio

 χ^2 fit for single spectral features : $C_2(1.02, 1.20 \ \mu m)$; CO(2.29 μm); C_2H_2 +HCN (3.1 μm) Low spectral resolution \longrightarrow not very sensitive... but values obtained are in agreement with literature \bigcirc

Models vs observations (after spectroscopic fit)

black line = HK Lyr spectrum **colored lines** = models $T_{eff} = 3100 \text{ K}; Z = Z_{\odot}; C/O = 1.4 \text{ } M = 1, 2 M_{\odot}; \log g = 0., -0.2, -0.4, -0.5$ **Log g and mass are not constrained!!!!**

Determination of mass, log g

Distance, luminosity, mass & radius...

💼 degenerate problem! 😕

Interferometry

- 1. check of variability or eventual asymmetries via uniform disc fitting;
- <u>adopt 3 different distance estimates</u> (Hipparcos; Bergeat et al., 2004; Claussen et al., 1986)
- 3. χ^2 to fit PTI interferometry data;
- 4. best fitting model constraints $\log g$ and mass for a given distance;
- 5. discussion on best fitting parameters using stellar evolution models.

Fit of spectro-interferometric observations

Next step: stellar parameters for a set of dynamic C-stars

Selection of 3 objects dustenshrouded to be observed with AMBER in MR-H & MR-K. Spectroscopy already available. I want also AMBER spectrum!

Observations will be compared with dynamic model atmospheres from Höfner et al. (2003); Mattsson et al.(2010). Models include dust driven wind.

Summary

- Models vs Observations:
 - > Determined stellar parameters for a set of 5 mildly variable objects.
 - > All the targets have at least one combination of parameters in the predicted C-stars region.
 - Using a multi-technique approach (spectroscopy, interferometry) we can well constrain the stellar parameters for carbon stars. But the distance is an important assumption!
 - Spectroscopic and interferometric observations of C-stars can be fitted at the same time in consistent way by hydrostatic models!
 - L-band spectroscopy is a powerful tool for estimating the temperature of the <u>mildly variable</u> carbon stars
- This kind of work, extended to different stellar types, can furnish constraints for evolutionary models

ESO/VLT(I) Large Program:

A joint venture in the red: Herschel+MIDI+VISIR view on mass-loss from evolved stars

Paladini C., Sacuto S., Lagadec E., Verhoelst T., Klotz D., Hron J., Groenewegen M.T., Kerschbaum F., Richichi A., Wittkowski M., Olofsson H., Jorissen A.

Goal

Study the geometry of the mass-loss process for evolved red giants on the AGB at different scales of their atmosphere.

The data will complement **Herschel** observations for a subsample of AGB stars selected from the **MESS program** (Groenewegen et al., 2011). Herschel maps the outer envelope unveiling the interface between stellar

wind and ISM.

The inner CSE will be mapped with MIDI (2-25 $R_{\bigstar})$ and VISIR (25-2500 $R_{\bigstar}).$

- 15 targets (M-, S-, C-type AGB stars; different variability class)
- \sim 140 hours of MIDI + VISIR time over 2 periods
- 2 observations x 3 configurations with MIDI (N-band 8-13 microns)
- N+Q band observations with VISIR

Herschel observations & MIDI (preliminary) modeling

(a) target with asymmetry:Herschel observations andMIDI preliminary modeling(ASPRO2) of TX Psc.

(b) symmetric target: Herschel observationsof U Ant and MIDI modeling (ASPRO2).

What's next?

Next step is to extend the wavelength covarage to nearIR (*JHK* bands) to study the geometry in the region where pulsation starts and molecules dominate:

- AMBER will complement the MIDI observations probing the inner region close to the photosphere.
- NACO will complement the VISIR observations.

Merci à tous

DMA Radial Structure

e.g. Nowotny et al. (2005)

Grey shade = windless model Colored lines = different phases for a DMA with massloss

