

LITpro model fitting software for optical interferometry

Tallon-Bosc, M. Tallon, E. Thiébaut, C. Béchet,G. Mella, S. Lafrasse, O. Chesneau, A. Domiciano,G. Duvert, D. Mourard, R. Petrov, M. Vannier

CRAL, Lyon France — LAOG, Grenoble, France — Fizeau lab, Nice/Grasse, France

What is LITpro ?


- Parametric model fitting software for interferometry
 - LITpro: Lyon Interferometric Tool prototype
 - Conceived and developed up-to-now at CRAL in Lyon
 - Graphical User Interface developed at JMMC (Jean-Marie Mariotti Center)
 - Maintained and improved by the "model-fitting" group at JMMC (several labs in France)
- Aim: "exploit the scientific potential of existing interferometers", e.g. VLTI
- Complementary to image reconstruction
 - Sparse (u,v) coverage
 - Reconstructed images identify models
 - Model fitting extracts measured quantities

Leading requirements of LITpro

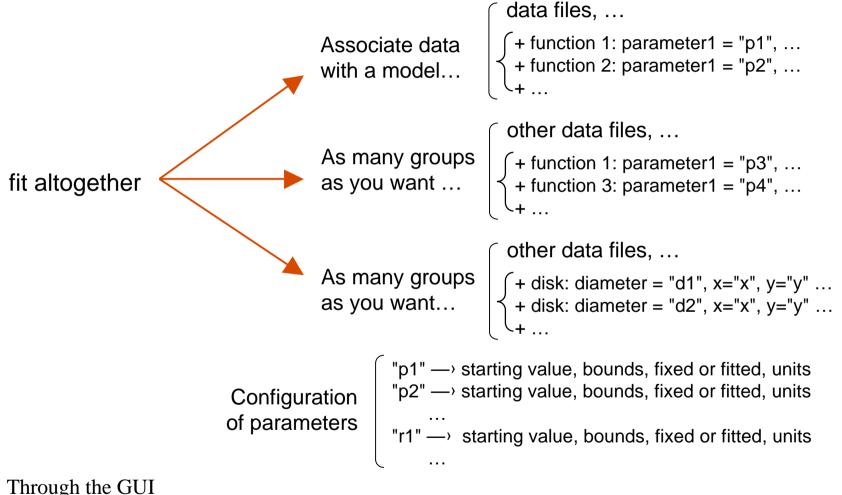
- Accessible to "general users" + flexible for "advanced users"
 - Opposite needs:
 - General users want simplicity (stepping stone)
 - Advanced users want a powerful tool (pioneering work)
 - Exchanges:
 - general users $--(needs) \rightarrow advanced users$
 - general users <---(training)--- advanced users
 - Progress must benefit to everybody (share experiences)
- Concentrate on the model of the object
 - Easy implementation of new models.
 - Only need to compute the Fourier transform of the object specific intensity on given coordinates (u, v, λ, t)

Leading requirements \Rightarrow implementation

- Accessible to astronomers + flexible for advanced users
 - flexible \Rightarrow high level language (*Yorick*)
 - easy modifications and adds in the software
 - "expert layer"
 - accessible \Rightarrow GUI
 - new abilities exposed once they are validated in the "expert" layer
- Concentrate on the model of the object
 - From Fourier transform of the object:
 - Modeled data (interferometric, spectroscopic, photometry, ...)
 - Images
 - LITpro also provides
 - Modeling builder (with GUI or filling a form)
 - Fitter "engine"
 - Tools for analysis

Types of data

- OIFITS
 - Squared visibilities (VIS2)
 - Complex visibilities (VISAMP, VISPHI)
 - Bispectrum (T3AMP, T3PHI)
- Others
 - Spectral Energy Distribution (dispersed fringes mode)
 - Photometry (see example)

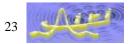

- ...

Setting up the fitting process / principle

• Through the GUI or through a form (file editor)

Fitting process

- Levenberg-Marquardt algorithm (modified)
 - Combined with a Trust Region method
 - Bounds on the parameters
 - Partial derivatives of the model by finite differences
- More latter...
 - Search of global minimum



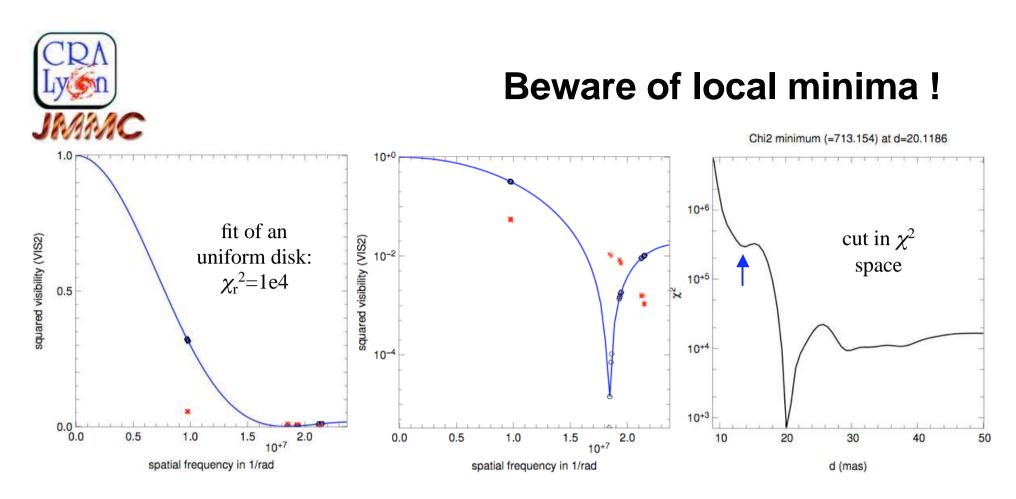
Implementation of the GUI

e Edit Advanced Help	
w model Ctrl-N	
oad model Ctrl-L	Settings panel
ave model Ctrl-S	Oifile list
Quit <u>Ctrl-Q</u>	File[/home/mfgui/SPIE08/Obj1.fits] File[/home/mfgui/SPIE08/Obj2.fits] File[/home/mfgui/SPIE08/Obj1Second.fits]
	Load oifiles
	Target list
	Target[BSC1948] Target[TARGET]
	Add new target BSC1948 Remove
	Fitter setup
	standard
	Staliualu

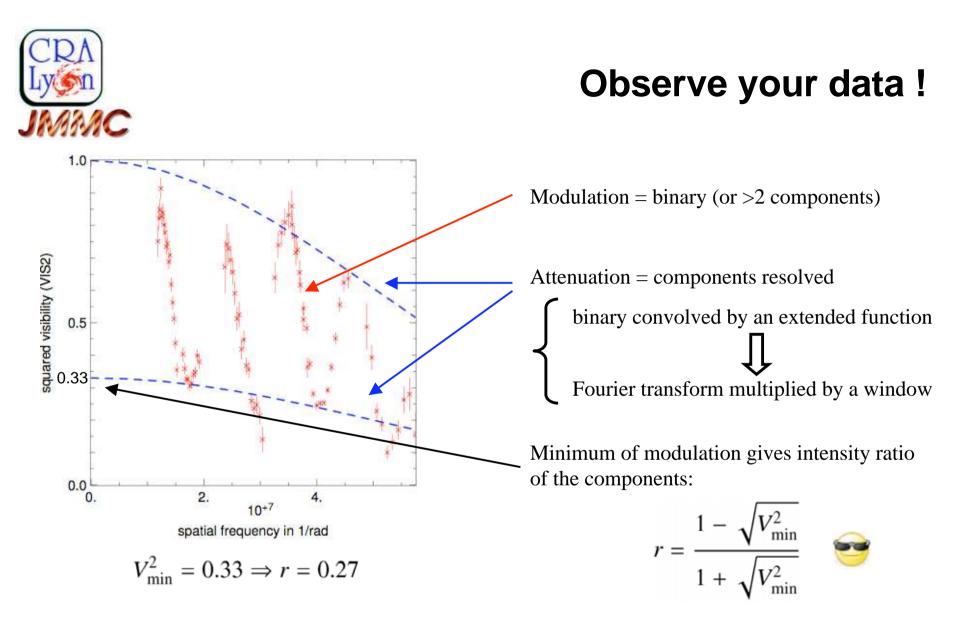
- Implemented in JAVA
 - Web service
 - Links with other services (JMMC)
 - Virtual Observatory
 - Data explorer
 - User feedback
 - ...
- GUI only tell "expert layer" (*Yorick*) what to do
- First public release: October 2009

Work in progress

- LITpro
 - First public release Octobre 2009
- High in the list for near future
 - Search for global minimum of χ^2
 - Tools for multichromatic modeling (e.g. dynamics)
 - Cooperation between Image reconstruction and Model fitting



On the adventure of model fitting


- Local minimum
 - example of an uniform disk
- Observe your data... the Guru way
 - useful for the initial guess (local minimum)
- Degeneracies
 - on the total energy
- Example of a "heterogeneous" model-fitting

- local minima exists even for a uniform disk, depending on data
- what to do ?
 - change first guess
 - cuts in χ^2 sub-spaces
 - use bounds
 - do not forget the low frequencies (or just confirm what we already know...)

- Starting from a good first guess may be decisive -

Degeneracy on total energy

fit of a binary

Model of the binary

- main component at (0,0) with intensity i1
- secondary at (x,y) with intensity i2

Final values for fitted parameters and standard deviation: i1 = 0.20152 + - 9.95e + 04 i2 = 0.9982 + - 4.93e + 05 x = -6.6657 + - 0.00441 mas								
		20.08						
Chi2: initial= 7.376e+04 - final= 1983 - sigma= 14.2127 reduced Chi2: initial= 730.3 - final= 19.63 - sigma= 0.14072 Number of degrees of freedom = 101								
Correlation matrix								
	i1	i2	х	У				
i1	1	1	0.0011	-0.0015				
i2	1	1	0.0011	-0.0015				
x	0.0011	0.0011	1	-0.44				
у	-0.0015	-0.0015	-0.44	1				

- this degeneracy does not change χ^2
- huge errors because of no curvature of $\chi^2(\mathbf{x}_{\text{best}})$ for i1+i2
- this prevents reading the values of i1 and i2

Degeneracy on total energy: solution

- FAQ:
 - We could construct a normalized model !
 - Yes, but we want to combine all sorts of functions...
 - We could combine normalized functions !
 - Not always possible ! Ex: disk with constant amplitude (spot on a star)
- When total energy is not fixed by the data, we add this constraint:

$$\chi^2_{\star}(\boldsymbol{x}) = \chi^2(\boldsymbol{x}) + N_d \left(\frac{\sum_i \Delta \lambda_i \, m_i(\boldsymbol{x}, \boldsymbol{u} = 0)}{\sum_i \Delta \lambda_i} - 1\right)^2$$

This drives total energy to unity

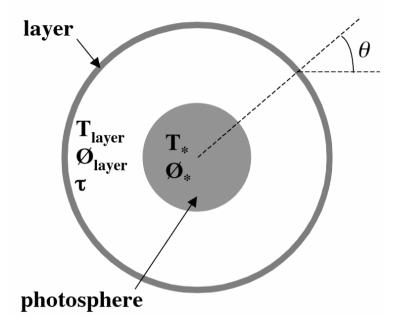
- But the added term MUST BE ZERO at the end of the fit !
 - If not: χ^2 is changed and quantities are wrong !
- Other degeneracies in practice
 - translation of the map (unless phase reference)
 - symmetries if no phase

- ...

Degeneracy on total energy: solved

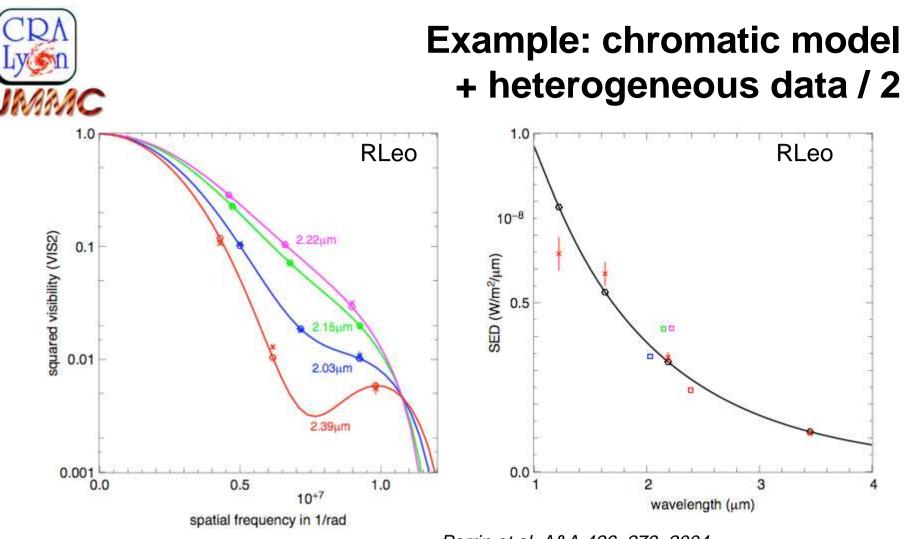
Final values for fitted parameters and standard deviation:

i1 =	0.83203 +/-	0.0812	
i2 =	0.16797 +/-	0.0164	
x =	-6.6657 +/-	0.00441	mas
y =	20.08 +/-	0.00631	mas


Chi2: initial= 7.376e+04 - final= 1983 - sigma= 14.2127 reduced Chi2: initial= 730.3 - final= 19.63 - sigma= 0.14072 Number of degrees of freedom = 101

--- Correlation matrix --i1 i2 x y i1 1 1 0.00021 0.00058 i2 1 1 -0.0011 -0.0029 x 0.00021 -0.0011 1 -0.44 y 0.00058 -0.0029 -0.44 1

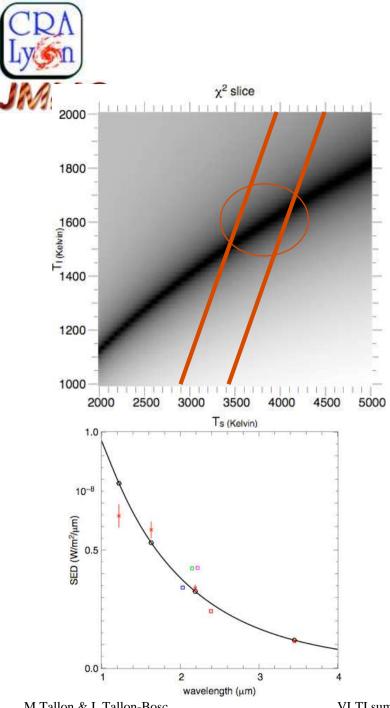
.


Example: chromatic model + heterogeneous data / 1

Perrin et al, A&A 426, 279, 2004

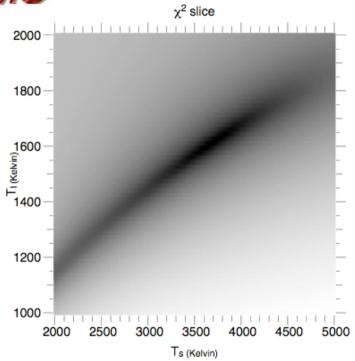
$$I(\lambda, \theta) = B(\lambda, T_{\star}) \exp(-\tau(\lambda)/\cos(\theta)) +B(\lambda, T_{\text{layer}}) [1 - \exp(-\tau(\lambda)/\cos(\theta))]$$

for $\sin(\theta) \le \emptyset_{\star}/\emptyset_{\text{layer}}$ and:
$$I(\lambda, \theta) = B(\lambda, T_{\text{layer}}) [1 - \exp(-2\tau(\lambda)/\cos(\theta))]$$


- Why this example in particular ?
 - Fitting procedure is difficult
 - Need to improve procedures for "general users" (accessible ?)
 - How LITpro performs ?
 - Fitting interferometric + photometric data
 - Assess how it can help the fitting process

- Perrin et al, A&A 426, 279, 2004
- squared visibilities : 4 sub-bands in K band (IOTA)
- magnitudes : J, H, K, L bands (Whitelock et al 2000)

Perrin et al. fitting procedure


- 1) (R_*,R_I) from gridding
 - fit all other parameters from fixed sampled values (R_*, R_L)
 - arbitrary initial values of other parameters
- (T_*, T_L) from gridding + intersection with 2) K photometry
 - Difficult to use the other bandwidths
- 3) Fit 4 optical depths from fixed other parameters
- Compare photometry with other 4) bandwidths: J, H, L.

M.Tallon & I. Tallon-Bosc

Simultaneous fitting of all the data

- 1) Overall size of the object ?
 - Radius of uniform disk: 18 mas
- 2) Overall temperature ?
 - For an uniform disk: 1540K
- 3) Fit from this initial values
 - Initial values of optical depths set to zero => uniform disk

-

May be useful (and reassuring) to use physical arguments for the first guess...

Comparison of results

Parameter	Perri	n et al.	Simultaneous fit		Fit with relative photometry			Fit with only			
R_{\star} (mas) 10.94 ± 0.85		11 ± 0.13		11 ± 0.19		/	 relative photometry, 				
$R_{\rm L}$ (mas)	25.00	± 0.17	25.4 ± 0.16		25.4 ± 0.18			like the SED given by			
T_{\star} (K)			3694 ± 113		3778 ± 163			an optical interferometer			
$T_{\rm L}({\rm K})$			1613 ± 35		1681 ± 174						
T2.03			1 ± 0.14		0.9 ± 0.35						
T2.15			0.42 ± 0.08		0.36 ± 0.17						
$\tau_{2.22}$	0.00		0.27 ± 0	.05	0.23 ± 0.11						
T2.39	4 99 9 94		$1.2 \pm 0.$		1.08 ± 0.32						
Ŷ	Contraction of the second s		1000 A 1000	0.9 ±		0.2					
							-				
	Correlation matrix										
		R_1	Rs_ratio	T_1	T_s	tau1	tau2	tau3	tau4		
	R_1	1	-0.66	-0.36	0.14	0.21	0.17	0.16	0.13		
Rs_	ratio	-0.66	1	0.71	-0.6	-0.67	-0.67	-0.66	-0.62		
	T_1	-0.36	0.71	1	-0.74	-0.94	-0.93	-0.93	-0.92		
	T_s	0.14	-0.6	-0.74	1	0.91	0.91	0.92	0.92	_	
	tau1	0.21	-0.67	-0.94	0.91	1	0.99	0.99	0.99		
	tau2	0.17	-0.67	-0.93	0.91	0.99	1	0.99	0.99		
	tau3	0.16	-0.66	-0.93	0.92	0.99	0.99	1	0.99		
	tau4	0.13	-0.62	-0.92	0.92	0.99	0.99	0.99	1		

Conclusions on the adventure

- Local minima even with uniform disk
 - cuts in χ^2 space
 - change first guess
 - check χ_r^2 if variations are significant
- Model-fitting algorithm has no brain
 - use yours: look carefully at the data: (u,v) coverage, baselines
- Degeneracies may appear
 - check covariances of parameters
 - check ON/OFF normalization of total energy
- Quality of the fit / model
 - chi2
 - understand errors *and correlations* on parameters
 - various plots

