The 10th VLTI School of Interferometry

Introducing MATISSE the new mid-infrared instrument at VLTI

and with emphasis on interferometry for planetology

June, 7-18, 2021, Online

INTERFEROMETRY AND EXOPLANETS

Roxanne Ligi June 15, 2021

- What do we know about exoplanets?
- Exoplanets and stars: the role of interferometry
- The Kernel phase approach Toward the detection of exoplanets with interferometry
- Going beyond Kernel-nuller, SKA...

OUTLINE of the LECTURE

- What do we know about exoplanets?
- Exoplanets and stars: the role of interferometry
- The Kernel phase approach Toward the detection of exoplanets with interferometry
- Going beyond
 Kernel-nuller, SKA...

EXOPLANETS: Several problematics

Nature of the planets?
→ Composition, size...

- Formation?
 → Place of birth, migration...
- ≪ Habitability »?
 → Distance to the star (temperature), tectonic...

- Is our solar system unique?
 - → Need to probe many systems!

Transit method

$$\frac{\Delta F}{F} = \left(\frac{R_P}{R_\star}\right)^2$$

 \rightarrow Knowing R_p depends on R_{\star}

Transit method

$$\frac{\Delta F}{F} = \left(\frac{R_P}{R_\star}\right)^2$$

 \rightarrow Knowing R_p depends on R_{\star}

Radial velocity method

$$\frac{\left(m_p \sin i\right)^3}{\left(M_{\star} + m_p\right)^2} = \frac{P}{2\pi G} K^3 (1-e)^{3/2}$$

 \rightarrow Knowing M_p depends on M_{\star}

HARPS/La Silla

HARPS-N/TNG

Radial velocity method

$$\frac{\left(m_p \sin i\right)^3}{\left(M_{\star} + m_p\right)^2} = \frac{P}{2\pi G} K^3 (1-e)^{3/2}$$

 \rightarrow Knowing M_p depends on M_{\star}

HARPS/La Silla

HARPS-N/TNG

STARS AND PLANETS: Parameters dependence

Direct imaging

- Provides separation, position angle, orbit, spectrum.
- Need a model to derive the nature of the companion, and this model depends on stellar parameters: age, and mass in particular.

STARS AND PLANETS: Parameters dependence

Stellar parameters drive our knowledge of exoplanets

$$T_{\rm env} = \alpha T_{\rm eff} \sqrt{\frac{R_{\star}}{2a}}$$

$$\frac{\left(m_p \sin i\right)^3}{\left(M_{\star} + m_p\right)^2} = \frac{P}{2\pi G} K^3 (1-e)^{3/2}$$

$$\frac{\Delta F}{F} = \left(\frac{R_P}{R_\star}\right)^2$$

Models of planetary interiors
depend on many stellar
parameters: radius, mass,
density, abundances

Parameter	Prior range	Distribution
Core radius $r_{\rm core}$	$(0.01-1) r_{\text{core+mantle}}$	Uniform in $r_{\rm core}^3$
Fe/S1 _{mantle}	$0 - \text{Fe/S1}_{\text{star}}$	Uniform
Mg/Si _{mantle}	Mg/Si _{star}	Gaussian
fmantle	00.2	Uniform
Size of rocky interior $r_{\rm core+mantle}$	$(0.01-1) R_{\rm p}$	Uniform in $r_{\text{core+mantle}}^3$
Pressure imposed by gas envelope P_{env}	20 mbar-100 bar	Uniform in log-scale
Temperature of gas envelope α	0.5–1	Uniform
Mean molecular weight of gas envelope μ	$16-50 \text{ g mol}^{-1}$	Uniform

Ligi+ 2019

STARS AND PLANETS: Internal composition

The internal composition of exoplanets is inferred from planetary interior models:

- Need parameters as inputs (stellar and planetary)
- Hint toward formation and habitability
- Suffer from degeneracy

Valencia et al. 2013 (Bulk Composition of GJ 1214b and Other Sub-Neptune Exoplanets)

STARS AND PLANETS: Populations

Trends are found between stellar parameters and exoplanets occurence/type.

Mulders 2018, arXiv:1805.00023v1

Contrast

Resolution

Contrast

Resolution

- Need to hide the star
- Problem very close to the star

Ém

Contrast

Resolution

Contrast

Resolution

- 1 mas = 2 peaces of 2€ in Bretain seen by the slidefrom Nice !
- Stellar diameter of the order of the millisecond of arc (mas)
- Separation from star and planet of a few mas to a few arcs

We've seen that:

- Direct and indirect methods do not provide the same observables.
- Need of stellar parameters to derive exoplanets properties.
- Often, need of a model to derive additional parameters, that are important to characterize the system (like the stellar age).
- Open questions on the link between stellar parameters and exoplanets population.

What can interferometry do in this context?

Characterization

- Interferometry allows an almost direct measurement of stellar radii
 - \rightarrow transits and other parameters

Detection

- Closure phases and kernel phase can be used to detect exoplanets
 - → mix between imaging and interferometry

OUTLINE of the LECTURE

- What do we know about exoplanets?
- Exoplanets and stars: the role of interferometry
- The Kernel phase approach Toward the detection of exoplanets with interferometry
- Going beyond
 Kernel-nuller, SKA...

INTERFEROMETERS WORLDWIDE

CHARA

NPOI

In the case of a uniform disk:

$$V_{\lambda}^{2} \left(\frac{B}{\lambda}\right) = 4 \left|\frac{J_{1}(z)}{z}\right|^{2}$$
 with $z = \pi \frac{\theta_{UD}}{\lambda}$

angular diameter of the star

Point source \rightarrow contrast = 1 (Young).

Extended source

→ several fringe patterns which don't overlap exactly

11111h.M

Point source \rightarrow contrast = 1 (Young).

Extended source

→ several fringe patterns which don't overlap exactly

Point source \rightarrow contrast = 1 (Young).

Extended source

→ several fringe patterns which don't overlap exactly

Point source \rightarrow contrast = 1 (Young).

Extended source

→ several fringe patterns which don't overlap exactly

Point source \rightarrow contrast = 1 (Young).

Extended source

→ several fringe patterns which don't overlap exactly

Aspro2

E2-E1

E2-W2

E2-W1

E1-W2

E1-W1

-W2-W1

INTERFEROMETRY: The problem of limb-darkening

Claret & Bloemen 2011

the linear law

$$\frac{I(\mu)}{I(1)} = 1 - u(1 - \mu),$$

the quadratic law

$$\frac{I(\mu)}{I(1)} = 1 - a(1 - \mu) - b(1 - \mu)^2,$$

the square root law

$$\frac{I(\mu)}{I(1)} = 1 - c(1 - \mu) - d(1 - \sqrt{\mu}),$$

the logarithmic law

$$\frac{I(\mu)}{I(1)} = 1 - e(1 - \mu) - f\mu \ln(\mu),$$

Fig. 9. Comparison of the best-fit power law intensity profiles of α Cen A and B (red curves) with the observed solar profile in the *H* band (orange curves) measured by Pierce et al. (1977). The horizontal scale is the same for both diagrams to show the difference in size of the two stars.

Fig. 2. Comparison of different parametric limb darkening models of the Sun with the observed limb darkening profile measured by Pierce et al. (1977) in the H band. The residuals in percentage of the observed intensity profile are shown in the *lower panel*.

Kervella+ 2017

- Difficult to measure the LD
- Discrepancies between transit/interferometry and different laws
- Impact on final radius

INTERFEROMETRY: Measure of the radius

INTERFEROMETRY: Effective temperature

Planetary transit а 3rd Kepler law $\frac{P^2}{4\pi^2} = \frac{a^3}{G(M_* + M_p)} \simeq \frac{a^3}{GM_*}$ $T = \frac{2R_*}{(2\pi a/P)}$ Measure of stellar density p (Maxted et al. 2015, Seager & Mallén-Ornelas 2003) $P/T^3 = (\pi^2 G/3) \rho_{\star}$ $\rho_* \equiv \frac{M_*}{R_*^3} = \left(\frac{4\pi^2}{P^2 G}\right) \left\{ \frac{\left(1 + \sqrt{\Delta F}\right)^2 - b^2 \left[1 - \sin^2(t_T \pi/P)\right]}{\sin^2(t_T \pi/P)} \right\}^{3/2} \quad \text{with} \quad \Delta F \equiv \frac{F_{\text{no transit}} - F_{\text{transit}}}{F_{\text{no transit}}} = \left(\frac{R_p}{R_*}\right)^2$

HD97658 (Ellis et al., in rev.)

Lebreton & Goupil 2014

	Planetary Properties			
Transit Depth [ppm]	712 ± 38	$\S4$ Exofast		
Period [days]	$9.48971157 \pm 0.00000077$	§4 Exofast		
T_0 [BJD]	2458904.9366 ± 0.0008	§4 Exofast		
$ m R_p/ m R_{\star}$	$0.02668 {\pm} 0.0007$	§4 Exofast		
Inclination [deg]	$89.05_{-0.24}^{+0.41}$	§4 Exofast		
Impact Parameter	$0.39_{-0.18}^{+0.11}$	§4 Exofast		
Eccentricity	$0.054_{-0.034}^{+0.039}$	§4 Exofast		
Mass $[M_{\oplus}]$	7.52 ± 0.86	§4 Exofast		
a/R_{\star}	24.16 ± 0.69	§4 Exofast		
$R_{ m p} \; [{ m R}_{\oplus}]$	$2.12{\pm}0.061$	§4		
$ ho_{ m p}~[{ m g~cm^{-3}}]$	3.681 ± 0.51	<mark>§4</mark>		
$T_{\rm Eq}[{ m K}]$	749 ± 12	<u>§</u> 4		
Stellar and Planetary Properties from Transit Observables				
$\rho_{\star} [\mathrm{g \ cm^{-3}}]$	3.11 ± 0.27	§4		
$M_{\star} [M_{\odot}]$	0.85 ± 0.08	§4		
$\log(g)$ [cgs]	$4.64{\pm}0.04$	§4		
$\operatorname{Corr}(R_{\star}, M_{\star})$	0.41	§4		
$ ho_{ m p} \; [{ m g \; cm^{-3}}]$	4.835 ± 0.70	<u>§4</u>		
$R_{ m p} \left[{ m R}_{\oplus} ight]$	$2.11 {\pm} 0.059$	<u>§4</u>		
Mass $[M_{\oplus}]$	8.25 ± 1.01	<u>§</u> 4		
$\operatorname{Corr}(R_{\rm p}, M_{\rm p})$	0.09	84		

- Discrepancies between models, methods, measures
- Need measures to calibrate models

→ Interferometry + planetary transits can bring very important information on usually non-measurable properties

OUTLINE of the LECTURE

- What do we know about exoplanets?
- Exoplanets and stars: the role of interferometry
- The Kernel phase approach Toward the detection of exoplanets with interferometry
- Going beyond
 Kernel-nuller, SKA...

THE KERNEL APPROACH

THE KERNEL APPROACH

Difficult to detect at <1 as

51 Eri, GPI Macintosh et al. 2015

Transformation of a 1-dish telescope into an interferometer

Transformation of a 1-dish telescope into an interferometer

Many residuals due to the correction of AO.

« Clean » visibility.

F. Martinache HDR

Closure phase

$$\Phi(A-B) = \Phi_O(A-B) + (\varphi_A - \varphi_B)$$

$$\Phi(A-C) = \Phi_O(A-C) + (\varphi_A - \varphi_C)$$

$$\Phi(B-C) = \Phi_O(B-C) + (\varphi_B - \varphi_C).$$

Measured Expected

Piston

F. Martinache HDR, Martinache+ 2020

A A-B A-C O B-C O O O O O

Generalization of the Closure phase

$$\Phi = \Phi_O + \mathbf{R}^{-1} \cdot \mathbf{A} \cdot \varphi$$
$$\mathbf{K} \cdot \mathbf{R}^{-1} \cdot \mathbf{A} = 0.$$

A Baseline mapping matrix (subapertures + baselines)

R Redundancy matrix (number of subapertures contributing to the phase of one baseline)

Kernel-phase K

Projection of the Fourier phase into a subspace theoretically untouched by residual aberrations.

F. Martinache HDR, Martinache+ 2020

Phase transfert matrix

R⁻¹.**A**

(description of the propagation

of pupil phase aberration into

the Fourier plane)

Non redundancy

Redundancy: repeated baseline (distance+orientation)

Redundancy

HDR F. Martinache

Non redundancy

Redundancy: repeated baseline (distance+orientation)

erc

Redundancy

HDR F. Martinache

Examples of masks

http://frantzmartinache.eu/static/index.html

Model of the mask

Model of the mask

erc

Model of the aperture

Associated

U-V

coverage

SPHERE data

HD142527

THE KERNEL PHASE: Example of SPHERE data

HD142527 and its companion at 73 mas (11.4 au), Claudi+ 2019

Ligi+, in prep.

SAM (reconstruction with MiRA)

THE KERNEL PHASE: Example of SPHERE data

THE KERNEL PHASE: Example of PHARO data

OUTLINE of the LECTURE

- What do we know about exoplanets?
- Exoplanets and stars: the role of interferometry
- The Kernel phase approach Toward the detection of exoplanets with interferometry
- Going beyond
 Kernel-nuller, SKA...

The Kernel nuller

Idea first introduced by Bracewell (1978).

Star h Planet $D. sin\theta$ D T2 T1 T2Recombination Recombination T2 Recombination T2 Recombination T2 Recombination T2 Recombination T2Recombination Recombination Recombination

Rotation of the interferometer with the star at the center

- Star constantly nulled
- Modulation of the signal where the planet is

The Kernel nuller

Idea first introduced by Bracewell (1978). Application to the case of the VLTI: 4 telescopes

Kernel « cleaned » from perturbations Same properties as closure phases

Martinache+ 2018 https://www.youtube.com/watch?v=vn6280hGTL8

THE SKA FOR EXOPLANETS

SKA in South Africa

SKA in Australia

(artist impression, <u>www.skatelescope.org</u>)

SKA (Square Kilometer Array): Radio wavelengths interferometer array

« Cradle of life » section

- Detect radio-emission from earth-analogous high-power radars (Siemion+ 2014)
- Magnetic field of exoplanets (aurorae)
- Search for pre-biotic molecules and amino acids
- Grain growth (cm-sized) particules in proto-planetary disks (Hoare+ 2014)

The 10th VLTI School of Interferometry

Introducing MATISSE the new mid-infrared instrument at VLTI

and with emphasis on interferometry for planetology

June, 7-18, 2021, Online

Thank you!

Roxanne Ligi June 15, 2021

Observatoire alla FATE d'OZHB