

The 10th VLTI school / Page 1 sur 7

10th VLTI school of interferometry
…somewhere on the web!

Practice session: MATISSE data reduction

The MATISSE data reduction is built on two main features: a C library interfaced with the standard

ESO scripting environment EsoRex, and additional python scripts.

The data reduction algorithms themselves rely on Fourier transforms and a careful averaging and

treatment of the biases on the observables (spectrum, squared visibilities, closure phase, differential

phases and coherent flux).

We will, in this practice session, go through the steps needed to reduce a MATISSE dataset, and

evaluate its quality. You will have access to a machine where some MATISSE raw data and the

pipeline are present.

On real datasets, that are terabytes large, we encourage you to use dedicated computing facilities

like computing servers or mesocenters instead of simple laptops. The most stringent limit of the

MATISSE pipeline currently is the amount of ram and disk access.

1. Looking at how the MATISSE data is organized
First of all, go to /data/drs on your assigned machine. There you will find a 2018-12-10_RAW

directory containing raw MATISSE data and calibration files. You will start a terminal on the machine

and type:

cd /data/drs/2018-12-10_RAW

ls

You will see a bunch of files with names “MATIS.XXX.fits” these are the MATISSE raw data you will

get from the ESO archive, XXX being the date of archival. Of course, while very convenient for

archival purposes, such files names are not very informative of the effective content of these files,

therefore we have developed a few python scripts to make it clearer.

1.1. List stars observed during a night
For all the practice session, you will create a directory drs_practice:

mkdir ~/drs_practice

(if ~ does not function on your keyboard, try writing $HOME/drs_practice instead). then

cd

cd drs_practice

As a first, we will start by listing the stars that were observed during a night. Type:

mat_listStars.py /data/drs/2018-12-10_RAW

in the prompt. You should get the following answer:

https://www.eso.org/sci/software/pipelines/matisse/matisse-pipe-recipes.html
https://www.eso.org/sci/software/cpl/esorex.html
https://hal.archives-ouvertes.fr/hal-01343217/document
https://unice-my.sharepoint.com/personal/florentin_millour_unice_fr/Documents/ENSEIGNEMENT/2021_VLTI_School/TPs/DRS/archive.eso.org

The 10th VLTI school / Page 2 sur 7

You can see here that the dataset is made of two pointings, one on a science star: HD45677

(identified with the keyword “TARGET” followed by “RAW” meaning it is raw data) and one on a

calibration star epsilon Lep, both observed simultaneously in the L-band and the N-band.

Now try typing the following command to get a short help on the command line options:

mat_listStars.py -h

All our python scripts have this little help to let you keep track f their functionalities.

A similar little tool exists, mat_listDITs.py, that allows one to list the Detector Integration Times (DIT)

used throughout a night. But still, we do not know with these tools to what correspond exactly which

file.

1.2. Browse MATISSE data
The next tool to use is mat_logger.py. You can call it from within a directory containing raw data by

typing

mat_logger.py /data/drs/2018-12-10_RAW

It should look like this:

The 10th VLTI school / Page 3 sur 7

This tool sorts the files by template number (corresponding to the execution of one observation of

the target, an “OB” or “observing block” in ESO jargon), displays a bunch of useful information on

each file, and more importantly shows the files in colours. This allows one to immediately identify

which files correspond to what. For example here the files in green are fringe files (where the actual

scientific data are recorded), while files in blue are sky files (pointing to a portion of the sky that does

not contain an object, for sky background calibration purposes).

Observe the keywords displayed in the logger: they are all relevant to MATISSE data!

- “DO_CATG” is the data category (raw, reduced, calib, target, etc.),

- “Disp.” Is the prism/grating dispersion: LOW for a spectral resolution of ~30 (L and N), MED

for ~500 (L), HIGH for ~300 (N) or ~1000 (L), and VHR for ~4000 (L),

- “Band” identifies the instrument arm: “L” for L and M bands and “N” for N-band,

- DIT is the Detector Integration Time, NDIT the number of frames recorded during the 1mn

exposure,

- “Mod” is the OPD modulation (turned ON or OFF),

- “Chopping” tells whether the chopping is turned ON or OFF

- Finally, ambient conditions like coherence time (Tau0) and Seeing are also displayed

Quit this GUI by clicking on the “exit” button.

1.3. Display the content of raw MATISSE data
Now that you have identified a raw data file with mat_logger, you can display its content with the

script:

mat_showRawData.py /data/drs/2018-12-10_RAW/<filename>

Let’s display a few raw exposures of the calibrator eps Lep, for instance :

- one L-band interferometric+photometric exposure (without chopping):
MATIS.2018-12-11T07:55:59.217.fits

- one N-band interferometric exposure (thus without chopping) :
MATIS.2018-12-11T07:55:59.644.fits

- one L-band interferometric+photometric exposure (with chopping):
MATIS.2018-12-11T08:01:47.336.fits

- one N-band photometric exposure (thus with chopping):
MATIS.2018-12-11T08:01:47.779.fits

Play with it a bit to browse through the frames, see chopped and non-chopped frames, compare L

and N band files etc. The window you will get should resemble the one below, with the detector sub

windows containing the 4 photometric beams (2 on the left and 2 on the right) and the

interferometric beam (in the middle), in addition to calibration windows that are collected on the

sides of the detector.

The 10th VLTI school / Page 4 sur 7

Back to mat_logger.py (see command above), by right-clicking on a file you can access to a context

menu. Some of the context elements are useful:

o Show with fv (an external fits viewer)

o Show raw data (calling the mat_showRawData.py script)

o Plot flux versus time, to display the effect of Chopping

You can also use the NASA tool fv to visualize the fits files structure. Don’t hesitate to try it also!

With all of these little tools (and more if you wish to contribute), you should be ready to go for the

next step!

2. Reducing data by hand

2.1. How it is done
To test the proper installation of the MATISSE software, use the command

esorex --recipes

to check that you can find the “mat_xxx” recipes. esorex is a scripting language that enables one to

set the parameters and file list to reduce data with any ESO pipeline (including the MATISSE

pipeline). The recipes are scripts that take files (listed in a “sof”, or “set of files” text file) and

parameters (handed in the command line) as input and produces files as output. To create a “sof”

file, one needs to list the files paths and their types. An example is given below:

/data/drs/2018-12-10_RAW/MATIS.2018-12-11T07:54:11.860.fits SKY_RAW

/data/drs/2018-12-10_RAW/MATIS.2018-12-11T08:05:18.699.fits CALIB_RAW

/data/drs/2018-12-10_RAW/KAPPA_MATRIX_HAWAII-2RG_LOW.fits KAPPA_MATRIX

/data/drs/2018-12-10_RAW/FLATFIELD_HAWAII.fits OBS_FLATFIELD

/data/drs/2018-12-10_RAW/SHIFT_MAP_HAWAII-2RG_LOW.fits SHIFT_MAP

/data/drs/2018-12-10_RAW/h2_slow_bpm_merged.fits BADPIX

/data/drs/2018-12-10_RAW/jsdc_2017_03_03.fits JSDC_CAT

Paste this text onto a text editor and save it into ~/drs_practice/test.sof

Once the sof file created, one can call esorex with the proper options to reduce the data:

https://heasarc.gsfc.nasa.gov/ftools/fv/

The 10th VLTI school / Page 5 sur 7

esorex mat_raw_estimates test.sof

It should display the progress of the reduction as it goes (should take about 2mn to reduce).

Take a look to all the files that have been created, using the fv tool:

- DSPtarget.fits and fringePeak.fits are diagnostic files to see if there are fringes in the dataset.

You can visualize it with:
fv DSPtarget.fits

Similar diagnostic files are nrjImag.fits, nrjReal.fits, BSimag.fits, BSreal.fits for both the fringe

detection and the bispectrum calculation

- CALIB_CAL_XXXX.fits contains the frames where all the detector defects should be corrected.

You can visualize it with:
fv CALIB_CAL_0001.fits

It contains 3 tables, IMAGING_DATA, IMAGING_DETECTOR and ARRAY_GEOMETRY. The first

one contains the actual data (open its content by clicking on the “All” button, ou can then

open the individual frames

- PHOT_BEAMS_XXXX.fits contains the photometric channels that are resampled to the size of

the interferometric channel

- OBJ_CORR_FLUX_0001.fits contains the correlated flux calculation

- OI_OPDWVPO_XXXX.fits contains the optical path difference computation

- RAW_VIS2_XXXX.fits, RAW_CPHASE_XXXX.fits, RAW_DPHASE_XXXXX.fits,

andRAW_SPECTRUM_XXXX.fits contain the squared visibilities, closure phases, differential

phases, and spectrum respectively.

- All these files are merged into one single oifits file CALIB_RAW_INT_0006.fits

2.2. Visualize the product: oifits files
We have a little tool to visualize the final oifits file:

mat_showOiData.py CALIB_RAW_INT_0006.fits

You can also use the fantastic oifitsexplorer tool from the JMMC to take a look to the oifits file

content. In the command line, type

oifitsexplorer

3. Batch processing

3.1. Full throttle processing
Of course, manually editing text files and running them in command line may be cumbersome,

especially for large datasets as for MATISSE!

We therefore developed a set of automatic pipeline scripts to reduce batches of data.

The first script is mat_autoPipeline.py It browses through a data directory, identifies the files to

reduce, creates the sof files and runs the esorex scripts in one go. It creates all the intermediate files

of the data reduction and the oifits files.

Example of command:

The 10th VLTI school / Page 6 sur 7

mat_autoPipeline.py --nbCore=2 --dirCalib=/data/drs/2018-12-10_RAW/ --skipN /data/drs/2018-12-10_RAW

It will run for about 30mn (15mn per OB). → go to next step directly

In the meantime, you can access to some reduced products in the directory

cd /data/drs/2018-12-10_REDUCED

There, you will find the same reduced data as done with esorex previously, but stored with a name

corresponding to the executed recipe (mat_raw_estimates) and the detector (HAWAII for LM bands

and AQUARIUS for N band), with all the intermediate files inside.

3.2. Tidying it up
For a batch data reduction, this is still not convenient for the later steps, so we designed a small

script that extracts only the relevant reduced data, namely the oifits file, and renames it in a more

human-readable way.

mat_tidyupOiFits.py /data/drs/2018-12-10_REDUCED

It will create a new directory 2018-12-10_REDUCED_OIFITS where all oifits files are stored. Take

some time to look at the files. You will see that they are split by star, configuration, spectral

resolution, Beam Commuting Device (BCD) positions (IN_IN, IN_OUT, OUT_IN, and OUT_OUT), and

whether the observation used chopping or not. This separation is important for the next step(s).

3.3. Batch displaying data
First copy the directory in your home

The tool mat_showOiData.py allows one to produce a PDF file grouping all the oifits for a quick=look

of whole datasets:

mat_showOiData.py --pdf –-mergedpdf /data/drs/2018-12-10_REDUCED_OIFITS

Another useful tool is one that displays visibilities as a function of frequency

mat_showOiFreq.py /data/drs/2018-12-10_REDUCED_OIFITS

And also (u,v) coverage

mat_showUV.py --freq=’as’ --color=’black’ --showtitle=True /data/drs/2018-12-10_REDUCED_OIFITS

You can apply these scripts to data that have already been reduced on several nights:

/data/drs/OIFITS

3.4. Displaying a transfer function
The following script displays the transfer function of a night

mat_showTransFunc.py /data/drs/OIFITS/2018-12-10_OIFITS

The 10th VLTI school / Page 7 sur 7

4. Calibrating you data
There is a recipe to calibrate data in the MATISSE pipeline that can be called with esorex in a similar

way as the data reduction routine… and there is also an automatic python script to execute it

conveniently on a batch of data!

First you will need to copy some of the raw oifits to your home directory

cp /data/drs/OIFITS/XXXX-XX-XX_OIFITS $HOME/ XXXX-XX-XX_OIFITS

mat_autoCalib.py /data/drs/OIFITS/XXXX-XX-XX_OIFITS

and voilà! You should have calibrated data ready for use for science, that you can visuzalize with

oifitsexplorer and use un other JMMC tools like Litpro and Oimaging!

