Introduction to radiative transfer and RADMC-3D

Alexis Matter Laboratoire J.L. Lagrange - Observatoire de la Côte d'Azur

VLTI school 2021, somewhere on the web

RADMC-3D Circumstellar disks – Spatial distribution and emission

RADMC-3D Circumstellar disks – Spatial distribution and emission

RADMC-3D Circumstellar disks – Spatial distribution and emission

Circumstellar disks – Grain size regime and opacity

Circumstellar disks – Grain size regime and opacity

Circumstellar disks – Grain size regime and opacity

RADMC-3D Radiative quantities – the geometrical properties

RADMC-3D Radiative quantities – the geometrical properties

RADMC-3D Radiative quantities – the geometrical properties

11

RADMC-3D Radiative quantities – Definitions

Beam: « Tube » along which some energy is transported from an emitting surface to a collecting surface

RADMC-3D Radiative quantities – Definitions

Beam: « Tube » along which some energy is transported from an emitting surface to a collecting surface

Energy
$$dE_{\lambda} = I_{\lambda} dt d\lambda dS_{col} d\Omega_{em} \text{ (unit : J)}$$
$$I_{\lambda} : \text{ Intensity (unit : J.s^{-1}.m^{-1}.m^{-2}.ste^{-1})}$$

RADMC-3D Radiative quantities – Definitions

Beam: « Tube » along which some energy is transported from an emitting surface to a collecting surface

Energy

$$dE_{\lambda} = I_{\lambda} dt d\lambda dS_{col} d\Omega_{em} (unit : J)$$

$$I_{\lambda} : Intensity (unit : J.s^{-1}.m^{-1}.m^{-2}.ste^{-1})$$
Power

$$dW_{\lambda} = I_{\lambda} d\lambda dS_{col} d\Omega_{em} (unit : J.s^{-1})$$
Bolometric flux

$$dF_{\lambda} = I_{\lambda} d\lambda d\Omega_{em} (unit : J.s^{-1}.m^{-2})$$

$$dF_{\lambda} = I_{\lambda} d\Omega_{em} (unit : J.s^{-1}.m^{-2})$$
14
Monochromatic flux
(or flux density)

 $L_* = 4\pi R_*^2 F_{*,surf}$ Star luminosity = power emitted by the whole surface of the star

 $L_* = 4\pi R_*^2 F_{*,surf}$ Star luminosity = power emitted by the whole surface of the star

 $L_* = 4\pi d^2 F_{* \rightarrow d}$ Same power BUT diluted over a sphere of $4\pi d^2$

What is the expression of $F_{*,surf}$?

Flux = Energy radiated **OUTWARD / time unit / surf. unit**

Over a solid angle of 2π steradians above the surface unit

What is the expression of $F_{*,surf}$?

Flux = Energy radiated **OUTWARD / time unit / surf. unit**

Over a solid angle of 2π steradians above the surface unit

Star = Blackbody $\rightarrow I(\lambda) = B_{\lambda}(T_{*}) \text{ (unit : J.s^{-1}.m^{-1}.m^{-2}.ste)}$

RADMC-3D Radiative quantities – Illustration What is the expression of $F_{*,surf}$? Substitution 2π steradians $g_{d\theta}$ g

Star = Blackbody $\rightarrow I(\lambda) = B_{\lambda}(T_{*}) \text{ (unit : J.s^{-1}.m^{-1}.m^{-2}.ste)}$

What is the expression of $F_{*,surf}$?

Star = Blackbody $\rightarrow I(\lambda) = B_{\lambda}(T_{*}) \text{ (unit : J.s^{-1}.m^{-1}.m^{-2}.ste)}$

$$P_{col} = \frac{R_*^2 \sigma T_*^2}{d^2} \pi a^2$$

Collected power

Radiative equilibrium $P_{col} = P_{em}$

Equilibrium temperature of the dust grain

$$T_g = \sqrt{\frac{R_*}{2d}} T_*$$

RADMC-3D Radiative Transfer – the problem

Interaction matter/radiation $\rightarrow I_{y}(ds)$?

RADMC-3D Radiative Transfer – the problem

 $I_{U}(ds) - I_{U}(0) = \Delta I$ = what is added to the ray – what is removed from the ray

RADMC-3D Radiative Transfer – the problem

 $I_{y}(ds) - I_{y}(0) = \Delta I$ = what is added to the ray – what is removed from the ray

Formal radiative transfer equation

Geometric description

Geometric description

$$\alpha_{v}(s)$$
 \longrightarrow Opacity (cgs unit : cm⁻¹)
 $\alpha_{v} = \frac{1}{l_{v,free}}$ with $l_{v,free}$: Mean free path of photons

Geometric description

N

$$\alpha_{v}(s) \implies \text{Opacity (cgs unit : cm^{-1})}$$

$$\alpha_{v} = \frac{1}{l_{v,free}} \quad \text{with} \quad l_{v,free} : \text{Mean free path of photons}$$

$$\tau_{v}(s_{0}, s_{1}) = \int_{s_{0}}^{s_{1}} \alpha_{v}(s) ds \quad \text{Optical depth : number of mean free paths}$$

'Particle/density 'description

' Particle/density ' description

 $\alpha_{v}(s) \implies$ Opacity (cgs unit : cm⁻¹)

 $\rightarrow \alpha_{v} = \rho \kappa_{v}$ With ρ the cloud density [g.cm⁻³] and κ_{v} the mass extinction cross section [cm².g⁻¹]

'Particle/density 'description

 $\alpha_V(s)$ \longrightarrow Opacity (cgs unit : cm⁻¹)

 $\rightarrow \alpha_{v} = \rho \kappa_{v}$ With ρ the cloud density [g.cm⁻³] and κ_{v} the mass extinction cross section [cm².g⁻¹]

$$\rightarrow \tau_{\nu}(s_0, s_1) = \int_{s_0}^{s_1} \rho \kappa_{\nu} \, ds = \kappa_{\nu} \int_{s_0}^{s_1} \rho \, ds = \kappa_{\nu} \times \Sigma$$

Surface density [g.cm⁻²] (volume density integrated along the line of sight)
' Particle/density ' description

 $\alpha_V(s)$ \longrightarrow Opacity (cgs unit : cm⁻¹)

 $\sim \alpha_{v} = \rho \kappa_{v}$ With ρ the cloud density [g.cm⁻³] and κ_{v} the mass extinction cross section [cm².g⁻¹]

 $\kappa_v = \frac{\sigma_v}{m}$ With *m* the grain mass [g] and σ_v the grain extinction cross section [cm²]

'Particle/density 'description

 $\alpha_V(s)$ \longrightarrow Opacity (cgs unit : cm⁻¹)

 $\omega_{\nu} = \rho \kappa_{\nu}$ With ρ the cloud density [g.cm⁻³] and κ_{ν} the mass extinction cross section [cm².g⁻¹]

 $ightarrow \kappa_v = \frac{\sigma_v}{m}$ With *m* the grain mass [g] and σ_v the grain extinction cross section [cm²]

$$\frac{dI_{\nu}(\vec{n},s)}{ds} = j_{\nu}(s) - \alpha_{\nu}(s)I_{\nu}(\vec{n},s)$$

1) General solution without second member

$$\frac{dI_{\nu}}{I_{\nu}} = -dt_{\nu} \qquad \longrightarrow \qquad \int_{0}^{\tau_{\nu}} \frac{dI_{\nu}}{I_{\nu}} = -\int_{0}^{\tau_{\nu}} dt_{\nu} \qquad \longrightarrow \qquad I_{\nu}(\tau_{\nu}) = I_{\nu}(0)e^{-\tau_{\nu}} = I_{g}$$

2) Particular solution with second member

Let us consider a solution of the form $I_p(\tau_v) = k(\tau_v)e^{-\tau_v}$

$$\frac{dI_{\nu}}{I_{\nu}} = -dt_{\nu} \qquad \longrightarrow \qquad \int_{0}^{\tau_{\nu}} \frac{dI_{\nu}}{I_{\nu}} = -\int_{0}^{\tau_{\nu}} dt_{\nu} \qquad \longrightarrow \qquad I_{\nu}(\tau_{\nu}) = I_{\nu}(0)e^{-\tau_{\nu}} = I_{g}$$

2) Particular solution with second member

Let us consider a solution of the form $I_p(\tau_v) = k(\tau_v)e^{-\tau_v}$

Inject it into RT equation
$$\longrightarrow \frac{d(k(t_v)e^{-t_v})}{dt_v} + k(t_v)e^{-t_v} = S_v(t_v)$$

$$\frac{dI_{\nu}}{I_{\nu}} = -dt_{\nu} \qquad \longrightarrow \qquad \int_{0}^{\tau_{\nu}} \frac{dI_{\nu}}{I_{\nu}} = -\int_{0}^{\tau_{\nu}} dt_{\nu} \qquad \longrightarrow \qquad I_{\nu}(\tau_{\nu}) = I_{\nu}(0)e^{-\tau_{\nu}} = I_{g}$$

2) Particular solution with second member

Let us consider a solution of the form $I_p(\tau_v) = k(\tau_v)e^{-\tau_v}$

Inject it into RT equation
$$\longrightarrow \frac{d(k(t_v)e^{-t_v})}{dt_v} + k(t_v)e^{-t_v} = S_v(t_v)$$

Find particular solution
$$\longrightarrow I_p = \int_0^{\tau_v} S_v(t_v) e^{-(\tau_v - t_v)} dt_v$$

$$\frac{dI_{v}}{I_{v}} = -dt_{v} \longrightarrow \int_{0}^{\tau_{v}} \frac{dI_{v}}{I_{v}} = -\int_{0}^{\tau_{v}} dt_{v} \longrightarrow I_{v}(\tau_{v}) = I_{v}(0)e^{-\tau_{v}} = I_{g}$$

2) Particular solution with second member

Let us consider a solution of the form $I_p(\tau_v) = k(\tau_v)e^{-\tau_v}$

Inject it into RT equation
$$\longrightarrow \frac{d(k(t_v)e^{-t_v})}{dt_v} + k(t_v)e^{-t_v} = S_v(t_v)$$

Find particular solution
$$\longrightarrow I_p = \int_0^{\tau_v} S_v(t_v) e^{-(\tau_v - t_v)} dt_v$$

3) General solution with second member

$$I_{\nu}(\tau_{\nu}) = I_{\nu}(0)e^{-\tau_{\nu}} + \int_{0}^{\tau_{\nu}} S_{\nu}(t_{\nu})e^{-(\tau_{\nu}-t_{\nu})}dt_{\nu}$$
⁴⁷

Let us consider $S_{\nu}(t_{\nu}) = S_{\nu}$ (Source function constant throughout the cloud)

$$I_{\nu}(\tau_{\nu}) = I_{\nu}(0)e^{-\tau_{\nu}} + S_{\nu}(1 - e^{-\tau_{\nu}})$$

Let us consider $S_{\nu}(t_{\nu}) = S_{\nu}$ (Source function constant throughout the cloud)

$$I_{\nu}(\tau_{\nu}) = I_{\nu}(0)e^{-\tau_{\nu}} + S_{\nu}(1 - e^{-\tau_{\nu}})$$

Let us consider we are in Local Thermodynamical Equilibrium (LTE) (T is everywhere the same)

$$S_{\nu}^{ETL} = \frac{j_{\nu}^{ETL}}{\alpha_{\nu}^{ETL}} = B_{\nu}(T)$$

Let us consider $S_{\nu}(t_{\nu}) = S_{\nu}$ (Source function constant throughout the cloud)

$$I_{\nu}(\tau_{\nu}) = I_{\nu}(0)e^{-\tau_{\nu}} + S_{\nu}(1 - e^{-\tau_{\nu}})$$

Let us consider we are in Local Thermodynamical Equilibrium (LTE) (T is everywhere the same)

$$S_{\nu}^{ETL} = \frac{j_{\nu}^{ETL}}{\alpha_{\nu}^{ETL}} = B_{\nu}(T)$$

This is *Kirchhoff's law*. It says that a medium in thermal equilibrium can have any emissivity j_v and extinction α_v , as long as their ratio is the Planck function.

Let us consider $S_{\nu}(t_{\nu}) = S_{\nu}$ (Source function constant throughout the cloud)

$$I_{\nu}(\tau_{\nu}) = I_{\nu}(0)e^{-\tau_{\nu}} + S_{\nu}(1 - e^{-\tau_{\nu}})$$

Let us consider we are in Local Thermodynamical Equilibrium (LTE) (T is everywhere the same)

$$S_{\nu}^{ETL} = \frac{j_{\nu}^{ETL}}{\alpha_{\nu}^{ETL}} = B_{\nu}(T)$$

This is *Kirchhoff's law*. It says that a medium in thermal equilibrium can have any emissivity j_v and extinction α_v , as long as their ratio is the Planck function.

Explicit solution for a medium in thermal equilibrium (e.g., an isothermal dust cloud)

$$I_{\nu}(\tau_{\nu}) = I_{\nu}(0)e^{-\tau_{\nu}} + B_{\nu}(T)(1 - e^{-\tau_{\nu}})$$

RADMC-3D Simple model of disk emission

Simple two-layer disk model

Simple two-layer disk model

RADMC-3D Simple model of disk emission

Introduction

RADMC-3D Radiative transfer modeling with RADMC-3D

Introduction

RADMC-3D Radiative transfer modeling with RADMC-3D

Introduction

RADMC-3D Radiative transfer modeling with RADMC-3D

Introduction

Which spatial distribution of dust/gas do i want for my model?

Coordinate system = cartesian (x,y,z) or spherical (r, θ , ϕ)

Spatial grid = 1D (spherical), 2D (spherical), or 3D (spherical or cartesian)

Which spatial distribution of dust/gas do i want for my model?

Coordinate system = cartesian (x,y,z) or spherical (r, θ , ϕ)

Spatial grid = 1D (spherical), 2D (spherical), or 3D (spherical or cartesian)

Example : 2D model (axial symmetry)

Then, what is the dust EQUILIBRIUM temperature everywhere in the object ?

Then, what is the dust EQUILIBRIUM temperature everywhere in the object ?

* Monte Carlo methods : broad class of computational algorithms that rely on repeated random sampling to obtain numerical results. The underlying concept is to use randomnness to solve problems that might be deterministic in principle.

Then, what is the scattering source function everywhere in the object ?

RADMC-3D RADMC-3D - Making images and SED

Finally, how will my object look like ? What is the $I(\lambda,x,y)$?

Finally, how will my object look like ? What is the $I(\lambda,x,y)$?

Ray-tracing (at each wavelength)

Credit : RADMC-3D manual

RADMC-3D RADMC-3D – Making images and SED

Finally, how will my object look like ? What is the $I(\lambda,x,y)$?

RADMC-3D RADMC-3D - Making images and SED

More detailed explanations of the ray-tracing approach

The easiest way is to perform a process known as *volume rendering*, also called *for-ward ray tracing*. It is very simple: we simply integrate the formal transfer equation

$$\frac{dI_{\nu}(s)}{ds} = \alpha_{\nu}(\mathbf{x}(s))[B_{\nu}(T(\mathbf{x}(s))) - I_{\nu}(s)]$$
(5.15)

along a ray starting behind our cloud, going through the cloud and ending up at the observer. We only have to figure out how to choose the rays such that each ray belongs to a specific pixel in the image we wish to make.

The other way is to put the observer "at infinity". In this case the rays of the image will all be parallel. The image plane is again put perpendicular to the rays, but since no "depth perspective" is present in this case, it does not matter where we put it. This is illustrated in the other margin figure. The pixel size can no longer be expressed in terms of angle. Instead must specify *pixel size in centimeters*. We can thus compare pixel size with actual size scales of our object.

In reality the observer is, of course, never truly at infinity. But for most cases this is a good approximation. We can always convert the pixel size from cm to radian if we specify the distance *d* to the observer: $\Delta x^{\text{rad}} = \Delta x^{\text{cm}}/d$.

The advantage of using the "observer at infinity" approach, and specifying the image pixel size in centimeters instead of radian, is that we can compute the image first, and worry about the distance of the observer later, as long as the observer is in the far-field.

What the ray tracing method give you is the intensity at the center of each pixel of your image. In order to make a true image out of this we make the *assumption* that this intensity represents the *average intensity* of the pixel. If the cloud that we are observing is smooth enough, and if the pixels of our image are small enough, then this assumption is probabily fine. In that case we can safely use Eq. (5.16) to compute the flux from an image.

RADMC-3D

RADMC-3D

RADMC-3D – A typical disk model

RADMC-3D RADMC-3D - A typical disk model

Vertical disk structure

RADMC-3D RADMC-3D - A typical disk model

Vertical disk structure

Radial disk structure

Ζ

Dust

r

Radial disk structure

Gas density distribution

RADMC-3D RADMC-3D - A typical disk model

Let us assume dust follows a similar type of vertical and radial structure

Parallelization

✓ Monte Carlo runs \rightarrow OpenMP parallelized version

Availability of the code

✓ Publicly available and free of charge

✓ Package downloadable at: https://www.ita.uni-heidelberg.de/~dullemond/software/radmc-3d/

User support

✓ Detailed manual included in the package

✓ Mailing list for updates and bug reports

Not included yet

✓ Radiative transfer computation for quantum heated grains (PAHs, VSGs)

- ✓ No self-consistent computation of the disk vertical structure (hydrostatic equilibrium)
- ✓ No dust/gas dynamics considered ('static' models)