DIRECT OBSERVATION OF EXOPLANETS WITH GRAVITY

VLTI SCHOOL 2021 S. LACOUR

ON THE DIFFICULTY OF DIRECT DETECTION

Bern model of planet formation and evolution (Mordasini et al. 2012) Including the Young Stellar formation regions (Cha, Sco-Cen) Including Young moving groups (Beta Pictoris, TW Hya, Carina, etc..)

Stellar light (Extreme AO, 95%Strehl)

500 mas

EC=58/60%;t0=8.1/9.7ms;texp=420/420s

Fomalhaut b Planet 2006 17/06/2021 9

17/06/2021

THE GRAVITY INTERFEROMETER

GRAVITY @ ESO VLTI

The GRAVITY cryostat

Haug, Thiel, Hausmann & the GRAVITY collaboration

Haug, Thiel, Hausmann & the GRAVITY collaboration

FIBERCOUPLER

FIBERCOUPLER

 $\delta OPD = \vec{B} \cdot (\vec{\alpha} - \vec{\beta})$

	Metrology phases	Fringe Tracker visibilities
	O O O	
	V.14 V0.1 2 3 4 6 6 7 8 9 10 11 6 1 40.565004 40.564764 40.5195026 40.5195626	
	2 -0.00370/m -0.00447/3 -0.00447/3 -0.00447/3 -0.00447/3 -0.0047/4 0.0017/4 0.000370/6 0.0017/4 0.000370/6 0.0017/4 0.000370/6 0.0017/4 0.000370/6 0.0017/4 0.000370/6 0.0017/4 0.000370/6 0.0017/4 0.0017/6 0.0017/7 0.001	888888 888888888888888888888888888
	6 -0.069170 -0.08736 -0.0819766 -0.081976 -0.081976 -0.081976 -0.081976 -0.081976 -0.081976 -0.081976 -0.081976 -0.081976 -0.081976 -0.081976 -0.081976 -0.081976 -0.081976 -0.081976 -0.081976 -0.081976 -0.081976 -0.081	Det
	B 0.00500045 0.013907 0.0048244 0.0149247 0.0080074 0.038074 0.038074 0.038074 0.038074 0.038074 0.038074 0.038074 0.038074 0.038074 0.038074 0.038074 0.038074 0.038074 0.038074 0.038074 0.038074 0.018074 <	ecto
	11 0.058996 0-300638 0-011234 0.014623 0-003222 0-0340958 0.05000 0.017297 0.074458 0-003786 0.021476	r B
	14 0.05286004 0.078837 -0.0282074 0.0448887 -0.00705528 0.0472355 0.0383797 0.0504287 0.0225770 0.0 15 0.0297167 -0.0588484 -0.05082864 -0.05082864 -0.0508586 -0.0508587 -0.0508587 0.0207570 0.0 19 -0.0948787 -0.0948787 -0.0908787 0.00497877 0.00497877 0.00	
	17 -0.0096528 -0.011648 0.0106480 0.0166480 0.0164460 0.0030881 0.084288 -0.0112822 -0.0113822	
	19 40.54229 -0.505295 -0.505295 0.505532 0.5055134 0.505512 0.2021535 0.505516 0.505	888888 88888888888888888888888888888888
	22 -0.0688476 -0.0242660 -0.0281768 -0.0881768 -0.0647086 0.0281767 -0.0847086 0.0281767 0.031267 21 -0.0688476 -0.0261768 -0.0281768 -0.0581768 -0.0581768 0.0581748 0.0251767 0.031267 24 -0.171206 -0.0688484 -0.0251684 -0.0561848 0.0057186 0.0251748 0.0251768 0.025174 24 -0.171206 -0.068848 -0.0256849 0.0205274 0.0271750 0.18844 0.00567188 0.0205744 0.025178 0.0205144 0.0256718 0.0205144 0.0256718 0.0205144 0.0256718 0.0205144 0.0256718 0.0205144 0.0256718 0.0205144 0.0256718 0.0205144 0.0256718 0.0205144 0.0256718 0.0205144 0.0256718 0.0205144 0.0256718 0.0205144 0.0256718 0.0205144 0.0256718 0.0205144 0.0256718 0.0205144 0.0256718 0.0205144 0.0256718 0.0205144 0.0256718 0.0205144 0.0256718 0.0205144 0.0256718 <td></td>	
	25 -0.558460 -0.058690 0.2058790 -0.114692 -0.005890 0.079846 0.556483 -0.078976 0.0051916 -0.556692 -0.75699 28 -0.556999 -0.075890 -0.0258090 -0.058939 0.0256096 -0.0786400 -0.0252096 -0.00223096 <td< td=""><td>BC</td></td<>	BC
000000000000000000000000000000000000000		

Science camera visibilities

0 0	Selec	Select FITS file extension - /Users/slacour/GRAVITY/Old/PZTel/GRAVITY_PARALLEL_OB									
	Extension	Header	Туре	Size	#1	#2	#3	#4			
	PRIMARY		IMAGE	1 x 1	load						
	ARRAY_DESCRIPTION		BINARY TABLE	5 x 108	BINTABLE	OPTI_NAME	VALUE	DESCI	Ň		
	ARRAY_GEOMETRY		BINARY TABLE	6 x 4	TEL_NAME	STA_NAME	STA_INDEX	DIAMETER			
	OPTICAL_TRAIN		BINARY TABLE	30 x 4	INDEX	TEL_NAME	OPTI_NAME1	VALUE1]		
	IMAGING_DATA_ACQ		IMAGE	1000 x 1000	load						
	IMAGING_DATA_SC		IMAGE	360 x 288 x 30	load)					
	IMAGING_DETECTOR_SC		BINART TABLE	10 X 24	REGION	DETECTOR	PORTS	CORRELATION			
	OPDC		BINARY TABLE	9 x 101135	TIME	STATE	STEPS	BASELINE_STATE			
	EDDI		RINARY TARI E	A x 222500	TIME	ET DOS	SC_POS	OPL_AIR			
	METROLOGY		BINARY TABLE	4 x 55627	TIME	VOLT	POWER_LASER	LAMBDA_LASER			
	IMAGING_DATA_FT		BINARY TABLE	2 x 101140	TIME	PIX					
-	IMAGING_DETECTOR_FT		DINART TABLE	0 X 24	REGION	DETECTOR	PORTS	CORRELATION			
1	ACQ_ABS_REF_POSITION		BINARY TABLE	4 x 154	VALUE1	VALUE2	VALUE3	VALUE4			
:	GVCTU_CONV_PARAM_1		BINARY TABLE	75 x 56	trafoName	crsrc1	crsrc2	crdst1			
1	GVCTU CONV PARAM 2		BINARY TABLE	75 x 56	trafoName	crsrc1	crsrc2	crdst1			

Cancel

Read All

ur Observing Runs 🔹	🖒 Check 🗸 Certify	A Revise Edit 🔹	≓ Import/Export ▼ 📋 De	elete 📿 Refre	sh OB 🌲	Reveal in tree					
t by: Nothing selected 🔹	1104.C-0651(A) · G	RAVITY · OB 2791	448 betapicc_dither_0	C Exp. Time:	00:00:00	• Exec. Time: 00:00:00	(A)borted				
	Cobs. Description		raint Set O Time Interval	s 🖪 Finding (harts	Ephemeris 🗠 Target Vi	sibility				
	GRAVITY dual	acq 🔹	▼ GRAVITY dua	obs exp	44	GRAVITY dual	obs exp	4	▼ GRAVITY dual	obs exp	
+ Backup targets 3	#1 acquisition 1907	1327	#2 science 190132	28		#3 science 190132	.9	*	#4 science 190133	1	
OB 2791421 · 51Eri_on_LOW	FT object name	betapic	Science integration	1	\$	Science integration	100	\$	Science integration	1	
OB 2791429 · HD95086_on_LOW	FT object total	3.48	time (DIT in s) Number of science	64		time (DIT in s) Number of science	8		time (DIT in s) Number of science	64	
2701422	FT object diameter	0	frames (NDIT)	04		frames (NDIT)	0	•	frames (NDIT)	04	
HD97048 on 20200209	(mas)		Number of sky frames (NDIT)	64	•	Number of sky frames (NDIT)	8	•	Number of sky frames (NDIT)	64	
	FT object expected visibility	1	Sequence of HWP	0		Sequence of HWP	0		Sequence of HWP	0	
- E betapic_on_HIGH 1	FringeTracker mode	AUTO 🗘	offsets (deg) Sequence of	0.5		offsets (deg) Sequence of	0		offsets (deg) Sequence of	0	
ов 🛛 2791448 ·	SC object name	betapicc	observations Object	00		observations Object			observations Object	0	
betapicc_dither_0	SC object total magitude	3.48	Sequence of SC	0.6		Sequence of SC	-59.4		Sequence of SC	0.6	
OB CB Fld	SC object diameter	0	relative RA offsets (mas)			relative RA offsets (mas)			relative RA offsets (mas)		
	(mas) SC object expected	1	Sequence of SC	1		Sequence of SC	-99		Sequence of SC	1	
+ 51Eri_on-off_MED 2	visibility		relative DEC offsets (mas)			relative DEC offsets (mas)			relative DEC offsets (mas)		
2791470 . HD91881 off swap	SC object (mas)	-0.6	Sky dRA offset in	2000		Sky dRA offset in	2000		Sky dRA offset in	2000	
	DEC offset from FT to SC object (mas)	-1	Sky dDEC offset in	2000		Sky dDEC offset in	2000		Sky dDEC offset in	2000	
+ Detapic_on_HIGH 7	AcqCam guide star	3.51	milliarcsecond	COLENIOE		milliarcsecond	COLENIOE		milliarcsecond	COLEMON	
+ executed 1	Magnitude in H	D 0	Data product category	SCIENCE	-		SCIENCE	•	Data product category	SCIENCE	
	alignment		Dupli	cate 🕒 🛛 Dele	te 🔳	Duplic	cate 🗋 🛛 De	lete 🔳	Duplic	ate 🕒 🛛 De	elete
- betapic_on_MED 7	Manual or Auto pick FT object	A 🗘									
ов 🛛 2791550 ·	Manual or Auto pick	F \$									
betapicc_dither_0	SC object FT object parallax	0.05144									
OB Q 2791553 ·	(arcseconds)	0.00144									
betapicb_dither_1	Science spectrometer resolution	HIGH \$									
	Fringe-tracker	OUT \$									
betanice dither 2	Wollaston										
betapicc_ditner_2	Science spectrometer	OUT 🗘									
OB @ 2791559 ·	Coude guide star (GS)	SCIENCE \$									
betapicb_dither_3	input										
ов 🛛 2791562 ·	GS RA IT SET UPFILE	00:00:00.000							33444000	-	
	03 DEC II SET OFFILE	00:00:00:00							17/06/2021	2	3

RESULTS FROM OPTICAL INTERFEROMETRY

17/06/2021

36

Nowak et al. (2020) Lagrange et al. (2020) → Press release tomorrow

17/06/2021

38

17/06/2021

4T

5
2

Parameter	Prior distribution	Poster	Unit		
Star		βF			
Stellar mass	Gaussian (1.77 ± 0.02)	1.82	M_{\odot}		
Parallax	Uniform	51.42	\max		
proper motion	Uniform	$\texttt{ra}{=}4.88\pm0.02$	m mas/yr		
$RV v_0$	Uniform	-23.0	m/s		
RV jitter	Uniform	31.2	1 ± 8.09	m/s	
Planets		β Pictoris b	β Pictoris c		
Semi-major axis	Log Uniform	9.90 ± 0.05	2.72 ± 0.02	au	
Eccentricity	Uniform	0.10 ± 0.01	0.37 ± 0.12		
Inclination	Sin Uniform	88.99 ± 0.01	89.17 ± 0.50	\deg	
PA of ascending node	Uniform	31.82 ± 0.02	30.98 ± 0.12	\deg	
Argument of periastron	ent of periastron Uniform		196.9 ± 3.5 66.2 ± 2.5		
Epoch of periastron	ch of periastron Uniform		0.83 ± 0.02		
Planet mass	Gaussian (15.4 ± 3.0)		9.0 ± 1.6		
	Log Uniform		8.2 ± 0.8	M_{jup}	
Period		23.28 ± 0.46	3.37 ± 0.04	years	
$\Delta m_{\rm K}$		8.9 ± 0.1	10.8 ± 0.1	mag	

Nowak et al. (2020)

PDS 70 B & C

PDS 70 B & C

Gaussian prior on coplanarity with disk : Sigma = 10 degrees

Gaussian prior on coplanarity between b & c

Wang et al. (work in progress)

2000 Rjup

 \rightarrow

With circumplanetary model, for PDS70b: Rcpd < 1mas (0.1au)

> R Hill = 1.6 au R Bondi = 8 au

K BAND SPECTRA (J. WANG ET AL. IN PREPARATION)

- PLANETARY-TYPE ATMOSPHERE
- NO BLACK BODY CPD
- NEED TO ADD EXTINCTION

BETA PICTORIS B

- 23 MYR OLD
- 20 PC
- ~ 12 MJUP PLANET

Beta Pictoris b

Gravity Collaboration: M. Nowak et al. (2020)

Spectral Modeling

Self-consistent Chemical Modeling Cloud Modeling Radiative-convective temperature => "correct" / slow / can use sparse data

Free retrieval

Abundance Cloud opacity Temperature Parametrize! => "data speak" / fast / compare models

- complicated
- unknown
- love to blow up self-consistent codes

Planet composition varies with disk radius

This simple picture ignores chemistry (freeze out only)

PROSPECTS FOR OPTICAL INTERFEROMETRY

8

The Very Large Telescope in 2030 – White paper proposed to ESO – strongly supported

GRAVITY⁺ : Towards foint science, all sky milliarcsec optical interferometric imaging

STC recommends immediate start

GRAVITY⁺: Towards faint science, all sky milliarcsecond optical interferometric imaging

Constructions by Performing and the Construction of the Constructi

Introduction

Ever since the development of 'aperture synthesis' spatial interferometry in the raband in the 1950s (Syr& Hewshi 1946), this technique has been the standard choice for development of large aperture, high angular resolution tolescopes in the microwave a radio bands (Thompson, Moran & Swenson 1986).

The probability of radia interference type has based on assuming the range has much shifting the same based on the same set of the same set of the same set of the same set of the same based on the same set of the same based on the same set of the same s

> s over a wide field-of-view. evel polarimetric m extral astrometry at the level of 0.06 degrees rms in interfer

Off Axis Tracking

Adaptive Optics

Laser Guide Stars

Improved Sensitivity

ExoGRAVITY : exoplanets are design-driver science case

Credit: ESO, Huedepohl