Theory and Modelling of YSOs

Lucia Klarmann - MPIA - VLTI school - 11.06.21

Theory and Modelling of protoplanetary disks

Lucia Klarmann - MPIA - VLTI school - 11.06.21

Topics

ALMA Partnership+ 2015, Klarmann+ 2017

Disk formation

based on Wilking+89, Bill Saxton NRAO/AUI/NSF

Disk structure

Henning+ 2013

Gas disk

Kamp+ 2017

Gas disk

Kamp+ 2017

Dust disk

based on Testi et al. 2014

PPD: structure, wavelengths, instruments

Exploring the inner disk region

Continuum observations

Continuum observations

Spectro - Interferometry

What does the data look like?

AND WHICH MODELS CAN I USE TO REACH MY SCIENCE GOAL?

A first look at continuum visibilities

Klarmann+ 2017

A first look at continuum visibilities

A three step modelling approach

From data to flux geometry

From data to flux geometry

shape	flux geometry	visibility V
point	$\delta(r)$	1
Gaussian	$\sqrt{\frac{\log 2}{\pi R^2}} \exp\left(-\ln 2\frac{r^2}{R^2}\right)$	$\exp\left(-\frac{(\pi Rb)^2}{\ln 2}\right)$
infinitely thin ring	$\frac{\delta(r-R)}{2\pi R}$	$J_0(2\pi Rb)$
uniform disk	$\frac{1}{\pi R^2}$ if $r < R$	$\frac{J_1(2\pi Rb)}{\pi Rb}$

= 1 = 0 $V = \frac{f_{\rm s}V_{\rm s} + f_{\rm d}V_{\rm d} + f_{\rm h}V_{\rm h}}{f_{\rm s} + f_{\rm d} + f_{\rm h}}$ = 1

A three step modelling approach

A three step modelling approach

From flux geometry to disk geomtry

From disk geometry to disk physics

From disk geometry to disk physics

The inner rim position of HD 100453 can be explained with silicate particles following a standard mrn distribution, but the extended flux requires the presens of quantum heated carbonacous grains.

RT

Klarmann+ 2017

Modelling disk asymmetries

MATISSE L-band data of HD 163296 (3.2 μm)

Modelling disk asymmetries

Analytical vs discret FT

Degeneracy of fit solutions

How to proceed?

Data 🕩	Flux geometry	•	Disk geometry	•	Disk physics
--------	------------------	---	------------------	---	-----------------

Varga+ 2021

Symmetric gaussian and (additional) point source

Gaussian ring model

(with azimutal variation)

Directly from data to physics

Gaussian ring model (with azimutal variation)

 $I_{\nu}(r) \propto B_{\nu} \left(T_{\rm in} \left(\frac{r}{R_{\rm in}} \right)^{-q} \right)$

Qualitative comparison, more observations

numerical simulations with AMRVAC

Qualitative comparison, more observations

MATISSE L-band data of HD 163296 (3.2 μ m)

Gaussian ring model (with azimutal variation)

RA offset (mas)

-2

hydro-dynamical numerical simulations with AMRVAC

GRAVITY and PIONIER observations exlude a planet as flux source and indicate variablility.

Varga+ 2021, Xiaet al. 2018

Variablity with geometric flux modelling

GRAVITY fring tracker data, YSO, medium baselines

Variablity can be difficult to interpret

GRAVITY fring tracker data, YSO, medium baselines

Klarman+ in prep.

Variability can be difficult to interpret

Image reconstruction is very valuable if uv coverage is good enough.

Spectro-interferometry: basic line analysis

$$V_{Br\gamma} = \frac{\sqrt{|F_{tot}V_{tot}|^2 + |F_{cont}V_{cont}|^2 - 2F_{tot}V_{tot}F_{cont}V_{cont}cos\phi}}{F_{line}}$$

$$F: flux$$

$$V: visibility$$

$$\Phi: differential phase$$

GRAVITY observations of HR5999

Continuum and spectrum

Pure line visibilities

Average line visibility

Geometric model results with context:

Geometric model results with context:

How to get the right dataset

How to get the right dataset

Are there gaps in the inner disk region?

Varga+ 2018, Menu+ 2015, AMA partnership+ 2015

RT model grid with relevant parameters

parameter	values
declination	-20, 20, 60 degrees
inclination	10, 45, 60 degress
gap size	0.5, 1, 2, 4 au
gap position	0.3, 0.48, 0.76, 1.2 au

RT model grid with relevant parameters

parameter	values
declination	-20, 20, 60 degrees
inclination	10, 45, 60 degress
gap size	0.5, 1, 2, 4 au
gap position	0.3, 0.48, 0.76, 1.2 au

Synthetic PIONIER, GRAVITY and MATISSE observations

Visibilities and CP for a 2 au gap

Visibilities and CP for a 2 au gap

Primordial composition of disk material

- Focus on C/O
- condensation sequences computed at LTE and in 1d
- -> different disk mineralogy
- Minerals have features in the N-band
- Grain size effects the features
- -> RT models with different grain sizes for each C/O ratio
- Basis for MATISSE observations

Primordial composition of disk material

- Focus on C/O
- condensation sequences computed at LTE and in 1d
- -> different disk mineralogy
- Minerals have features in the N-band
- Grain size effects the features
- -> RT models with different grain sizes for each C/O ratio
- Basis for MATISSE observations

Matter+ 2020

What about magnetic fields?

Additional comments

- remember the limited interferometric field of view
- look at your data against baseline and wavelength
- model the SED in parallel with the interferometric data
- use the SED to constrain the star to disk flux ratio
- determin inclination and position angle from the interferometric data
- write your own code to fit size, inclination and position angle
- consider existing code for more detailed models
- get collaborators for physical models
- start modelling even if you don't understand everything

I have NIR/MIR interferometry data. How do I exploit it?

- attend the vlti school
- collect all existing observations/models of your object(s)
- learn what you can from looking at the data
- understand the basic flux geometry with a simple model
- test for variability
- understand the basic geometry of lines/features
- start to explore the disk structure, composition and physics

Exploring the inner disk region

