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Interferometric imaging is quite simple

Black BoxTM

someone told me I should use this



VLTI SUMMER SCHOOL 2021

Just do that

Black BoxTM

Please standby while rabbits

are working on your image...
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Sometimes it does not work.

Black BoxTM

Please standby while rabbits

are working on your image...

Sorry...
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Sometimes it does.

Black BoxTM

Just add to your paper!
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The End?
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 We want to determine and characterize the 
most probable image(s) given a dataset D, as 
well as some other background info M 

• Traditionally a single “most probable” image 
is given

• Research is ongoing to determine effective 
algorithms giving the spread of potential 
images via error maps (“Is this spot real ?”)

• We don’t want artefacts

What do we want from imaging?

VLTI PIONIER images of Pi1 Gruis
Paladini et al. 2018
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 Images can be:

• Model-based: a geometrical or physical 
model is used to fit the data

• Model-independent: the image is represented 
by many identical model parameters, such 
pixel intensities or a vector of stellar surface 
temperatures. 

• Mixed: a model is used to account for certain 
spatial components (unresolved star in YSO), 
spectral behavior (      ) or temporal behavior 
(orbit) 

What is an image?

Herbig AeBe images from VLTI-PIONIER data
Kluska et al., 2020
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A famous example: the 2004 Interferometry Beauty Contest data

Most of the code used for this talk can be found at github.com/fabienbaron/OITOOLS.jl/demos

http://github.com/fabienbaron/OITOOLS.jl/demos
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Checklist of ingredients for image reconstruction
 A data set: choice of observables to take into account: powerspectra, 

closure phases, triple amplitudes, differential phases, fluxes (whatever is in 
your data)

 Angular size of a pixel (example: 0.5 mas/pixel). Typically 

 Field of view: image size (typically: 64x64, 128x128 pixels)

 A choice of Fourier Transform (exact DFT, NFFT, including or not bandwidth 
smearing) to define the 

 Choice of regularization functions and their weights relative to 

 An initial guess (example: point source at the center, random values, model 
fitted from the data)

 An algorithm to optimize the chi2 starting from the initial guess
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Reminder: the forward model: from image to observables

x
image

V
Complex 
visibilities

 Phase of complex visibilities

Discrete 
Fourier 
Transform
(slow, exact)    

Non-equispaced 
Fast 
Fourier 
Transform
(fast yet accurate)

or

Closure phases (via phases)
Differential phases

Bispectra

Powerspectra

Closure phases
(via bispectrum)

Triple Amplitudes
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Direct Inversion: dirty beam, dirty map

H only depends on the uv coverage + wavelengths + image size/field of view

Set V = 1 for all uv points → dirty beam image, akin to the PSF of the observations

Use magic to measure noiseless complex visibilities V at each uv point → dirty map image

Use actual measured           data to infer V → dirty map from     
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Direct Inversion: dirty beam, dirty map

Yet this data set is one of the easiest to image. 

We often have more pixels in the sought image than measurements, so the image 
restoration problem is ill-posed. 
Even when there are lots of data, the effective amount of information contained in 
them is still insufficient to properly recover all the image information.

We need a better approach to this ill-posed inverse problem.
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Bayes theorem to the rescue

Posterior probability of the image Likelihood PriorEvidence

We want to compute the probability of an image x, knowing the data D and a model of 
image formation and background information M

Likelihood of the image → how well the image fits the data

Our prior knowledge of the image → what we would expect the 
image to look like even without new data. M includes our choice 
of priors and how strongly we enforce them.

Marginal likelihood or “evidence” = integrated likelihood & prior, 
how well the data can be described by our assumptions. 
For a given dataset and choice of prior, this is constant.
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 Taking the log of the previous expressions

 The more likely an image, the lower the criterion 

 The most likely image given D and M is found via maximum a posteriori, 
also known as regularized maximum likelihood:

Regularized maximum likelihood

Gaussian likelihood, normal error distribution on data

Ad hoc expression, R is called a prior or regularization function
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The Likelihood term: what is it?

 The likelihood measures how well the image fits the data

 Data is assumed with Normal distribution, as specified in the 
OIFITS standard

 Multiple observables in different tables (OI_VIS, OI_V2, OI_T3) 
have Gaussian distribution characterized by nominal value + error 
bar  

 Current image x → current visibilities → current observables, to 
compare to actual data recorded
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Reminder: from model observables to 

Differential phases

Powerspectra

Closure phases

Triple Amplitudes

Computed Measured (OIFITS data)

Similar expressions for t3amp, t3phi, visphi



VLTI SUMMER SCHOOL 2021

The powerspectrum data encode the Fourier radial profile of the target. 

It is often said that “closure phases encode the flux asymmetries of the target” but 
not the location of said flux.

Reconstruction from bispectrum (initially what IRBiS did) look good.

Powerspectra and triple amplitudes provide different measurment of the visibility 
amplitudes.

Effect of the different observables on imaging
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Common issues with likelihood

 Hidden correlations between 
observables, and between spectral 
channels (depends on instrument)

 Insufficient by itself

 Previous images included 
regularization

 Hard to minimize

– Multimodal due to missing phase 
(local minima)

– Non-convex

Bispectrum noise distribution
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Common issues with likelihood

 Hidden correlations between 
observables, and between spectral 
channels (depends on instrument)

 Insufficient by itself

 Previous images included 
regularization

 Hard to minimize

– Multimodal due to missing phase 
(local minima)

– Non-convex
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Image reconstruction codes
Software MiRA MiRA 3D BSMEM

(discontinued)
PAINTER
(unused)

IRBiS SQUEEZE
(formely 
MACIM)

OITOOLS &
ROTIR

Optimizer VMLMB Semi-
Newton method 
with inexact line 
search

Alternating 
Direction Method 
of
Minimizers

Trust region 
method with 
Nonlinear 
Conjugate Gradient 
step

Alternating 
Direction 
Method of
Minimizers

LBFGS Simulated 
annealing, 
parallel 
tempering

VMLMB
or
Half quadratic 
+ patch priors

Regularizers
(not 
exhaustive)

Soft support, 
entropic priors, 
field of view, 
total variation, ...

MiRA’s + group 
sparsity and 
other 
polychromatic 
ones

Smothness l2 and 
Maximum Entropy.

L1 norm of 
Wavelets

Tikhonov, edge 
preserving 
smoothness, 
maximum 
entropy

L0, Shannon 
entropy, total 
variation, 
laplacian, 
wavelets, 
group sparsity

All classic 
ones + patch 
priors

Polychromatic No Yes No Yes Yes Yes Yes

Dynamical 
imaging

No No No No No No Yes

Simultaneous 
Model fitting

Yes No? No No No Yes Yes
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Optimization methods: local optimization
 Local optimization: we start from an initial image with a given chi2 and we 

go down from there

– Solution 1: gradient descent methods (MiRA, IRBIS, OITOOLS)

• The classic way of solving the minimization problem, requires the 
analytic expressions of the gradient of the chi2 and of the 
regularizations with respect to vector x

Simple Tikohnov

involves more complex differentiation
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Optimization methods: local optimization

Example of gradient for the powerspectrum 
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Optimization methods: local optimization

The gradient                has the same size as the current image.

              is the steepest descent direction. Going this way will decrease the criterion. 

Advanced codes like MiRA make better use of the gradient than the steepest descent and 
also approximate the second derivative as needed.

Local minimum
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Optimization methods: local optimization, ADMM

 Local optimization: we start from an initial image with a given chi2 and we 
go down from there

– Solution 2: ADMM (MiRA-3D, PAINTER)

• Alternating minimization scheme between likelihood minimization 
and regularization

• Ideal for polychromatic imaging: very efficient parallelization to 
very large number of spectral channels

• Availability of proximal operators limits regularization choices

• Finicky convergence (hyperparameter need tweaking)

• Has not been used yet “in the wild”
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Optimization methods: global optimization
 Global optimization: a strategy that attempts to explore the entire range of 

possible flux values for x. 

– Possible solution: stochastic methods (SQUEEZE) 

– A large number of flux elements are moving on an empty image

– Each move made by these elements changes the criterion

– SQUEEZE uses simulated annealing: moves improving the chi2 are 
accepted, moves worsening it are not always rejected

– Slow exploration: unusable for polychromatic imaging with more than 
10 spectral channels 

– Avoids local minima: somewhat verified in practice

– Flexible regularization: no need for analytic gradients of regularizers
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Interferometry Beauty Contests

Organized every 2 years at SPIE Astronomical Instrumentation conference
Everyone can participate. Next one in 2022!

Constitute decent benchmarks of software capabilities… or of regularization strategies!
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Classic regularizers in OITOOLS.jl 
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Choice of regularizer(s)
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Choice of regularizer(s)
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 Sparsity: an image is “sparse” in a basis if it can be expressed as a small 
number of non-zero coefficients in this basis 

 For a sparse image, optimal image reconstruction can be achieved (Candes 
2007, Donoho 2008) by minimizing the number of non-zero coefficients in the 
sparsity basis

 This leads to regularizers based on the      pseudonorm (= non-zero counts)

  Or based on the      norm (sum of absolute values)

Compressed Sensing, Sparsity

   minimizes the number of lit-up pixels

non-convex
non-smooth
requires global optimization

Convex
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A well known example: total variation = spatial gradient sparsity

Example: Spot on
a uniform star

WARNING:  spatial gradient ≠ gradient of chi2 with respect to x
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Examples of Compressed sensing results

Isotropic
wavelets

(BSWAVE)

Arclets
(SQUEEZE)

Sparsity basis

Gradient
(SQUEEZE UD)

Simple compressed sensing results
Baron et al. 2014

 

     cannot always be 
substituted by     , 
e.g. in image plane 
or any flux 
conservative wavelet 
transform.

are non-convexPositivity + entropy
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The limit of Compressed sensing

Donoho-Tanner phase 
change: below a certain 
number of data, probabilty 
of optimal recovery 
becomes too difficult

No magic this time!
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Priors
Support priors: dangerous. What 
happens if I use the wrong prior
with too few data points?

The example of using a prior image 
in MACIM (older version of 
SQUEEZE). 
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Imaging with a wrong prior image: flat prior
Flat Prior
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Imaging with the wrong priors: flat prior, constrained short baselines

Flat Prior + low freq from PTI
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Imaging with the wrong priors: elliptical prior, too small

Artefact!
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Imaging with the wrong priors: elliptical prior, too large

Bleeding
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Imaging with the wrong priors: 
elliptical prior, wrong angle

Artefact!
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Imaging with the wrong priors: elliptical prior, just right !
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First resolved image of a main sequence star (beyond Sun)
Monnier et al., Science, 2007
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Setting the regularization weight
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Effect of regularization weight hyperparameter μ

μ increases = more regularization = relative χ2 strength is lower
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Renard et al., 2011

For some objects, one can more easily identify under and over regularization
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The L-curve heuristic
1. Run your reconstructions with different 
values for µ (logarithmic if no clue)

2. Plot chi2 vs regularization values in your 
best images

3. The best weight for µ is the one that ever 
slightly worsen your chi2. This corresponds 
to the elbow in the L-curve.

Note: this assumes there is an optimal µ. The correct 
Bayesian approach would be to treat µ as another 
variable, described by P(µ), then marginalize over it.

Kluska et al., 2016
MiRA-SPARCO with smoothness
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Some issues with L-curve

Kluska et al., 2014

Local minima may complicate the application of the L-curve method
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Advice on procedure

Total variation Uniform disc regularizer

• Generate a model of the target 
you want to reconstruct

• Simulate the observations of this 
object, copying the uv coverage 
and signal to noise from the 
original data

• Reconstruct with various 
regularizations

• This allows to detect artefacts 
from the reconstruction process 
and to improve the regularization Simulations of reconstruction of large cells 

on red supergiants for CHARA
Baron et al. 2014
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Polychromatic imaging

SPARCO
(polychromatic model)

MIRA 3D 
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SPARCO

Kluska et al. 2014 
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Analytic model of a polychromatic point source (power law -4) 
+ single image with spectral power law denvFlux normalization

Unnormalized visibilities of point 
source and environment (= image).
Both weighted by respective fluxes.



VLTI SUMMER SCHOOL 2021

Thiébaut et al., 2012 & 2013
Soulez et al., 2014 + ongoing work

MIRA 3D 

 Transpectral regularization

True Spatial sparsity

Spatial sparsity
+ grey object

Spatial sparsity
+ transpectral reg

Alternating direction method of 
multipliers (ADMM) –> sequence of 
closed form subproblems for 
regularization and likelihood terms
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Soulez et al., 2013

MIRA 3D 

With Transpectral regularization

Without transpectral reg

Detailed view of the spectra of two point sources

Transpectral continuity is 
imposed in addition to 
transpectral sparsity

ADMM allows trivial 
parallelization of 
wavelength reconstructions

Distributed computing
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Dynamical imaging (EHT)

Johnson et al. 2017

Bouman et al. 2018

Starwarps algorithm
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Johnson et al. 2017
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Johnson et al. 2017

Three dynamical regularization terms 

 Smoothly Varying Images over Time

 A Stable Average Image with Small Perturbations

 Time-variable Images with Regular Motion
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Johnson et al. 2017

 Smoothly Varying Images over Time

This regularizer penalizes changes between frames via a difference 
function. There is decreasing penalty for changes on scales smaller than 
It does not favor stable “momentum” of features between frames.

the summed difference among all adjacent images after blurring the frames 
using a circular Gaussian kernel with standard deviation 
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Johnson et al. 2017

 A Stable Average Image with Small Perturbations

This regularization is adapted to the 
case where each frame can be 
described as a small perturbation from 
the time-averaged image. 

Possible application: convection cells?
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Johnson et al. 2017

 Time-variable Images with Regular Motion

This reconstruction 
strategy must 
simultaneously 
estimate the flow 
vector field 

Possible application: YSO disks 
on long time scales, star spots on 
shorter ones
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SURFING
Roettenbacher et al., 2016

ROTIR
Martinez et al., submitted

Imaging on spheroids
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SURFING

SURFING reconstruction of zet And
Roettenbacher et al., Nature, 2016

Affine-invariant code
developed by John Monnier
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ROTIR
ROTIR can work on any tessellated surface
defined by a vertex vector v, including
binaries, Roche lobes, ...

The DFT matrix is replaced by: 

Sphere, Healpix

Roche, long/lat
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ROTIR

Map of lambda And in 2011
Martinez et al., 2020 (submitted)

ROTIR also does dynamical imaging, light curve inversion, and Doppler imaging is in the works.




VLTI SUMMER SCHOOL 2021

Machine learning: work in progress

Bouman et al., 2017

CHIRP patch prior algorithm

Claes et al., 2020 

Generative Adversarial Networks

Paper 11446-110, Neural network based image reconstruction with 
astrophysical priors, SPIE 2020.
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Conclusion: the future of image reconstruction algorithms

 Global optimization, polychromatic 
and dynamic imaging, simultaneous 
image reconstruction and model-
fitting

 Better error maps

 Use of machine learning for 
regularization and image 
comparison

 GPU acceleration (may be provided 
by the language, or hand-optimized)
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Read these!

 Principles of image reconstruction in optical interferometry: tutorial,  Thiébaut, É and 
Young, J.S., Journal of the Optical Society of America A, vol. 34, issue 6, p. 904 (2017),
https://ui.adsabs.harvard.edu/abs/2017JOSAA..34..904T.

Image reconstruction in optical interferometry, Thiébaut É.  and Giovannelli J.-F. , IEEE 
Signal Process. Mag. 27(1), 97–109 (2010), https://ui.adsabs.harvard.edu/abs/2010ISPM...27...97T.

Image reconstruction in optical interferometry: Benchmarking the regularization, Renard, 
S. ; Thiébaut, É. ; Malbet, F., vol. 533, p. A64 (2011), https://ui.adsabs.harvard.edu/abs/2011A%26A...533A..64R.

https://ui.adsabs.harvard.edu/abs/2017JOSAA..34..904T
https://ui.adsabs.harvard.edu/abs/2010ISPM...27...97T
https://ui.adsabs.harvard.edu/abs/2011A%26A...533A..64R
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