
Yorick Language Reference
(for version 1)

Starting and Quitting Yorick

To enter Yorick, just type its name: yorick

normal Yorick prompt >

prompt for continued line cont>

prompt for continued string quot>

prompt for continued comment comm>

prompt in debug mode dbug>

quit close all open files and exit Yorick

Getting Help

Most Yorick functions have online documentation.

help help on using Yorick help
help, f help on a specific function f
info, v information about a variable v

Error Recovery

To abort a running Yorick program type C-c

To enter Yorick’s debug mode after an error, type return in
response to the first prompt after the error occurs.

Array Data Types

The basic data types are:

char one 8-bit byte, from 0 to 255
short compact integer, at least 2 bytes
int logical results– 0 false, 1 true, at least 2 bytes
long default integer– at least 4 bytes
float at least 5 digits, 10±38

double default real– 14 or 15 digits, usually 10±308

complex re and im parts are double
string 0-terminated text string
pointer pointer to an array

A compound data type compound type can be built from any
combination of basic or previously defined data types as follows:

struct compound type {

type name A memb name 1 ;

type name B memb name 2(dimlist) ;

type name C memb name 3,memb name 4(dimlist) ;

...
}

A dimlist is a comma delimited list of dimension lengths, or
lists in the format returned by the dimsof function, or ranges
of the form min index : max index. (By default, min index

is 1.)

For example, the complex data type is predefined as:
struct complex { double re, im; }

c© 1995 Regents of the U. C. Permissions on back. v1.1

Constants

By default, an integer number is a constant of type long, and
a real number is a constant of type double. Constants of the
types short, int, float, and complex are specified by means of
the suffices s, n, f, and i, respectively. Here are some examples:

char ’\0’, ’\1’, ’\x7f’, ’\177’, ’A’, ’\t’

short 0s, 1S, 0x7fs, 0177s, -32766s

int 0N, 1n, 0x7Fn, 0177n, -32766n

long 0, 1, 0x7f, 0177, -32766, 1234L

float .0f, 1.f, 1.27e2f, 0.00127f, -32.766e3f

double 0.0, 1.0, 127.0, 1.27e-3, -32.766e-33

complex 0i, 1i, 127.i, 1.27e-3i, -32.766e-33i

string "", "Hello, world!", "\tTab\n2nd line"

The following escape sequences are recognized in type char and
type string constants:

\n newline
\t tab
\" double quote
\’ single quote
\\ backslash
\ooo octal number
\xhh hexadecimal number
\a alert (bell)
\b backspace
\f formfeed (new page)
\r carriage return

Defining Variables

var = expr redefines var as the value of expr
var = [] undefines var

Any previous value or data type of var is forgotten. The expr
can be a data type, function, file, or any other object.

The = operator is a binary operator which has the side effect
of redefining its left operand. It associates to the right, so

var1 = var2 = var3 = expr initializes all three var to expr

Arithmetic and Comparison Operators

From highest to lowest precedence,

^ raise to power
* / % multiply, divide, modulo
+ - add, subtract (also unary plus, minus)
<< >> shift left, shift right
>= < <= > (not) less, (not) greater (int result)
== != equal, not equal (int result)
& bitwise and
~ bitwise xor (also unary bitwise complement)
| bitwise or
= redefine or assign

Any binary operator may be prefixed to = to produce an incre-
ment operator; thus x*=5 is equivalent to x=x*5. Also, ++x and
--x are equivalent to x+=1 and x-=1, respectively. Finally, x++
and x-- increment or decrement x by 1, but return the value
of x before the operation.

Creating Arrays

[obj1, obj2, ..., objN] build an array of N objects
The objI may be arrays to build multi-dimensional arrays.

array(value, dimlist) add dimensions dimlist to value
array(type name, dimlist) return specified array, all zero

span(start, stop, n) n equal stepped values from start to stop
spanl(start, stop, n) n equal ratio values from start to stop
grow, var, sfx1, sfx2, ... append sfx1, sfx1, etc. to var
These functions may be used to generate multi-dimensional
arrays; use help for details.

Indexing Arrays

x(index1, index2, ..., indexN) is a subarray of the array x

Each index corresponds to one dimension of the x array, called
the ID in this section (the two exceptions are noted below).
The index1 varies fastest, index2 next fastest, and so on. By
default, Yorick indices are 1-origin. An indexI may specify
multiple index values, in which case the result array will have
one or more dimensions which correspond to the ID of x. Pos-
sibilities for the indexI are:

• scalar index
Select one index. No result dimension will correspond to ID.

• nil (or omitted)
Select the entire ID. One result dimension will match the
ID.

• index range start:stop or start:stop:step

Select start, start+step, start+2*step, etc. One result
dimension of length 1+(stop-start)/step and origin 1 will
correspond to ID. The default step is 1; it may be negative.
In particular, ::-1 reverses the order of ID.

• index list
Select an arbitrary list of indices – the index list can be any
array of integers. The dimensions of the index list will replace
the ID in the result.

• pseudo-index -

Insert a unit length dimension in the result which was not
present in the original array x. There is no ID for a - index.

• rubber-index .. or *

The ID may be zero or more dimensions of x, forcing it
indexN to be the final actual index of x. A .. preserves the
actual indices, * collapses them to a single index.

• range function ifunc or ifunc:range
Apply a range function to all or a subset of the ID; the other
dimensions are “spectators”; multiple ifunc are performed
successively from left to right.

Function results and expressions may be indexed directly, e.g.:
f (a,b,c)(index1,index2) or (2∗x+1)(index1,index2,index3)

If the left hand operand of the = operator is an indexed array,
the right hand side is converted to the type of the left, and the
specified array elements are replaced. Do not confuse this with
the redefinition operation var=:

x(index1, index2, ..., indexN)= expr assign to a subarray of x

Array Conformability Rules

Operands may be arrays, in which case the operation is per-
formed on each element of the array(s) to produce an array
result. Binary operands need not have identical dimensions,
but their dimensions must be conformable. Two arrays are
conformable if their first dimensions match, their second di-
mensions match, their third dimensions match, and so on up to
the number of dimensions in the array with the fewer dimen-
sions. Two array dimensions match if either of the following
conditions is met:

• the dimensions have the same length

• one of the dimensions has unit length (1 element)

Unit length or missing dimensions are broadcast (by copying
the single value) to the length of the corresponding dimension of
the other operand. The result of the operation has the number
of dimensions of the higher rank operand, and the length of each
dimension is the longer of the lengths in the two operands.

Logical Operators

Yorick supports C-style logical AND and OR operators. Unlike
the arithmetic and comparison operators, these take only scalar
operands and return a scalar int result. Their precedence is
between | and =.

The right operand is not evaluated at all if the value of the
left operand decides the result value; hence the left operand
may be used to determine whether the evaluation of the right
operand would lead to an error.

&& logical and (scalar int result)
|| logical or (scalar int result)

The logical NOT operator takes an array or a scalar operand,
returning int 1 if the operand was zero, 0 otherwise. Its prece-
dence is above ^.

! logical not (int result)

The ternary operator selects one of two values based on the
value of a scalar condition:

condition ? true expr : false expr
Its precedence is low, and it must be parenthesized in a function
argument list or an array index list to prevent confusion with
the : in the index range syntax. Like && and ||, the expression
which is rejected is not evaluated at all.

Calling Functions

f (arg1, ..., argN) invoke f as a function
f , arg1, ..., argN invoke f as a subroutine, discard return

Arguments which are omitted are passed to the function as
nil. In addition to positional arguments, a function (invoked
by either of the above two mechanisms). Keyword arguments
look like this:

f , arg1, keyA= exprA, keyB= exprB, arg2, ...

where keyA and keyB are the names of keyword arguments of
the function f. Omitted keywords are passed to f as nil values.
Keywords typically set optional values which have defaults.

Defining Functions

A function of N dummy arguments is defined by:
func func name(dummy1, dummy2, ..., dummyN)

{

body statements
}

If the function has no dummy arguments, the first line of the
definition should read:

func func name

Mark output parameters with a &, as dummy2 here:
func func name(dummy1, &dummy2, dummy3)

If the function will take keyword arguments, they must be listed
after all positional arguments and marked by a =:

func func name(..., dummyN, key1=, ..., keyN=)

If the function allows an indeterminate number of positional
arguments (beyond those which can be named), place the spe-
cial symbol .. after the final dummy argument, but before the
first keyword. For example, to define a function which takes
one positional argument, followed by an indeterminate number
of positional arguments, and one keyword, use:

func func name(dummy1, .., key1=)

The function more_args() returns the number of unread actual
arguments corresponding to the .. indeterminate dummy ar-
gument. The function next_arg() reads and returns the next
unread actual argument, or nil if all have been read.

Variable Scope

local var1, var2, ..., varN give the varI local scope
extern var1, var2, ..., varN give the varI external scope

If a variable var has local scope within a function, any value
associated with var is temporarily replaced by nil on entry to
the function. On return from the function, the external value
of var is restored, and the local value is discarded.

If a variable var has external scope within a function, references
to var within the function refer to the var in the “nearest”
calling function for which var has local scope (that is, to the
most recently created var).

The *main* function has no variables of local scope; all vari-
ables created at this outermost level persist until they are ex-
plicitly undefined or redefined.

Dummy or keyword arguments always have local scope.

In the absence of a extern or local declaration, a variable var
has local scope if, and only if, its first use within the function
is as the left operand of a redefinition, var= expr.

Returning from Functions

return expr return expr from current function
The expr may be omitted to return nil, which is the default
return value if no return statement is encountered.

exit, msg return from all functions, printing msg
error, msg halt with error, printing msg

Compound Statements

Yorick statements end with a ; or end-of-line if the resulting
statement would make sense.

Several Yorick statements can be combined into a single com-
pound statement by enclosing them in curly braces:

{

statement1
statement2

...
}

The bodies of most loops and if statements are compound.

Conditional Execution

A Yorick statement can be executed or not based on the value
of a scalar condition (0 means don’t execute, non-0 means ex-
ecute):

if (condition) statementT

or, more generally,
if (condition) statementT
else statementF

Several if statements may be chained as follows:
if (condition1) statement1
else if (condition2) statement2
else if (condition3) statement3
...
else statementF

Loops

Yorick has three types of loops:
while (condition) body statement
do body statement while (condition)
for (init expr ; test expr ; inc expr) body statement

The init expr and inc expr of a for loop may be comma delim-
ited lists of expressions. They or the test expr may be omitted.
In particular, for (;;) ... means “do forever”. If there is a
test expr, the body statement of the for loop will execute until
it becomes false (possibly never executing). After each pass,
but before the test expr, the inc expr executes. A for loop to
make N passes through its body statement might look like this:

for (i=1 ; i<=N ; i++) body statement

Within a loop body, the following statements are legal:

break exit the current loop now
continue abort the current pass through the current loop

For more complex flow control, Yorick supports a goto:

goto label go to the statement after label
label: statement mark statement as a goto target

Copyright c© 1995 Regents of the University of California

designed by David Munro, March 1995 v1.1

for Yorick version 1

Permission is granted to make and distribute copies of this card pro-

vided the copyright notice and this permission notice are preserved on

all copies.

For copies of the Yorick manual, send email to munro@icf.llnl.gov.

Yorick Function Reference
(for version 1)

Including Source Files

#include "filename.i" insert contents of filename

This is a parser directive, NOT an executable statement. Yor-
ick also provides two forms of executable include statements:

include, "filename.i" parse contents of filename.i
require, "filename.i" parse filename.i if not yet parsed

The effect of the include function is not quite immediate, since
any tasks (*main* programs) generated cannot execute until
the task which called include finishes.

The require function should be placed at the top of a file
which represents a package of Yorick routines that depends on
functions or variables defined in another package filename.i.

The filename.i ends with a .i suffix by convention.

Comments

/* Yorick comments begin with slash-asterisk,

and end with asterisk-slash. A comment

of any size is treated as a single blank. */

Since /* ... */ comments do not nest properly, Yorick sup-
ports C++ style comments as well:

statement // remainder of line is comment (C++)
// Prefix a double slash to each line to comment out
// a block of lines, which may contain comments.

Issuing Shell Commands

You can execute a system command, returning to Yorick when
the command completes, by prefixing the command line with
$:

$any shell command line

This is a shorthand for the system function:

system, shell string pass shell string to a system shell

You need to use the system function if you want to compute
the shell string; otherwise $ is more convenient.

Note that the cd (change directory) shell command and its rel-
atives will not have any effect on Yorick’s working directory.
Instead, use Yorick’s cd function to change it’s working direc-
tory:

cd, path name change Yorick’s default directory
get_cwd() return Yorick’s current working directory

The following functions also relate to the operating system:

get_home() return your home directory
get env(env string) return environment variable env string
get argv() return the command line arguments

c© 1995 Regents of the U. C. Permissions on back. v1.1

Matrix Multiplication

The * binary operator normally represents the product of its
operands element-by-element, following the same conformabil-
ity rules as the other binary operators. However, by marking
one dimension of its left operand and one dimension of its right
operand with +, * will be interpreted as a matrix multiply along
the marked dimensions. The marked dimensions must have the
same length. The result will have the unmarked dimensions of
the left operand, followed by the unmarked dimensions of the
right operand.

For example, if x is a 12-by-25-by-35 array, y and z are vectors
of length 35, and w is a 9-by-12-by-7 array, then:

x(,,+)*y(+) is a 12-by-25 array
y(+)*z(+) is the inner product of y and z

x(+,,)*w(,+,) is a 25-by-35-by-9-by-7 array

Using Pointers

A scalar of type pointer points to a Yorick array of any data
type or dimensions. Unary & returns a pointer to its argument,
which can be any array valued expression. Unary * dereferences
its argument, which must be a scalar of type pointer, returning
the original array. A dereferenced pointer may itself be an array
of type pointer. The unary & and * bind more tightly than any
other Yorick operator except . and -> (the member extraction
operators), and array indexing x(..):

&expr return a scalar pointer to expr
*expr dereference expr, a scalar pointer

Since a pointer always points to a Yorick array, Yorick can
handle all necessary memory management. Dereference * or
->, copy by assignment =, or compare to another pointer with
== or != are the only legal operations on a pointer. A pointer
to a temporary expr makes sense and may be useful.

The purpose of the pointer data type is to deal with several
related objects of different types or shapes, where the type or
shape changes, making struct inapplicable.

Instancing Data Structures

Any data type type name — basic or defined by struct —
serves as a type converter to that data type. A nil argument
is converted to a scalar zero of the specified type. Keywords
matching the member names can be used to assign non-zero
values to individual members:

type name() scalar instance of type name, zero value
type name(memb name 1=expr 1,...) scalar type name

The . operator extracts a member of a data structure. The
-> operator dereferences a pointer to the data structure before
extracting the member. For example:
struct Mesh { pointer x, y; long imax, jmax; }

mesh= Mesh(x=&xm,

imax=dimsof(xm)(1), jmax=dimsof(xm)(2));

mesh.y= &ym; mptr= &mesh;

print, mesh.x(2,1:10), mptr->y(2,1:10);

Index Range Functions

Range functions are executed from left to right if more than one
appears in a single index list. The following range functions
reduce the rank of the result, like a scalar index:

min minimum of values along index
max maximum of values along index
sum sum of values along index
avg average of values along index
rms root mean square of values along index
ptp peak-to-peak of values along index
mnx index at which minimum occurs
mxx index at which maximum occurs

The following functions do not change the rank of the result,
like an index range. However, the length of the index is changed
as indicated by +1, -1, or 0 (no change):

cum, psum +1, 0, partial sums of values along index
dif -1, pairwise differences of adjacent values
zcen -1, pairwise averages of adjacent values
pcen +1, pairwise averages of adjacent interior values
uncp -1, inverse of pcen (point center) operation

For example, given a two-dimensional array x, x(min, max)

returns the largest of the smallest elements along the first di-
mension. To get the smallest of the largest elements along the
second dimension, use x(, max)(min).

Elementary Functions

abs, sign absolute value, arithmetic sign
sqrt square root
floor, ceil round down, round up to integer
conj complex conjugation
pi the constant 3.14159265358979323846...
sin, cos, tan trigonometric functions (of radians)
asin, acos, atan inverse trigonometric functions
sinh, cosh, tanh, sech, csch hyperbolic functions
asinh, acosh, atanh inverse hyperbolic functions
exp, log, log10 exponential and logarithmic functions
min, max find minimum, maximum of array
sum, avg find sum, average of array
random random number generator

The atan function takes one or two arguments; atan(t) returns
a value in the range (−π/2, π/2]), while atan(y,x) returns
the counterclockwise angle from (1, 0) to (x, y) in the range
(−π,π]).

The abs function allows any number of arguments; for exam-
ple, abs(x, y, z) is the same as sqrt(x^2 + y^2 + z^2). The
sign satisfies sign(0)==1 and abs(z)*sign(z)==z always (even
when z is complex).

The min and max functions return a scalar result when pre-
sented with a single argument, but the pointwise minimum or
maximum when presented with multiple arguments.

The min, max, sum, and single argument abs functions return
integer results when presented integer arguments; the other
functions will promote their arguments to a real type and re-
turn reals.

Information About Variables

print, var1, var2, ... print the values of the varI
info, var print a description of var
dimsof(x) returns [# dimensions, length1, length2, ...]
orgsof(x) returns [# dimensions, origin1, origin2, ...]
numberof(x) returns number of elements (product of dimsof)
typeof(x) returns name of data type of x
structof(x) returns data type of x

is_array(x) returns 1 if x is an array, else 0
is_func(x) returns 1 or 2 if x is an function, else 0
is_void(x) returns 1 if x is nil, else 0
is_range(x) returns 1 if x is an index range, else 0
is_stream(x) returns 1 if x is a binary file, else 0
am_subroutine() 1 if current function invoked as subroutine

The print function returns a string array of one string per line
if it is invoked as a function. Using print on files, bookmarks,
and other objects usually produces some sort of useful descrip-
tion. Also, print is the default function, so that

expr

is equivalent to print, expr (if expr is not a function).

Reshaping Arrays

reshape, x, type name, dimlist masks shape of x

Don’t try to use this unless (1) you’re an expert, and (2) you’re
desperate. It is intended mainly for recovering from misfeatures
of other programs, although there are a few legitimate uses
within Yorick.

Logical Functions

allof(x) returns 1 if every element of x is non-zero
anyof(x) returns 1 if any element of x is non-zero
noneof(x) returns 1 if no element of x is non-zero
nallof(x) returns 1 if any element of x is zero

where(x) returns list of indices where x is non-zero
where2(x) human-readable variant of where

Interpolation and Lookup Functions

In the following function, y and x are one-dimensional arrays
which determine a piecewise linear function y(x). The x must
be monotonic. The xp (for x -prime) can be an array of any
dimensionality; the dimensions of the result will be the same
as the dimensions of xp.

digitize(xp, x) returns indices of xp values in x
interp(y, x, xp) returns yp, xp interpolated into y(x)
integ(y, x, xp) returns the integrals of y(x) from x(1) to xp

Note that integ is really an area-conserving interpolator. If
the xp coincide with x, you probably want to use

(y(zcen)*x(dif))(cum)
instead.

The on-line help documentation for interp describes how to
use interp and integ with multidimensional y arrays.

Sorting

sort(x) return index list which sorts x

That is, x(sort(x)) will be in non-decreasing order (x can be
an integer, real, or string array). The on-line help documenta-
tion for sort explains how to sort multidimensional arrays.

median(x) return the median of the x array

Consult the on-line help documentation for median for use with
multidimensional arrays.

Transposing

transpose(x) transpose the 2-D array x
transpose(x, permutation) general transpose

The permutation is a comma delimited list of cyclic permuta-
tions to be applied to the indices of x. Each cyclic permutation
may be:

• a list of dimension numbers [n1, n2, ..., nN]
to move dimension number n1 (the first dimension is number
1, the second number 2, and so on) to dimension number n2 ,
n2 to n3 , and so on, until finally nN is moved to n1 .

• a scalar integer n
to move dimension number 1 to dimension number n, 2 to
n+1, and so on, cyclically permuting all of the indices of x.

In either case, n or nI can be non-positive to refer to indices
relative to the final dimension of x. That is, 0 refers to the
final dimension of x, -1 to the next to last dimension, and so
on. Thus,

transpose(x, [1,0])

swaps the first and last dimensions of x.

Manipulating Strings

Yorick type string is a pointer to a 0-terminated array of char.
A string with zero characters – "" – differs from a zero pointer –
string(0). A string variable s can be converted to a pointer

to a 1-D array of char, and such a pointer p can be converted
back to a string:

p= pointer(s);
s= string(p);

These conversions copy the characters, so you can’t use the
pointer p to alter the characters of s. The strchar function
directly converts between string and char data.

Given a string or an array of strings s:

strlen(s) number of characters in each element of s
strpart(s, rng) returns substring rng of s
strfind(pat, s) returns rng where pat occurs in s
strgrep(pat, s) regular expression version of strfind
strword(s, delims) returns rng of words in s
streplace(s, rng, to) replaces rng of s by to

The strfind, strfind, and strword functions return rng lists
suitable as inputs to strpart or streplace. Other string ma-
nipulation functions include strmatch, strglob, strcase, and
strtrim. Use help for details.

Advanced Array Indexing

• A scalar index or the start and stop of an index range may
be non-positive to reference the elements near the end of a
dimension. Hence, 0 refers to the final element, -1 refers to
the next to last element, -2 to the element before that, and
so on. For example, x(2:-1) refers to all but the first and
last elements of the 1-D array x. This convention does NOT
work for an index list.

• A range function ifunc may be followed by a colon and an
index range start:stop or start:stop:step in order to re-
strict the indices to which the range function applies to a
subset of the entire dimension. Hence, x(min:2:-1) returns
the minimum of all the elements of the 1-D array x, excluding
the first and last elements.

• An index specified as a scalar, the start or stop of an index
range, or an element of an index list may exceed the length of
the indexed dimension ID, provided that the entire indexing
operation does not overreach the bounds of the array. Thus,
if y is a 5-by-6 array, then y(22) refers to the same datum
as y(2,5).

• The expression z(..) — using the rubber-index operator ..

— refers to the entire array z . This is occasionally useful
as the left hand side of an assignment statement in order
to force broadcasting and type conversion of the right hand
expression to the preallocated type and shape z .

• The expression z(*) — using the rubber-index operator * —
collapses a multidimensional array z into a one-dimensional
array. Even more useful as z(*,) to preserve the final index
of an array and force a two-dimensional result.

Generating Simple Meshes

Many Yorick calculations begin by defining an array of x values
which will be used as the argument to functions of a single
variable. The easiest way to do this is with the span or spanl

function:
x= span(x min, x max, 200);

This gives 200 points equally spaced from x min to x max.

A two dimensional rectangular grid is most easily obtained as
follows:

x= span(x min, x max, 50)(, -:1:40);

y= span(y min, y max, 40)(-:1:50,);

This gives a 50-by-40 rectangular grid with x varying fastest.
Such a grid is appropriate for exploring the behavior of a func-
tion of two variables. Higher dimensional meshes can be built
in this way, too.

Copyright c© 1995 Regents of the University of California

designed by David Munro, March 1995 v1.1

for Yorick version 1

Permission is granted to make and distribute copies of this card pro-

vided the copyright notice and this permission notice are preserved on

all copies.

For copies of the Yorick manual, send email to munro@icf.llnl.gov.

Yorick I/O Reference
(for version 1)

Opening and Closing Text Files

f = open(filename, mode) open filename in mode
close, f close file f (automatic if f redefined)

The mode is a string which announces the type of operations
you intend to perform: "r" (the default if mode is omitted)
means read operations only, "w" means write only, and destroy
any existing file filename, "r+" means read/write, leaving any
existing file filename intact. Other mode values are also mean-
ingful; see help.

The file variable f is a distinct data type in Yorick; text files
have a different data type than binary files. The print or info
function will describe the file. The close function is called
implicitly when the last reference to a file disappears.

Reading Text

read, f, var1, var2, ..., varN reads the varI from file f
read, var1, var2, ..., varN reads the varI from keyboard
read n, f, var1, var2, ..., varN read, skip non-numeric tokens
rdline(f) returns next line from file f
rdline(f, n) returns next n lines from file f
sread, s, var1, var2, ..., varN reads the varI from string s

The data type and dimensions of the varI determine how the
text is converted as it is read. The varI may be arrays, provided
the arrays have identical dimensions. If the varI have length
L, then the read is applied as if called L times, with successive
elements of each of the varI read on each call.

The read function takes the prompt keyword to set the prompt
string, which defaults to "read> ".

Both read and sread accept the format keyword. The format is
a string containing conversion specifiers for the varI. The num-
ber of conversion specifiers should match the number of varI.
If the varI are arrays, the format string is applied repeatedly
until the arrays are filled.

Read format strings in Yorick have (nearly) the same meaning
as the format strings for the ANSI standard C library scanf

routine. In brief, a format string consists of:

• whitespace
means to skip any number of whitespace characters in the
source

• characters other than whitespace and %

must match characters in the source exactly or the read op-
eration stops

• conversion specifiers beginning with %

each specifier ends with one of the characters d (decimal in-
teger), i (decimal, octal, or hex integer), o (octal integer), x
(hex integer), s (whitespace delimited string), any of e, f, or
g (real), [xxx] to match the longest string of characters in
the list, [^xxx] to match the longest string of characters not
in the list, or % (the % character – not a conversion)

c© 1995 Regents of the U. C. Permissions on back. v1.1

Writing Text

write, f, expr1, expr2, .., exprN writes the exprI to file f
write, expr1, expr2, .., exprN writes the exprI to terminal
swrite(expr1, expr2, .., exprN) returns the exprI as a string

The swrite function returns an array of strings — one string for
each line that would have been produced by the write function.

The exprI may be arrays, provided the arrays are conformable.
In this case, the exprI are broadcast to the same length L,
then the write is applied as if called L times, with successive
elements of the exprI written on each call.

Both functions accept an optional format keyword. Write for-
mat strings in Yorick have (nearly) the same meaning as the
format strings for the ANSI stacndard C library printf routine.
In brief, a format string consists of:

• characters other than %

which are copied directly to output

• conversion specifiers beginning with %

of the general format %FW.PSC where:
F is zero or more of the optional flags - (left justify), +

(always print sign), (space) (leave space if +), 0 (leading ze-
roes)
W is an optional decimal integer specifying the minimum
number of characters to output
.P is an optional decimal integer specifying the number of
digits of precision
S is one of h, l, or L, ignored by Yorick
C is d or i (decimal integer), o (octal integer), x (hex in-
teger), f (fixed point real), e (scientific real), g (fixed or
scientific real), s (string), c (ASCII character), or % (the %

character – not a conversion)

For example,
> write, format=" tp %7.4f %e\n", [1.,2.], [.5,.6]

tp 1.0000 5.000000e-01

tp 2.0000 6.000000e-01

>

Positioning a Text File

The write function always appends to the end of a file.

A sequence of read operations may be intermixed with write

operations on the same file. The two types of operations do
not interact.

The read and rdline functions read the file in complete lines; a
file cannot be positioned in the middle of a line – although the
read function may ignore a part of the last line read, subsequent
read operations will begin with the next full line. The following
functions allow the file to be reset to a previously read line.

backup, f back up file f one line
m= bookmark(f) record position of file f in m
backup, f, m back up file f to m

The bookmark m records the current position of the file; it has
a distinct Yorick data type, and the info or print function
can be used to examine it. Without a bookmark, the backup

function can back up only a single line.

Opening and Closing Binary Files

f = openb(filename) open filename read-only
f = updateb(filename) open filename read-write
f = createb(filename) create the binary file filename
close, f close file f

A binary file f has a Yorick data type which is distinct from a
text file. The info and print functions describe f . The close

function will be called implicitly when the last reference to a
file disappears, e.g.– if f is redefined.

The data in a binary file is organized into named variables, each
of which has a data type and dimensions. The . operator, which
extracts members from a structure instance, accepts binary files
for its left operand. Thus:

f= updateb("foo.bar");

print, f.var1, f.var2(2:8,::4);

f.var3(2,5)= 3.14;

close, f;

Opens a file, prints var1 and a subarray of var2, sets one ele-
ment of var3, then closes the file.

The show command prints an alphabetical list of the variables
contained in a file:

show, f shows the variables in file f
show, f, pat show only names starting with pat
get_vars(f) returns pointers to complete name lists for f

Saving and Restoring Variables

save, f, var1, var2, ..., varN saves the varI in binary file f
restore, f, var1, var2, ..., varN restores the varI from f
save, f saves all array variables in binary file f
restore, f restores all variables from binary file f

Unlike f.varI= expr, the save function will create the variable
varI in the file f if it does not already exist.

The restore function redefines the in-memory varI . If several
binary files are open simultaneously, the f.varI syntax will be
more useful for reading variables than the restore function.

Note that a single command can be used to create a binary file,
save variables varI in it, and close the file:

save, createb(filename), var1, var2, ..., varN

A similar construction using restore and openb is also useful.

Reading History Records

A binary file may have two groups of variables: those belonging
to a set of history records, and non-record variables. The record
variables may have different values in each record. The records
are labeled by (optional) time and cycle numbers:

jt, time advance all open record files to record nearest time
jt, f, time advance file f to record nearest time
jc, f, ncyc advance file f to record nearest ncyc
get times(f) return list of record times
get ncycs(f) return list of record cycles

Writing History Records

To write a family of files containing history records:

1. Create the file using createb.

2. Write all of the non-record (time independent) variables to
the file using save.

3. Create a record which will correspond to time time and cycle
ncyc for future jt and jc commands. Use:

add_record, f, time, ncyc make new record at time, ncyc

4. Write all record (time dependent) variables to the file using
save. After the first add_record, save will create and store
record variables instead of non-record variables as in step 2.

5. Repeat steps 3 and 4 for each new record you wish to add to
the file. For the second and subsequent records, save will not
allow variables which were not written to the first record, or
whose data type or shape has changed since the first record.
That is, the structure of all history records in a file must
be identical. Use type pointer variables to deal with data
which changes in size, shape, or data type.

After each add record, any number of save commands may be
used to write the record.

If the current member of a history record file family has at least
one record, and if the next record would cause the file to exceed
the maximum allowed file size, add_record will automatically
form the next member of the family. The maximum family
member file size defaults to 4 MBytes, but:

set filesize, f, n bytes set family member size

Opening Non-PDB Files

Yorick expects binary files to be in PDB format, but it can
be trained to recognize any file whose format can be described
using its Contents Log file description language. The basic idea
is that if you can figure out how to compute the names, data
types, dimensions, and disk addresses of the data in the file,
you can train Yorick to open the file; once open, all of Yorick’s
machinery to manipulate the data will grind away as usual.

The following functions can be used to teach Yorick about a
non-PDB file; use help to get complete details:

read, f, address, var raw binary read
install struct, f, struct name, size, align, order, layout

define a primitive data type
add_variable, f, address, name, type, dimlist add a variable
add_member, f, struct name, offset, name, type, dimlist

build up a data structure
install struct, f, struct name finish add_member struct
data align, f, alignment specify default data alignment
struct align, f, alignment specify default struct alignment
add record, f, time, ncyc, address declare record
add next file, f, filename open new family member

To write a plain text description of any binary file, use:

dump clog, f, clogname write Contents Log for f

Making Plots

plg, y, x plot graph of 1-D y vs. x
plm, mesh args plot quadrilateral mesh
plc, z, mesh args plot contours of z
plf, z, mesh args plot filled mesh, filling with z
plv, v, u, mesh args plot vector field (u,v))
pli, z, x0, y0, x1, y1 plot image z
pldj, x0, y0, x1, y1 plot disjoint lines
plt, text, x, y plot text at (x,y)

The mesh args may be zero, two, or three arguments as follows:

• omitted to use the current default mesh set by:

plmesh, mesh args set default quadrilateral mesh
plmesh delete current default quadrilateral mesh

• y, x
To set mesh points to (x, y), which must be 2-D arrays of the
same shape, with at least two elements in each dimension.

• y, x, ireg
To set mesh points to (x, y), as above, with a region number
array ireg. The ireg should be an integer array of the same
shape as y and x, which has a non-zero “region number” for
every meaningful zone in the problem. The first row and
column of ireg do not correspond to any zone, since there
are one fewer zones along each dimension than points in y
and x.

The plc command accepts the levs keyword to specify the list
of z values to be contoured; by default, eight linearly spaced
levels are generated.

The plc and plmesh commands accept the triangle keyword
to specify a detailed triangulation map for the contouring al-
gorithm. Use the help, triangle for details.

The plv command accepts the scale keyword to specify the
scaling factor to be applied to (u, v) before rendering the vec-
tors in (x, y) space; by default, the vector lengths are chosen
to be comparable to typical zone dimensions.

The plm command accepts the boundary keyword, which should
be set to 1 if only the mesh boundary, rather than the mesh
interior, is to be plotted.

The plm, plc, plf, and plv commands accept the region key-
word to restrict the plot to only one region of the mesh, as
numbered by the ireg argument. The default region is 0, which
is interpreted to mean the every non-0 region of the mesh.

The pli command produces a cell array; the x0, y0, x1, y1 ,
which are optional, specify the coordinates of the opposite cor-
ners of the cell array.

Numerous other keywords adjust the style of lines, text, etc.

Plot Paging and Hardcopy

fma frame advance — next plot command will clear picture
hcp send current picture to hardcopy file
hcpon do automatic hcp at each fma

hcpoff require explicit hcp for hardcopy
hcp out print and destroy current hardcopy file
animate toggle animation mode (see help)

Setting Plot Limits
logxy, xflag, yflag set log or linear axis scaling

limits, xmin, xmax, ymin, ymax set plot limits
limits, xmin, xmax set plot x-limits
range, ymin, ymax set plot y-limits
l= limits() save current plot limits in l
limits, l restore plot limits saved in l

The four plot limits can be numbers to fix them at specific
values, or the string "e" to specify extreme values. The limits

command accepts the keywords square, nice, and restrict,
which control how extreme values are computed.

Plot limits may also be set by point-and-click in the X window.
The left button zooms in, middle button pans, and right button
zooms out. Refer help on limits for details.

Managing Graphics Windows
window, n switch to window n (0-7)
winkill, n delete window n (0-7)

The window command takes several keywords, for example:
dpi=75 makes a smaller X window than the default dpi=100,
private=1 forces use of private instead of shared colors, dump=1
forces the palette to be dumped to the hcp file, and style speci-
fies an alternative style sheet for tick and label style ("work.gs"
and "boxed.gs" are two predefined style sheets).

The plf and pli commands require a color palette:

palette, name load the standard palette name
palette, r, g, b load a custom palette
palette, query=1, r, g, b retrieve current palette

Standard palette names: "earth.gp" (the default), "gray.gp",
"yarg.gp", "stern.gp", "heat.gp", and "rainbow.gp".

Graphics Query, Edit, and Defaults
plq query (print) legends for current window
plq, i query properties of element i
pledit, key list change properties of queried element
pldefault, key listset default window and element properties

The keywords which regulate the appearance of graphical prim-
itives include (each has a help entry):

legend string to use for legend
hide non-zero to skip element
type "solid", "dash", "dot", "dashdot", etc.
width line width, default 1.0
color "fg" (default), "red", "green", "blue", etc.
marks, marker, mspace, mphase, msize line markers
rays, rspace, rphase, arroww, arrowl line ray arrows
closed, smooth more line properties
font, height, opaque, path, justify text properties
hollow, aspect vector properties for plv

Copyright c© 1995 Regents of the University of California

designed by David Munro, March 1995 v1.1

for Yorick version 1

Permission is granted to make and distribute copies of this card pro-

vided the copyright notice and this permission notice are preserved on

all copies.

For copies of the Yorick manual, send email to munro@icf.llnl.gov.

	Language Reference-1
	Starting and Quitting Yorick
	Getting Help
	Error Recovery
	Array Data Types
	Constants
	Defining Variables
	Arithmetic and Comparison Operators
	Creating Arrays
	Indexing Arrays

	Language Reference-2
	Array Conformability Rules
	Logical Operators
	Calling Functions
	Defining Functions
	Variable Scope
	Returning from Functions
	Compound Statements
	Conditional Execution
	Loops

	Function Reference-1
	Including Source Files
	Comments
	Issuing Shell Commands
	Matrix Multiplication
	Using Pointers
	Instancing Data Structures
	Index Range Functions
	Elementary Functions

	Function Reference-2
	Information About Variables
	Reshaping Arrays
	Logical Functions
	Interpolation and Lookup Functions
	Sorting
	Transposing
	Manipulating Strings
	Advanced Array Indexing
	Generating Simple Meshes

	I/O Reference-1
	Opening and Closing Text Files
	Reading Text
	Writing Text
	Positioning a Text File
	Opening and Closing Binary Files
	Saving and Restoring Variables
	Reading History Records

	I/O Reference-2
	Writing History Records
	Opening Non-PDB Files
	Making Plots
	Plot Paging and Hardcopy
	Setting Plot Limits
	Managing Graphics Windows
	Graphics Query, Edit, and Defaults

	TOPICS
	Getting Started
	Starting and Quitting Yorick
	Getting Help
	Error Recovery
	Including Source Files
	Comments
	Issuing Shell Commands
	Constants
	Defining Variables
	Arithmetic and Comparison Operators

	Programming
	Logical Operators
	Compound Statements
	Conditional Execution
	Loops
	Instancing Data Structures
	Using Pointers
	Elementary Functions
	Logical Functions
	Information About Variables
	Matrix Multiplication
	Sorting
	Manipulating Strings
	Generating Simple Meshes

	Functions
	Calling Functions
	Defining Functions
	Variable Scope
	Returning from Functions

	Arrays
	Array Data Types
	Creating Arrays
	Indexing Arrays
	Array Conformability Rules
	Advanced Array Indexing
	Reshaping Arrays
	Transposing
	Index Range Functions

	Text Files
	Opening and Closing Text Files
	Reading Text
	Writing Text
	Positioning a Text File

	Binary Files
	Opening and Closing Binary Files
	Saving and Restoring Variables
	Reading History Records
	Writing History Records
	Opening Non-PDB Files

	Making Plots
	Making Plots
	Interpolation and Lookup Functions
	Plot Paging and Hardcopy
	Setting Plot Limits
	Managing Graphics Windows
	Graphics Query, Edit, and Defaults

