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Abstract. In this paper I provide a brief introduction to astronomical

interferometry at optical and infrared wavelengths. Two key concepts,
central to understanding the basis and practice of interferometry are

introduced: image formation with conventional telescopes, in particular

the Fourier decomposition of images, and the nature and utility of
measurements of the coherence function or mutual intensity. Thereafter

I focus on optical/infrared interferometry, outlining how measurements

of the coherence function are made at these wavelengths, how they can

be used to interpret a source's structure, and what the principles of

interferometric imaging tell us about the limitations expected for the

current generation of arrays such as the VLTI.

1 Introduction

The opening to the astronomical community of facility optical/infrared interfer-

ometers such as the VLTI is a recent development. Moreover, interferometry at

these wavelengths is a su�ciently unusual technique that it demands a broadening

of the understanding of a \typical" astronomer to its possibilities and limitations.

The goal of teaching the essentials of interferometric imaging to an audience of

non-experts is thus both important and timely. However, to attempt to review

the �eld in a single presentation would be a bold and ambitious challenge, and my

aim here is somewhat more modest. What I want to do instead is to introduce the

basic \language" of interferometry to those who may ultimately wish to exploit

arrays like the VLTI for their favourite astrophysics. Many will be unfamiliar with

this language so I have assumed no prior knowledge of interferometry at all. What

follows then will not be a comprehensive and detailed treatment of optical/infrared

interferometry, but rather a brief guide to the territory, with pointers to areas that
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di�er from their radio counterparts. I hope it will give most of my audience the

con�dence to ask the right questions when assessing the possible merit of opti-

cal/infrared interferometry for their own research. A useful reference for further

details on many of the topics mentioned here is Lawson (2000).

Before we begin I must make one small confession: I am not an interferomet-

ric \salesman". The historical fact that conventional optical/infrared telescopes

continue to provide adequate angular resolution and sensitivity for most astro-

nomical programmes implies that ground-based interferometric arrays should at

present rightly be considered \niche" instruments, i.e. as telescopes with a limited

remit. Nevertheless, they provide unique and valuable scienti�c information on

the sources that they can observe. The role that they can, and will, play though

is not in doubt - an increase of two orders of magnitude in any capability | in

this case angular resolution | is guaranteed to lead to new astrophysical insights.

The goal for today's generation of astronomers, and my audience here today, will

be to identify and realise these prizes.

2 Image formation with conventional telescopes

An understanding of imaging with conventional telescopes is one of the most useful

starting points for investigating what we can realistically expect from the current

generation of interferometric arrays. We begin then with the fundamental equation

for incoherent imaging (see, e.g., Goodman 1996):

I(l;m) =

ZZ
P (l � l

0

;m�m
0

)O(l
0

;m
0

) dl
0

dm
0

; (2.1)

where O(l;m) is the true source brightness distribution, I(l;m) is the observed

brightness distribution, and P (l;m) is the response to a point source, or point-

spread function, of whatever imaging system is being used. All of these are func-

tions of l andm which are angular co-ordinates on the sky. This convolutional rela-

tionship, which more precisely describes the behaviour of all linear space-invariant

(isoplanatic) systems can be written more concisely by taking the Fourier trans-

form of the previous equation to give:

~I(u; v) = ~P (u; v)� ~O(u; v) (2.2)

= T (u; v)� ~O(u; v) : (2.3)

In this equation, functions with a tilde refer to the Fourier transforms of their

real space counterparts, and u and v are spatial frequencies with dimensions of

radians�1. The importance of this description is that the essential features of the

imaging system, whatever form it takes, are encapsulated in a complex multiplica-

tive transfer function, T (u; v). Thus, the amplitude and phase of T (u; v) quantify

which spatial frequency components of the object are represented in the image,

and how faithful that reproduction is.

An important question we can ask here is: what determines the form of T (u; v)?

In general, the transfer function is obtained from the normalized auto-correlation
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Fig. 1. The transfer function (left) and normalized point-spread function (right) of a

perfect telescope with an unobscured circular aperture of diameter D. The maximum

frequency transmitted by the aperture is fmax = D=�. Note the enhanced weighting of

the lower spatial frequencies in T (f) and the relatively poor transmission of frequencies

close to fmax. The �rst null of the point-spread function, an Airy pattern, occurs at an

angular co-ordinate � = 1:22�=D.

of the transmission function of the telescope pupil, so that:

T (u; v) =

RR
P �(x; y)P (x+ u; y + v) dx dyRR

jP (x; y)j2 dx dy
; (2.4)

where x and y refer to co-ordinates in the telescope pupil and the integration

is taken over all possible values of x and y. A number of key features of this

formalism are worth noting carefully. First, in the absence of aberrations, P (x; y)

will be equal to 1 where the aperture is transparent and will be 0 otherwise. The

presence of aberrations will lead to changes in the phase of P (x; y) and a reduction

in the value of the complex valued transfer function. Second, for each spatial

frequency, u, there will exist a physical baseline, B, in the pupil, of length �u.

Finally, for an unaberrated circularly symmetric aperture, the transfer function

can be written as a function of a single co-ordinate such that T (u; v) = T (f), with

f2 = u2 + v2. Fig. 1 shows a simple example of this behaviour in practice. The

left hand panel shows the transfer function for a circular aperture of diameter D,

while the right hand panel shows the resulting normalized point-spread function.

In this case this is none other than the familiar Airy function with its �rst null at

an angular co-ordinate � = 1:22�=D, and a full width at half maximumof 0:9�=D.

The story thus far may appear relatively straightforward so it is worthwhile

reiterating the essential points we should draw from the arguments presented.

There are �ve key ideas to digest:

� The decomposition of an image into a series of spatially separated compact

point source responses (point-spread functions), and the formal equivalence

of this to a superposition of non-localized co-sinusoidal functions with ap-

propriate amplitudes and phases.
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� The description of an image in terms of these co-sinusoidal basis functions

each of which has a particular angular period on the sky. These are nothing

more than the Fourier components of the image.

� The action of an imaging system as a linear �lter for the true spatial Fourier

spectrum of the source. Note that in this scheme even images from, for

example, the Hubble Space Telescope are �ltered versions of the true source

brightness distributions.

� The association of each Fourier component (or spatial frequency) with a

distinct physical baseline within the aperture collecting light from the source.

� The form of the point-spread function arising from the relative sampling,

and hence weighting given to, the di�erent spatial frequencies (and hence

baselines) measured by the pupil of the imaging system.

As we will see later, these ideas are so close to the heart of interferometric imaging

that it really makes little sense to distinguish imaging with interferometers from

the imaging we may already be used to when using conventional telescopes.

3 Coherence functions

The next step in our journey takes us into somewhat more unfamiliar territory

but, as we shall see, provides the link between interferometric measurements and

the description of imaging we have just reviewed. Fuller treatments of what we

will discuss can be found in many other sources (see, e.g., Born & Wolf 1999) and

so here the aim will simply be to identify the essential physical bases for imaging

with interferometers.

Let us begin by considering the spatio-temporal correlations of the electric �eld

arising from a distant astronomical source (see Fig. 2). We imagine measuring

the electric �eld at two locations r1 and r2 and at times t1 and t2 where these

R

Distant source

B

E(r ) E(r )1 2

Fig. 2. A schematic diagram of the set-up needed to measure the coherence function of

the radiation from a distant source. The electric �elds, E(r1) and E(r2), from the source

are measured at two locations separated by a distance B, with R� B.
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�elds result from the summation of di�erent contributions from all elements of the

source whose radiation is collected by the antennae. We de�ne the spatio-temporal

coherence function (sometimes referred to as the mutual intensity) of the radiation

as:

V (r1; t1; r2; t2) = hE(r1; t1)� E�(r2; t2)i ; (3.1)

where the asterisk denotes complex conjugation and the angle brackets indicate

an average over a time long compared to the period of oscillation of the electric

�eld. Two forms of this time-averaged complex cross-product will be of interest:

the �rst when r1 = r2, the so-called temporal coherence function, and the second

when t1 = t2, which is called the spatial coherence function.

3.1 The temporal coherence function

When measurements are made at the same location, but at di�erent times, the

spatio-temporal coherence function for an incoherent astronomical source takes a

particularly simple form such that:

hE(r1; t1) �E�(r2; t2)i = V (t1 � t2) = V (� ) : (3.2)

Note that the argument of this coherence function depends only on the di�erence

between the times at which measurements of the electric �eld are made. Physically

what the temporal coherence function quanti�es is the extent to which the �elds

along a given wave train are correlated: it is the same quantity measured by a

laboratory Michelson interferometer where light from a single source is split, prop-

agated along two unequal paths, and then recombined and the resulting intensity

examined.

The usefulness of the temporal coherence function arises from an important re-

sult in statistical optics, which we will not prove here (see, e.g. Born & Wolf 1999),

the Wiener-Khintchine theorem. This states that the normalized value of V (� )

is equal to the normalized Fourier transform of the spectral energy distribution,

B(!), of the source:

V (� ) =

R
B(!)e�i!� d!R

B(!) d!
: (3.3)

Referring to the elementary properties of Fourier transforms we can see that a

broad spectral energy distribution will lead to a coherence function that decays

rapidly with � , since � and ! are reciprocal co-ordinates. More quantitatively, we

can de�ne a coherence time �coh � 1=��, with �� = �!=2�, such that the value

of the temporal coherence function for � � �coh will be close to zero. From the

point of view of experimental physics the value of the Wiener-Khintchine theorem

arises from the uniqueness of the Fourier transform relationship between V (� )

and B(!): measurements of V (� ) in principle allow unambiguous recovery of the

source spectrum via an inverse Fourier transform. This is spectroscopy without

the use of a dispersing element!
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3.2 The spatial coherence function

The treatment above is followed closely when we consider the second special case

of V (r1; t1; r2; t2), i.e. when t1 = t2. In this case, for the spatially incoherent

sources that astronomers usually look at, the spatio-temporal coherence function

can be written as:

hE(r1; t1) �E�(r2; t2)i = V (r1 � r2) = V (~�) ; (3.4)

where the time dependence has now vanished and again we are left with a function

of a single argument. This is now a spatial co-ordinate, ~�, equal to the vector

separation between the two locations at which the electric �eld is measured. What

V (~�) measures then is the extent to which the �elds at di�erent points in a plane

perpendicular to the incoming wavevector are correlated. In the context of a

laboratory analogue, the spatial coherence function is what a Young's slit set-up

with two circular \slits" measures: the apertures de�ne the two regions of the

incoming wavefront to be examined, and the intensity at an on-axis focal point

provides a measure of V (~�).

The use of the spatial coherence function for imaging derives from another

elegant piece of physics, the van Cittert-Zernike theorem. This states that, for

spatially incoherent sources in the far �eld, the normalized value of the spatial

coherence function V (~�) is equal to the normalized Fourier transform of the sky

brightness distribution, I(~�):

V (~�) =

R
I(~�)e�i(~��~�)2�=� d~�R

I(~�) d~�
; (3.5)

or in slightly di�erent notation:

V (u; v) =

RR
I(l;m)e�i2�(ul+vm) dl dmRR

I(l;m) dl dm
: (3.6)

Here u and v are the components of the baseline ~� measured in wavelengths and

projected onto a plane perpendicular to the incident wavevector, and l and m are

angular co-ordinates on the sky (see Fig. 3).

The conclusion here is as remarkable as for the temporal coherence function

discussed above. Measurements of the spatial coherence, or \visibility" function

| we will use these two phrases interchangeably hereafter | will be related to

the sky brightness simply through a Fourier transform. If a suitable number of

measurements of V (u; v) can be secured then one can recover the sky brightness

distribution without using imaging optics at all!

3.3 Putting it all together

From the point of view of a didactic presentation it is important to note the math-

ematical equivalence of the spatial coherence function, V (~�; � = 0) and the Fourier

decomposition of an arbitrary source that we referred to earlier. While the former
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l

mCelestial
sphere

Projected
baseline

u

v

Line of sight to 
      source

I(l,m)

Fig. 3. The (u; v) and (l;m) co-ordinate systems that are conventionally used in inter-

ferometry. The physical baseline ~� is projected onto a plane perpendicular to the line of

sight to the source to obtain u and v. The source brightness distribution is described by

the function I(l;m) which exists on the tangent plane to the celestial sphere at the point

at which the observer's line of sight intersects it.

results from a particular limiting case of the van Cittert-Zernike theorem appro-

priate for most astrophysical sources, the latter is merely a convenient method for

characterising the content of an image. However, the fact that both involve the

Fourier transform of the sky brightness distribution means that we have �nally

arrived at a powerful means of understanding how interferometry can be exploited

for imaging. This can be summarized as follows:

� Any source in the sky can be described as a superposition of co-sinusoids

each of which corresponds to a given spatial frequency or angular scale on

the sky.

� Measurements of the spatial coherence function are nothing more than mea-

surements of the amplitudes and phases of these Fourier components.

� Interferometers are devices that measure the spatial coherence function.

� Hence, an interferometer with two telescopes with a projected separation,

B, will measure the value of the Fourier transform of the source brightness

distribution at a spatial frequency u = B=�.

So, the practice of interferometry at optical/infrared wavelengths involves nothing

more than measuring V (u; v) well enough so that the image resulting from inverse

Fourier transforming the coherence function is an adequate representation of what

is in the sky. Exactly what \adequate" implies will be explained in a following

section. This process of measuring the coherence function and inverse Fourier

transforming it is, of course, what conventional telescopes do all the time, albeit

in a manner that is completely hidden from the user.
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4 Measuring the visibility function at optical/infrared wavelengths

Thus far we have said nothing about how, in practice, one can get access to �eld

quantities like E(r1; t) and E(r2; t) so as to compute their time averaged product

hE(r1) �E�(r2)i. This is often a source of much confusion and so I shall spend a

little time outlining how this is performed here.

The simplest way to approach this question is to consider a Young's slit ex-

periment (see Fig. 4). In the focal plane of the set-up a detector will register an

intensity given by the modulus squared of the total electric �eld E1 + E2. Here

E1 and E2 refer to the contributions arising from each of the sub-apertures in the

screen that intercepts the incoming wavefronts. At the centre of the fringe pattern

these contributions will have taken the same time to travel from the screen to the

focal plane, and so if we consider only this central part of the fringe pattern we

can ignore any temporal coherence e�ects. The time averaged intensity can then

be written as:

h(E1 + E2) � (E1 +E2)
�i =



jE1j2

�
+


jE2j2

�
+ hE1E

�

2 i+ hE�

1E2i (4.1)

=


jE1j2

�
+


jE2j2

�
+ h2jE1jjE2j cos(�)i ; (4.2)

where � is the phase di�erence between E1 and E2.

The intensity thus comprises two parts: a constant term given by the sum of

the intensities from each sub-aperture, and an oscillatory part which bears a very

close resemblance to the spatial coherence function hE1E
�

2i. The features of the

observed fringe pattern that will be of interest are its modulation and its phase.

The modulation, or visibility, V , is de�ned as:

V =
[Imax � Imin]

[Imax + Imin]
; (4.3)

r2

r1

Young’s 
slits

Intensity

Optical axis

Focal plane

Maximum ∆φ = 2π

Minimum 
intensity

intensity

Incoming
wavefronts

Fig. 4. A schematic diagram of a Young's slit experiment. Light enters from the left, is

intercepted by a screen with two small apertures at locations r1 and r2 and is subsequently

focussed onto a distant screen. The maximum and minimum intensities in the resulting

fringe pattern are shown, as is the de�nition of a phase shift of 2�, i.e. a shift in the

fringe pattern of one wavelength.
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Fig. 5. The relationship between a particular source brightness distribution and the

fringes observed in a two-element interferometer. In this case the object is a binary

star comprising two unequal and unresolved components. Each component produces its

own interference pattern with an amplitude dependent on its brightness, and a phase, �,

related to its position in the sky. Note that since both components are unresolved each

produces a fringe pattern with a visibility V = 1. The overall fringe pattern observed

is the superposition of the intensity patterns from each component of the source. The

information about the relative brightness and location of the two components is contained

in the visibility and phase of this resulting fringe pattern.

where Imax and Imin refer to the maximum and minimum intensities in the fringe

pattern, while the phase of the fringe pattern simply refers to the location of the

white-light fringe relative to some reference point, usually chosen to be the optical
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axis. From an interferometric point of view these two observables are critical

because they encode the amplitude and phase of the spatial coherence function

respectively. So, the answer to our initial question is simple: to measure the spatial

coherence function we need to interfere the �elds from two points on the wavefront

incident from the source to create a fringe pattern, and we then need to measure

the modulation depth and spatial location of the white-light fringe. The way in

which the source brightness distribution is actually encoded in the properties of

the observed fringe pattern, i.e. how the van Cittert-Zernike theorem comes into

play, is explained pictorially in Fig. 5.

5 Science with interferometers

The framework for interferometric imaging we have described above can be sum-

marized as follows:

� The Fourier transform of the source brightness distribution is the spatial co-

herence or visibility function V (u; v) = V (Bx=�;By=�), with Bx and By the

components along two orthogonal directions of the projected interferometer

baseline.

� Measurements of V (u; v) are made with many di�erent interferometer base-

lines so as to secure as complete information on V (u; v) as is possible.

� An inverse Fourier transform of these data is performed producing a, hope-

fully faithful, representation of the sky.

Whilst this picture is in principle correct, it begs a number of important questions.

For example, what does a typical visibility function look like, and how complete

does it have to be measured to be useful? And perhaps more importantly: how

will the sampling of V (u; v) impact on the type of images that can be made with

an interferometer? The following subsections address these issues in turn.

5.1 Simple visibility functions

The properties of the visibility functions of three simple source types that might

be observed with the VLTI are displayed pictorially in Fig. 6. Let us �rst con-

sider an unresolved source of intensity A1 located at an angle l1 relative to the

pointing direction of the interferometer. If we orient our co-ordinates so that the

interferometer baseline is parallel to the vector separation between the pointing

centre and the o�-axis source, the visibility function will be a function of a single

co-ordinate u, such that:

V (u) =

R
A1�(l � l1)e

�i2�ul dlR
A1�(l � l1) dl

(5.1)

= e�i2�ul1 : (5.2)
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Fig. 6. The predicted normalized visibility amplitude for three types of simple source. In

each case a wavelength of 2:2�m has been assumed and the source size has been chosen to

match the baselines accessible with the VLTI. For the 5 mas resolved disk (lower panel),

which is assumed to be located at the centre of the �eld of view, amplitudes that are

negative correspond to baselines where the phase of the visibility function has 
ipped

from 0 to � radians.

The visibility amplitude will thus be unity for all baseline lengths, while the visi-

bility phase will vary linearly with u (= B=�). In practice few sources will be truly

unresolved so instead the �rst panel of Fig. 6 shows the visibility amplitude for a 0:5

milli-arcsecond diameter disk for baselines in the range 0{100m. This size of disk

roughly corresponds to the apparent angular size of an M5 dwarf at 6 parsecs and

for this small a source the visibility amplitude is virtually indistinguishable from

that of a delta-function. Sources such as these will give interferometric fringes of

high contrast and thus be easy to observe, but will be too small to be good targets

for imaging studies.

More interesting behaviour is shown by a binary star, here assumed to comprise

two point sources of intensity A1 and A2 at angles l1 = 0 and l2 relative to the

pointing centre. As before, a suitable aligment of co-ordinate axes allows the

visibility function to be written as a function of a single spatial frequency so that

we have:

V (u) =

R
[A1�(l) +A2�(l � l2)] e

�i2�ul dlR
[A1�(l) + A2�(l � l2)] dl

(5.3)
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=

�
A1 + A2e

�i2�ul2
�

[A1 +A2]
: (5.4)

This coherence function is plotted for a 5 milli-arcsecond separation binary, with a


ux ratio of 2:1, in the upper right panel of Fig. 6. In this case both the visibility

amplitude and phase oscillate with the baseline length B, and baselines from 0 to

�=l2meters are required to recognize the binary nature of the source. A further

point to note is that as the brightness ratio of the two components increases | for

example one of the stars may be a very low mass companion | the modulation

of the visibility function will become smaller and smaller. Thus while the fringe

contrast itself may well be high, its periodic modulation may be di�cult to discern

unless very high signal-to-noise ratio measurements can be secured.

The �nal panel of Fig. 6 shows an example of the visibility function of a fully

resolved target, in this instance a centrally-located uniform disk with diameter, �,

equal to 5 milli-arcseconds, for example a M1 Ia supergiant at 1 kpc. The rotational

symmetry of the source means that the visibility function can be written in terms

of Bessel functions so that:

V (ur) /
Z �=2

0

�J0(2��ur) d� (5.5)

=
2J1(��ur)

(��ur)
; (5.6)

where � is the radial circular polar co-ordinate, ur is its corresponding conjugate

spatial frequency, and J0 and J1 are the zeroth and �rst-order Bessel functions of

the �rst kind. Two features of this visibility function deserve note. First, baselines

from 0 to beyond �=�meters are required to identify the source as a resolved disk

(see the plot of V (ur)). And second, the visibility amplitude falls very rapidly

as the baseline increases. This is a crucial new fact: since information on scales

smaller than the disk diameter will correspond to spatial frequencies u > 1=�,

obtaining such information will require the measurement of fringes with very low

contrast. This is a signi�cant observational challenge and implies that the study

of resolved stellar disks will be much more di�cult than the previous examples we

have considered above.

An example of the visibility function expected for a more complex astrophysical

source is displayed in Fig. 7. This shows the un-normalized visibility function for

an object comprising 6 elliptical Gaussian components with a total 
ux of 4 units.

To allow comparison with the 1-dimensional examples given above, the visibility

function has been projected onto a direction parallel to the longest dimension of

the source. While complicated in detail, certain features of the visibility function

are quite straightforward to explain. The most important points to note are (i) the

rapid fall in V from a value of 4 at zero baseline to a value of approximately 1 at a

baseline of� 5�106� and (ii) the approximate constancy of the visibility amplitude

at longer baselines. What can we infer from this? First, that most of the 
ux from

the source is resolved on angular scales of order 1
5�106

radians, and second, that

the source contains an unresolved component contributing approximately 25% of
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Fig. 7. Samples of the predicted visibility amplitude (arbitrary units) and phase (in

degrees) for the multi-component resolved model show in the top right insert. The x axis

(baseline length) is measured in mega-lambda, while the visibility has a zero-baseline

value of 4 (i.e. is just o� the top of the plot). For ease of presentation the 2-dimensional

visibility function has been projected along the longer dimension of the source at PA

�40�. North is up and East to the left. The map of the source is contoured at 1, 2, 5, 10,

20, 50, and 99% of the peak 
ux and shows a small scale bar of length 30 milli-arcseconds.

the total 
ux. In fact, the linear variation of visibility phase with baseline length

indicates that this compact feature is o�set from the pointing centre, with the

rate-of-change of phase identifying the magnitude of this o�set.

There is perhaps one �nal comment to make here. The source discussed in the

last example is one with structure than can be resolved, and hence is interesting to

image, but which has a visibility function that stays notably high at long baselines

by virtue of its compact core (c.f. the rather di�erent behaviour of a uniform disk

visibility function). As we shall see in the next lecture, the signal-to-noise ratio

for fringe parameter measurement is a strong function of the visibility amplitude

and if V is too low a high signal-to-noise ratio on a given measurement can be

very di�cult to achieve. Hence, this type of source, with resolvable structure but

with some unresolved 
ux too, typi�es the class of complex objects that is likely to

be best suited for detailed interferometric study with the optical/infrared arrays

available today.
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5.2 Image recovery

The examples above have demonstrated that many features (e.g. separations and


ux ratios) of both simple and more complex brightness distributions can be in-

ferred directly from measurements of V (u; v). However, the most exciting chal-

lenge for optical/infrared interferometry will be to image complex astrophysical

phenomena that have hitherto remained unobservable. What progress in this area

can we realistically expect in the near to mid-term?

We begin by reminding ourselves of the fundamental relationship between the

visibility function and the normalized sky brightness distribution:

Inorm(l;m) =

ZZ
V (u; v) e+i2�(ul+vm) du dv : (5.7)

In practice, however, what our measurements give us is a sampled version of

V (u; v), and so the image we can recover will be the so-called \dirty map":

Idirty(l;m) =

ZZ
S(u; v) � V (u; v) e+i2�(ul+vm) du dv (5.8)

= Bdirty(l;m) � Inorm(l;m) ; (5.9)

where S(u; v) is the sampling function describing which measurements of V (u; v)

have been secured, and Bdirty (l;m) is the Fourier transform of the sampling dis-

tribution, otherwise known as the \dirty beam". The dirty-beam is nothing more

than the point source response of the interferometer. It is usually far less attrac-

tive than an Airy pattern, for example it will often have strong and numerous

Fig. 8. The dirty (left) and deconvolved (right) image for a simulated observation of

the test source presented in Fig. 7. In both panels contours are plotted at -10, -5, -2,

-1, 1, 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, and 90% of the peak 
ux. Negative contours

are shown dashed. Despite the fact that the source is barely visible in the dirty image,

it is straightforward to deconvolve the map and correct for the interferometer point-

spread function. The residual noise features in the right hand panel re
ect the imperfect

sampling of the uv plane in this simulation. The small grey ellipse in the bottom left hand

corner of the deconvolved map shows the size of the core of the point-spread function,

and hence the e�ective resolution in the restored image.
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sidelobes, but it is completely determined by the known sampling of the uv plane.

So, the lesson to learn here is that despite the unusual form of the interferomet-

ric point-spread function its behaviour will generally be very well understood and

it can be accounted for very straightforwardly. This process of correcting an in-

terferometric image for the uv plane sampling is know as deconvolution and can

be performed using many schemes such as CLEAN, MEM, and WIPE (see, e.g.,

Cornwell et al. 1999; Lannes et al. 1994). Fig. 8 shows an example of this type

of deconvolution in practice with \before" and \after" images for a simulated ob-

servation of the model source whose visibility function is displayed in Fig. 7. It is

interesting to note how di�cult the source is to discern in the dirty map, yet how

successful the deconvolution is.

For those who are unfamiliar with interferometric imaging it is fortunate that

much of the useful experience gleaned by radio astronomers over the years, and

which will still apply to imaging with optical/infrared arrays, can be encapsulated

in a small number of useful \rules-of-thumb". These include the following:

� The number of visibility data measured should be greater than or at least

equal to the number of �lled pixels required in the recovered image. Note

that it is the number of pixels that will have 
ux in that is relevant here, not

the total number of pixels in the image. So for an observation comprising

snapshot measurements with R recon�gurations of an N -telescope array this

implies:
N(N�1)

2
�R � number of �lled pixels.

� The distribution of samples of the visibility function should be as uniform

as possible so as to make deconvolution straightforward. In essence this is

simply saying that large gaps in the uv plane coverage will be di�cult to deal

with, or equivalently that a faithful representation of the source will not be

possible if measurements of large ranges of spatial frequencies are missing

from the interferometric dataset.

� The range of angular scales displayed in the interferometric image will be

governed by the range of projected interferometer baselines, i.e. Bmax=Bmin.

For interferometers with small numbers of collectors, and where the time

available to image the source permits few recon�gurations of the array, this

ratio may be very small indeed, e.g. < 5.

� The overall extent of the source being observed will determine how �nely

V (u; v) should be sampled. More precisely, for a source of size �max radians

sampling very much �ner than �u � 1=�max will be unnecessary.

To see what these rules mean in practice let us consider an example of the uv

coverage expected for a possible future phase for the VLTI, using eight telescopes

(see Fig. 9). This corresponds to a six hour observation where all 28 possible

baselines are measured every ten minutes. The total number of visibility data is

thus 28 � 36 = 1008. This observing strategy gives good uniformity in the uv

coverage, though the temporal sampling of V (u; v) is perhaps a little too frequent

for the size of the target, and more importantly the range of angular scales sampled
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Fig. 9. The uv coverage expected for an eight-element array at Paranal for a source at

declination �65�. The points plotted indicate the spatial frequencies sampled by the

array at ten minute intervals over a six hour observation. Note that even with this dense

coverage of the uv plane the ratio of maximum to minimum baseline length is only � 9.

is only a factor of � 9. Exactly how these factors impact on the interferometric

imaging process can be seen in the map shown in the right hand panel of Fig. 8.

This was reconstructed from simulated data assuming the same uv coverage as

in Fig. 9 and with only small errors in the amplitude and phase of the measured

visibility function (�V=V ' 0:05;�� ' 10�). Overall the reconstructed image

is of high quality and is very similar to the model source used to generate the

test data (compare the upper right panels of Figs. 7 and 8). The interferometric

map shows emission with a range of angular scales from 1 to � 10 times the

interferometric resolution and extending over an area of approximately 15 � 15

resolution elements. This would clearly have been a successful observation, but

note how many samples of V (u; v) were required and the high signal-to-noise ratio

of each datum. Maps of this quality come at an expensive price!

Before leaving this section on imaging there are two further topics we need to

touch on. These are the �eld-of-view and the image quality that we should expect

from interferometry.

The �rst of these often features prominently in discussions of interferomet-

ric imaging, but usually only when optical/infrared astronomers participate! I

think the reason for this is a historical accident which needs explaining. It is

now commonplace for conventional optical and near-infrared telescopes to have

high-resolution imaging cameras with �elds of view measured in minutes of arc,

i.e. hundreds of times the size of the available angular resolution. Astronomers

used to this type of instrumentation may naturally expect optical/infrared inter-

ferometers to have similarly large �elds of view. However, as has been outlined

above, this would require measurements of the coherence function on baselines

with lengths ranging from some minimum value to hundreds of times that value.

The practical di�culties in sampling the uv plane over two orders of magnitude

in spatial frequency are certainly non-trivial, and so while specialised optical con-
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�gurations for achieving this do exist in principle, a range in measured spatial

frequencies of a factor of ten is more realistic (see, e.g. Fig. 9). So, in the near

to mid-term �elds-of-view of up to 10� 10 resolution elements is what we should

be expecting. It is perhaps some consolation to know that even mature radio ar-

rays like the 27-element VLA spend most of their time making maps with linear

extents of perhaps 40� the interferometric resolution. So this tale does has a

positive side to it: all the evidence from radio-astronomy shows that surprisingly

small interferometric �elds of view can still lead to excellent science!

My �nal comments concern the quality of the maps that an interferometer can

provide. This is di�cult to answer in a fully quantitative sense because the �delity

of an interferometric image will depend on whether or not any particularly strong

spatial frequency components in the source have been left unmeasured. This will

depend on source morphology itself and so perhaps the only useful statement we

can make is that the uv plane coverage should be as complete as possible so as to

cope with any possible source structure! However, we can make a more quanti-

tative statement about the levels of random noise expected in an interferometric

map. This measure of quality is conventionally characterized by the \dynamic

range". This is the ratio of the maximum intensity in the map to the intensity of

the weakest believable feature. If we assume that our measurements sample the

visibility function pretty uniformly then, broadly speaking, the dynamic range will

be given by

Dynamic range �
p
Ndata � (S=N )per�datum (5.10)

�
p
Ndataq�

(�V=V )2 + (��)2
� ; (5.11)

where S=N is the signal-to-noise ratio, �V=V is the typical fractional visibility

amplitude error per datum, �� is the typical phase error in radians per datum,

and Ndata is the total number of visibility measurements available.

Thus, for an 8-element array and with visibility and phase errors of a few

percent this equation implies a dynamic range of approximately 500:1 or around

7 magnitudes. The fact that the imaging simulation of Fig. 8 just fails to achieve

this is actually because the uv plane coverage is not quite uniform enough. Real

observations, where slightly more care is taken in minimizing any large gaps in

the sampling of the visibility function, should thus be able to detect very faint

structures close to brighter cores if this level of random and systematic error can

be achieved.

6 Sensitivity

Any discussion of a new experimental tool for astrophysics would not be complete

without some mention of its sensitivity and thereby the range of source types for

which it could usefully be exploited. However, the complexity involved in de-

ploying optical/infrared interferometers means that the actual limiting sensitivity
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achievable is a very strong function of the details of the particular implementation

employed. To discuss, for example, the sensitivity of the VLTI would thus be out of

place in an introductory lecture like this. What I think is useful though is to talk a

little about what sensitivity actually means in an optical/infrared interferometric

context.

Since all ground-based interferometers will have to overcome the phase pertur-

bations introduced by the atmosphere a convenient and more useful re-casting of

the question \How faint can I go?" is actually the following: \How bright must

my source be such that I can secure useful interferometric data?" The answer to

this question comes in two quite separate parts:

First, the source must be bright enough to provide a su�ciently strong signal

to allow real-time correction of any phase perturbations in the incoming

wavefronts. These may come from the atmosphere or may be internal to the

interferometer.

Second, the source must be bright enough to allow a reasonable signal-to-noise

ratio for the fringe parameters to be built up over some convenient total

integration time. Because the rotation of the Earth will sweep the physical

baselines through the uv plane at the sidereal rate, this time will generally

be measured in minutes and not hours.

Once these two criteria have been satis�ed, the faintest structures detectable

will be governed by the total number and quality of the visibility data as outlined

above in our discussion of dynamic range. In the case of imaging, the 
ux of these

weak features will be measured relative to the brightest feature in the map.

This is quite clearly a rather di�erent approach to quantifying sensitivity than

is normally used by optical/infrared astronomers. However, it highlights an im-

portant similarity between two contemporary methods for achieving high angular

resolution in optical/infrared astronomy: adaptive optics and interferometry. Both

of these overcome the seeing limit through real-time correction of the atmospheric

corrections. Both require a reference signal with which to sense the atmosphere

and unless such a signal exists neither will be e�ective no matter what other steps

are taken. We will return to the topic of sensitivity in more detail in the next

lecture where we will see to what extent the \source" we have been referring to

need actually be the science target of interest. But it will perhaps come as no

surprise to �nd that the limiting \sensitivity" of optical/infrared interferometry

will not be dissimilar to that of natural guide star adaptive optics.

7 Current examples and expectations for the near to mid-term

This has been a long lecture and so I want to �nish with something that will be

easy to digest. Many of you will have come to this school to learn what the VLTI

can do for you. To set your expectations at the right level I want to present three

examples of real interferometric data | I stress these are not simulations | that

typify what optical/infrared interferometers can realistically provide.
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Fig. 10. Three examples of interferometric data obtained with ground-based opti-

cal/infrared interferometers. The top left panel shows the visibility function of the M2 Iab

supergiant �Ori measured with a 3-element array at 830 nm. To its right are an interfero-

metric image and sketch of the surface structure of the M5 Ib supergiant � Her measured

with a 5-element array at 633 nm. The lower panel shows an interferometric map of the

K-band emission surrounding the carbon star IRC+10216 obtained with a 21-element

interferometer. See text for references. Note the increasing complexity of the analysis

that becomes possible as the number of array elements is increased.

The �rst of these is shown in the upper left panel of Fig. 10, and is the visibility

function of � Ori, a M2 Iab supergiant star, measured with a 3-element array at

830 nm (Burns et al. 1998). The data extend beyond the �rst null of the visibility

function and so can be used to investigate both the angular size and limb-darkening

pro�le of the star.

With more array elements, and hence better Fourier plane coverage, model-

independent imaging becomes possible. The upper right hand panel of Fig. 10

shows an interferometric image of the surface of the M5 Ib supergiant � Her

(Tuthill et al. 1997) together with a schematic decomposition of the image into

three components: a uniform disk, and two unequally bright spots. The image,

which was obtained at 633nm using a conventional telescope converted into a 5-

element interferometer through the use of an aperture mask (see, e.g., Hani� et

al. 1987 for an explanation of this technique), clearly resolves the 50 milli-arcsecond

diameter stellar disk and contains perhaps 3 � 3 �lled pixels. It is a rudimentary
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image, but shows structure that would have been impossible to discern using any

other direct imaging method.

Finally, with large (� 8) numbers of array elements, imaging of complex source

structures becomes feasible. The lower panel of Fig. 10 shows an interferometric

map of the carbon star IRC+10216 in the near-infrared K-band obtained using

a 21-element aperture-masked telescope (Tuthill et al. 2000). This image has a

dynamic range of� 100 :1, an angular resolution of better than 50 milli-arcseconds,

and contains of order 10 � 10 �lled pixels. More importantly, it is equivalent in

quality to any comparable radio interferometric map made under phase-unstable

conditions. It quite clearly demonstrates what optical/infrared interferometry can

deliver if dense and high quality sampling of the coherence function is available.

In conclusion then, what type of interferometric science can we expect from

large ground-based arrays in the near to mid-term? I think the answers to this

question are fairly clear:

� 2 telescope interferometers will allow simple parametric model �tting.

� 5 telescope arrays will allow rudimentary, but nevertheless unambiguous and

model-independent, imaging.

� Arrays with large numbers of telescopes (� 8) will provide model-independent

imaging of complex astrophysical phenomena.

The practical problems we have to overcome to realise these goals will be the

subject of our next lecture.
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