

AGB Carbon stars

- M< 8 M_☉
- degenerate C-O core and an He/H-burning shell, a convective envelope.
- [C/O] > 1
- Presence of C₂,
 C₂H₂, C₃, CN, HCN
- Dust: amorphous carbon

Schematic view of an AGB star - simple version (by J. Hron)

Why C-stars? Why Interferometry?

Important for stellar and galactic evolution:

- mass-loss responsible for enrichment of ISM
- understand the complicate interaction of pulsation and the stellar atmosphere
- comprehension dynamical processes of dust formation and mass loss

We need Interferometry because of...

High angular resolution to resolve the close circumstellar structure

- → understanding mass loss processes
- → studying the stratification and different opacity sources

Complementary with other techniques (photometry and spectroscopy)

Dynamical models

C-star models (Höfner et al., 2003)
Profiles and visibilities calculated for 21 narrow filters

Compute UD with v=v₀ at same spatial frequency as model

Analyse r(UD) vs. λ, r(UD) vs. phase, (as Jacob & Scholz (2002) for M-type models)

C-star models structures; Intensity and visibility profile

Radius versus \(\lambda\)

21 narrow filters in the near-to mid-IR chosen in a way to sample some particular features of the spectrum (e.g. C_2H_2).

UD-radius increases with λ , 3.175 µm "jump" of the UD-radius due to C_2H_2 opacity

UD-Radius versus Time (phase)

UD-radius using:

1 point fit (v= 0.3),

2 points (v=0.1 and

0.4)

least square method (all the points with visibility > 0.1).

Models with mass loss more extended;

We can observe the periodic movement of the stellar interior.

No mass loss: different method same

behaviour;

Mass loss: least square more extended

Conclusions

- A dependence of UD-radius on wavelength is evident and it is stronger in the case of models with dust included.
 Around 3 μm and in the N band the star is more extended due to C₂H₂ opacity.
- Using only 1 or 2 points of visibility to determine the UDradius of the star we obtain smaller radii. The difference is stronger in the N band.
- The UD-radius is closer to the continuum UD-radius in the case of models without mass loss
- The radius computed with the UD function has to be considered only a first guess for the real radius of the star.
 The intensity profile and the visibility of a C-star is very far from being Uniform disk!

