

Outline:

- 1. Calibrating interferometry data
- 2. Preparatory Observations
- 3. Example: The ESPRI preparatory program

Calibration

> "The Transformation of observables into physically meaningful quantities"

Rember this for the rest of your scientific career:

→ Data with insufficient calibration are worse than no data, because you have wasted time!

→ In case of doubt, take a calibrator more!

Interferometric observables

Interferometer:

- > samples the radiation field from a source at two or more points in space simultaneously
- Combines the sampled wavefront parts in a coherent way
- measures the Fourier transform of the sky brightness distribution

Observables:

- Complex visibility (amplitude and phase)
 from intensity modulations on detectors (Fringes)
- 2. Geometric delay from metrology system (OPD intern)

Calibrators for interferometry

Calibrators: Baseline

- Baseline ties delay to source position
- Derived by observing stars with accurately known positions distributed over the sky
- Usually done by ESO
- Can be interspersed with science obsevations
- Science targets may be also used for baseline calibration

Calibrators: Visibility

- ➤ Measure the *interferometer transfer function*, using sources with "known" properties.
- Anything can be used as calibrator (as long as we get enough photons)
- Make life easier:
 choose calibrators whose *properties are simple*!
 => "point sources" (single stars, unresolved)
- More details: A. Boden => Goutelas school
 M. Wittkowski => Torun school

Calibrators: Visibility

How to find a good calibrator?

- > Establish calibrator *criteria* => angular diameter *(small)*
 - => brightness (bright or equal to source)
 - => location (near source)

> Angular diameter

- => from previous high resolution measurements (CHARM: Richichi et al. 2005, A&A, 431, 773)
- => Catalogs based on spectrophotometric measurements (Cohen 1999, Borde 2002, Merand 2005, MIDI catalog)
- => Find spectrophotometry in literature and derive angular diameter.
- > Tools: => CalVin (ESO)
 - => Aspro and SearchCal (JMMC: http://www.mariotti.fr)
 - => getCal (MSC)

Calibrators: Dual-beam visibility

- Wavefront distortions decorrelate with increasing angular separation, due to atmospheric turbulence
 - => visibility loss
- Isoplanatic (Isopistonic) angle θ₀:
 Maximum angular separation for which the wavefront distortions are correlated
- θ_0 depends on λ , telescope size, atmospheric conditions (r_0, h_{turb})

 Potential calibrators: visual binary stars with different angular separations (WDS: http://ad.usno.navy.mil/wds/)

Calibrators: Astrometry

■
$$\Delta d = \mathbf{B} \cdot \Delta \mathbf{S} + C$$

= $\Delta OPD_* + (\lambda / 2\pi) \cdot \Delta \Phi$

But:

 \Rightarrow $\Phi \rightarrow$ Delay (which λ ?)

- > Differential measurements => relaxed calibration requirements
- > But, how to calibrate or verify the absolute astrometric "plate scale"?
- > Problem: no instrument has measured yet with microarcsecond accuracy
- > Possibility: Transiting RV planets

(known inclination => known astrometric signature)

Real-time calibrators: AO / TipTilt

■ VLTI **UTs**: MACAO V < 17 mag, Δ < 57 arcsec

(with FINITO: V < 13 mag, $\Delta < 15 \text{ arcsec}$)

VLTI ATs: STRAP TipTilt
 V < 13 mag, Δ < 60 arcsec

With PRIMA => use fringe tracking star

(Planet search target stars: V ≈ 7 – 12 mag)

Real-time calibrators: Phase-reference stars

Atmospheric turbulence

 \int

Piston fluctuations

Measured position vector **S** fluctuates

But:

Fluctuations are correlated within the isopistonic angle

Real-time calibrators: Phase-reference stars

- => Need phase reference stars within the isopistonic angle (10 20 arcsec for ATs in K-band)
- ⇒ There is no standard list.
 Each target needs its own reference star!

Brightness requirement:

Astrometry and Imaging with the VLTI, Keszt

PRIMA reference stars: the imaging case

Extended (faint) source to be imaged

3

Science examples:

- YSOs
- Circumstellar disks
- Microjets
- Shells around evolved stars
- AGNs

Bright star for fringe-tracking

Astrometry and Imaging with the VLTI, Keszthely, June 2008

Nearly hopeless.

Possible strategy: Search for suitable imaging targets near good phase-reference stars

PRIMA reference stars: the astrometry case

Science examples:

- Distances
- Binary orbits
- Extrasolar planets
- Dynamics (Solar system, clusters, bulge)

Measurement target = angular separation between two stars.

(It does not matter which one is used for fringe-tracking)

How to find reference stars?

Reference stars from public surveys?

Most public surveys suffer from:

- **> Wrong wavelength band** (→ DSS)
- ightharpoonup Not deep enough (→ 2MASS)
- ➤ Too low dynamic range, "blind" areas around bright stars (→ 2MASS)
- ➤ Ghosts around bright stars (→ USNO)
- ➤ Insufficient sky coverage (→ UKIDSS)
 - Need dedicated high-dynamic range imaging at K-band
 - Preparatory observations

Calibrators

Summary

▶ Baseline calibrators: ESO

> Visibility calibrators: Online catalogs and tools

Literature

- ➤ Other calibrators (guide stars, phot., spec., astrom.):
 - => Online catalogs and tools, literature
- ➤ Phase reference stars: dedicated preparatory observations (high-dynamic range imaging)

Preparatory Observations

Preparatory Roadmap

Derive target selection criteria

Scientific	Calibration	Technical
Type of source	Angular size	Location in sky
Distance	Astrometric stability	Brightness (K≤8mag)

Reference star selection criteria

- ➤Angular separation from target star (< θ₀≈10"-20")
- ➤ Brightness (K ≤ 14 mag)
- ➤ Astrometric stability (activity, distance, companions)
- ➤ (Angular size)

Pre-select target candidates

Study a particular source

Ask astrophysical question Find the right sources

You know your source!

Catalogs (e.g., Simbad, CNS)

Apply selection criteria

=> Now you have target candidates, but you don't know if you can observe them with PRIMA!

Search for reference stars

```
Faint stars (K ≈ 13-15 mag) nearby (< 10-15 arcsec) very bright stars (K ≈ 4-8 mag)</p>
```

- ➤ High dynamic range K-band imaging => r≥20" fields around target stars
- Need reasonable seeing (≤1-2")
- Sensitivity => use 2 4 m class telescope
- Use short DIT (≤ 1 sec) and small pixel scale (<0.2")
 (to minimize saturation effects)
 </p>
- Efficiency: detector should have low readout overhead

Search for reference stars

Telescopes and instruments:

- > Coronograph: => not available
- >AO (NACO): => FoV?
 - => Dynamic range?
 - => too "expensive"
- > VLT (ISAAC) => too "expensive" (8-m telescope not needed)
- ➤ Currently at ESO: **SOFI at the NTT**
- ➤ Other suitable telescopes and instruments?

What are the typical reference stars?

Angular diameter of reference stars

	R _*	D	ρ
Target stars	1	5 pc	2 mas
Reference stars	1	0.5 kpc	20 µas
	10	2 kpc	50 µas
	50	3 kpc	150 µas
1.2 λ/D (2.2μm / 100m)			5 mas

- Some visibility losses for the most nearby target stars (but they are bright)
- Background reference stars are always "point sources" (to first order)

Preparatory Observations

Summary

- ➤ Reference stars for faint source imaging:
 - => Bright stars from catalogs
- ➤ Reference stars for astrometry with bright targets:
 - => dedicated preparatory observations (mandatory!) (high dynamic range NIR imaging)
- ➤ Characterize target and reference stars:
 - => multi-color photometry, spectroscopy
 - => helpful before
 - => may be necessary after

Preparations

Example: Preparatory observations for ESPRI

- ➤ Astrometric Exoplanet Seach with PRIMA
- ➤ One large coherent program with PRIMA and 2 ATs
- > Consortium: Geneva, MPIA, LSW Heidelberg
- > GTO for building the DDLs and developing astrometric software

Goal: Search for extrasolar planets and measure their orbits and masses by observing the reflex motion of the host stars in the plane of the sky

<u>Preparatory observations:</u> Search for reference stars around nearby planet search target stars & characterize target stars spectroscopically

ESPRI: Reference star selection criteria

• Angular separation:

2" - 10"	10" – 20"	>20"
high	low	no

■ **Brightness:** Select all with K < 16 mag

Qualify only K < 14 mag

■ Other: De-select "bad" SBs and very nearby dwarfs

ESPRI reference star search

Preliminary NIR imaging results (SOFI + ESO archive + Calar Alto) observed: 655; reduced: 396

- o Observed, but not yet reduced
- No SeS found within 20"
- At least one SeS with K<16mag found within 20" (163 = 41%)
- At least one SeS with K<16mag found within 10" (92 = 23% / model = 19%)
- => Overal detection rate for reference stars (10arcsec, K≤14mag): 17%
- => ≈ Factor of 2 loss or gain per mag
- => ≈30% of these are physical companions and not background stars

ESPRI reference stars - examples

Spectral characterization of target stars

Binary and multiple systems

possibly quadrupole system

Starspots => astrometric noise

Star spots => astrometric noise

R. Launhardt, MPIA

Preparatory Observations for ESPRI

Summary

- > Reference star search:
 - => 4 year program at NTT and Calar Alto
 - => Special high dynamic range NIR imaging
 - => 650 out of 850 fields done
 - => Expect 80-120 good target reference pairs
- > Spectroscopic observations of target stars:
 - => Could sort out young stars with excessive activity
 - => Identified several new SBs
 - => Measure various stellar parameters
- Lesson: plan well, start early!