Stellar surface imaging with VLTI

Krzysztof Hełminiak Zoltán Kiss Johny Setiawan (P.I.) Krisztián Vida

Abstract: We intend to study stellar magnetic activity by detecting starspots directly with AMBER at VLTI.

Scientific background

Why observe?

- Starspot allow to study the dynamics of the photosphere (differential rotation, evolution of surface)
- Nature of spots give constraints on stellar interior models

Why VLTI?

- vsini too low for Doppler-imaging (should be >25km/s)
- Photometric methods don't allow us to derive exact spot parameters
- Long-baseline interferometry is the only tool for direct imaging

Observations

- α ~ 9 h; δ ~ -43.5°
- m_{κ} =-1*mag*, angular diameter: 13*mas*
- Rotational period >600d (Hipparcos photometry)
- AT's (E0-G0-H0; D0-H0-G1; A0-K0-G1)
- AMBER (low resolution)
- Date: January March 2009, 3 nights
- Seeing <1.4 as, clear sky</p>
- Calibrator: HD 78959

Simulated uv-space

What we expect

 There are measurable differences between spotted and unspotted star model, both in visibility and closure phases

unspotted

spotted

What we expect

 There are measurable differences between spotted and unspotted star model, both in visibility and closure phases

unspotted

spotted

Other scenarios

Small and unresolved spots

Spots distribution is almost uniform