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Quick Summa ry Accretion Time Scales Modeling the Accretion Removing the Belt
While the orbital period is P = 5.54 years, the duration of the strong The secondary accretes mass from the primary’s Because of the long viscosity time and the high mass loss
interaction near periastron passage is much shorter. We evaluate dense wind. The effective accretion radius of the rate, this belt is destroyed mainly by mass loss rather
o We present the accretion model for the behavior of the the periastron passage time: secondary depends on several parameters, in than accretion on the secondary. The belt covers a
: bi t C | t iact R P ) -1 particular on the orbital separation r(6). Since the fraction 6 of the secondary’s stellar surface (for example,
SUpermassive binary system n Lar CiOse€ to periastron L = Ny = [180}? j£47021$s‘1] days accretion radius is very close to the primary, the if this belt extends from the equator to latitudes £30°,
passages. o2 per © primary’s wind acceleration zone is taken into account then 6 = 0.5). We assume that the mass loss rate per unit
. The Keplerian period on the secondary equator is: as a B-model with two extreme values:1 and 3. solid angle from the belt is as that from the secondary.
o The model assumes that for 10 weeks near periastron PV Ve P p = o Y
o 20 T (P = v 1_& The belt will be blown away during a time:
the secondary star accretes mass from the slow dense b = 1.89£ZO; ] [301‘; ] days ! Lo | 1T N . N
. . ©) ©) i imitc: i i _ acc acc 2 7
wind blown by the primary star. | | L We.con5|der the two limits: BLOF, taklng the accretion fo, = - _5£2XIO6M j (IOSM yrlj (O.Sj month
Despite the fact that the Keplerian period is much shorter than t,,, radius as the Roche lobe equivalent radius, R, (), and 2 © ©
Th. A [} e [ ] d h () II PP
O IS ssumptlon Is examined theoretica Y- a geometrically thin accretion disk cannot be formed, since the Bondi-Hoyle-Lyttleton (BHL) accretion, where: If the mass loss process starts ~60 days after the event
o The main findings are: viscosity time scale in the disk is very long. In the a-disk model R (6)= 2GM, o, _ iy Y starts, then the recovery ends ~7 months after the event
1 A ti ic indeed likelv to tak | ith where the viscosity is v=aC.H , where C, is the sound speed and BHL p2o o7 v e R e starts. We identify this duration with the recovery phase
; ccretion 1S Inaee IKElYy 10 take place, wi an H(R) the disk height, the viscosity time scale is given by: Full RLOF-like accretion cannot occur because the of n Car from the spectroscopic event.
accretion rate in the range O,4—3,3X1O‘5M® p2 2 CEE w0 m Y2 T2 primary spin and orbital motion are not synchronized
. I ~ft | —| — =30 —— 2 2 —days near periastron passage. Therefore, for ~10 days ver : : :
2. This mass possesses enough angular momentumto | "~ “acu Kep(Hj 2702 (10Hj (zozegj (301\4@] a o Pasade . TR Possible Implications
- - S close to periastron passage, the accretion process wil The accretion from the equatorial region leaves the polar
form a thick dISk, or a bE't, around the secondary. where the equation was scaled near the secondary equator, where be an hybrid of the BHL and the RLOF mass transfer NN & , 5 . P
: : - : the viscosity time scale is the shortest. Since we expect a < 1, the processes. At the end of the accretion phase the SIS G ISR ol I E it (eI relre
3. The viscous time is too long for the establishment 16 VISCOSEY 1 - o<y e ses. - polar outflow blown by the accretion disk. The visible
W 3 el viscosity time is not short enough to make a geometrically thin disk accretion will be more of the BHL type. nd UV bands are obscured. but hard X-rav emission
of equ"'br'umr and the belt must be dISSIpatEd CR during the accretion time. However, the viscosity is not completely To calculate the dependence of the primary’s wind ) . v
i IS bei bl i h blished negligible and the accreted mass will form a thick accretion disk density on the azimuth angle and on the distance from might be detected. In particular, such a polar outflow
IS mass IS eing own In the  reestablishe ttg i i T darv_a belt - Y 9 ' thg tion int might be strong when the fast secondary’s wind rebuilds
davaling attached to the secondary-a belt. e secondary, we slice the cross section into teolf
secon Y : The relation among the timescales is such that: differential arcs. The accreted mass from each arc is . . . .
4. Thi K bout half hich culated ol dine to the density at that The accretion disk, or belt, will survive for weeks to
. IS processes requires abou alt a year, wnicn we by <ty Llpe ~ Liee K P f)?)icnlfc aasd isteizaarjdee?jl :gct(;re ;ncgcrgtedemaesrfl y atthd months after the accretion ends. During that time the
identify with the recovery phase of n Car from the . . . . / ' . accreting star will illuminate and ionize the polar
Y yp d During the strong interaction phase, lasting ~10 days, when the Over all, the total accreted mass for the cases studied . 2 : . ;
- & & directions much more than in the equatorial plane
spectroscopic event. accretion rate is very high the accretion belt will be far from here is 0.4-3.3x107°M~, with average value of M___ ~ '
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equilibrium. During the entire accretion phase, lasting ~10 weeks, a 2%x10°M. gx 107 |
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