Lecture #2: Ultraluminous Infrared Galaxies S. Veilleux (U. Maryland)

Plan

- Definitions & Instrumentation
- Properties of ULIRGs: Near & Far
 - Spectral energy distribution
 - Luminosity function
 - Evolution
 - Morphology
 - Gas content
- Importance of ULIRGs
 - Spheroids in formation
 - Black hole growth
 - Galactic winds --- Tomorrow!
- Summary

Relevant Reviews

- Sanders & Mirabel 1996, ARAA, 34, 749–792
- Blain et al. 2002, Physics Reports, 369, 111–176
- Lonsdale, Farrah, & Smith 2006, astro-ph/0603031

Definitions

 $\begin{array}{l} \mbox{Infrared Luminosity} \\ L_{IR} \equiv L(8-1000 \ \mu m) \\ \mbox{Luminous Infrared Galaxies (= LIGs or LIRGs):} \\ log[L_{IR}/L_{Sun}] \geq 11.0 \\ \mbox{Ultraluminous Infrared Galaxies (= ULIGs or ULIRGs):} \\ log[L_{IR}/L_{Sun}] \geq 12.0 \\ \end{array}$

The James Clerk Maxwell Telescope &

Submillimeter Common User Bolometer Array (SCUBA)

JCMT 14m

850micron Array

Submm Galaxies (SMGs) in the Hubble Deep Field

Hubble Deep Field ST Scl. OPO January 15, 1996 R. Williams and the HDF Team (ST Scl) and NAS

Spitzer Space Telescope

Spectral Energy Distribution

Local Luminosity Function

Evolution with Redshift (Pre-SST)

 $n(\text{local ULIRGs}) \sim 2.5 \text{ x } 10^{-7} \text{ Mpc}^{-3} \sim n(\text{local QSOs})$ $n(\text{SMGs}) \sim 10^{2-3} n(\text{local ULIRGs}) \sim n(\text{bright QSOs} @ z \sim 2)$

Luminosity Dependence of Evolution (Post-SST: Perez-Gonzalez et al. 2005)

Infrared Background (24-µm selected sample: Le Floc'h et al. 2005)

Morphology of Local ULIRGS (SV et al. 2002)

 56% coalesced to single nucleus
 Fraction of post / old mergers (single nucleus) increases with L_{IR}

Morphology of Local LIRGs + ULIRGs

Interaction Class 4+5 (LIRGs+ULIRGs)

(Ishida 2004; SV et al. 2002)

Distant (z ~ 2–3) ULIRGs: SST & SMGs

Morphology

Rest–fr ame BVI

Most high-z SMGs (50-60% optical; 85% UV) are multicomponent or disturbed systems, suggestive of mergers or interactions *(e.g., Chapman+03; Smail+04)*

Gas Content of ULIRGs

- $M(H_2) = \text{few x } 10^{10} M_{\text{Sun}}$
- $M(H_2)/M(dust) = 10^2 10^3$
- Conditions similar to massive GMC cores in our Galaxy but more infrared luminous and denser
- About 40 100% of L_{CO} comes from central kpc (also true for L_{MIR})
- $\langle \Sigma(H_2) \rangle_c \approx \langle \Sigma_* \rangle (E \text{ cores})$ $\approx \text{few x } 10^4 \text{ M}_{\text{Sun}} \text{ pc}^{-2}$

Gas in Galaxy Mergers

(Barnes & Hernquist 1996)

Black Holes during Galaxy Mergers

(Courtesy P. Madau)

Fundamental Plane for Ellipticals and ULIRGs (SV et al. 2006a, Dasyra et al. 2006ab)

- $\langle M_{\rm H} \rangle_{\rm host} \sim 1-2$ L* (HST H-band, broad scatter)
- **~ 80%** have prominent early-type morphology ($r^{1/4}$ -law profile (*a*) $r \sim 1.5 6.0$ kpc)
- $<\sigma>= 161 \pm 40 \text{ km s}^{-1}, < V_{rot} / \sigma > ~ 0.5 (0.2 1.2) \text{ among ULIRGs}$
- ULIRGs are moderate-mass (~ m*) Es with some scatter

Comparison of SMGs and Local ULIRGs

	SMGs	Local ULIRGs	5	
<v<sub>c></v<sub>	400 km/s	250 km/s		
< M _{dyn,1/2} >	$7x10^{10} M_{\odot}$	$5x10^9M_{\odot}$		
< R _{1/2} >	2.0 kpc	0.6 kpc		
< <u>L</u> _{bol} >	$10^{13.1} L_{\odot}$	$10^{12} L_{\odot}$		
M _{gas} /M _{dyn}	0.3-0.4	0.16		
Σ_{dyn}	5000 M _o /pc ²	4900 M _o /pc ²	$\sim \Sigma_E$	

<u>/S</u>()

Formation of Spheroids

Local ULIRGs: 1-Jy sample

- Location of single-nucleus systems on the FP is consistent with ~ m* spheroids in formation
- n(ULIRGs) ~ 2.5 x 10⁻⁷ Mpc⁻³ ~ (1/7000) n(SDSS ellipticals)
- Distant ULIRGs: SST & SCUBA
 - $M_{stellar} \& M_{dyn}(core)$ consistent with ~ $10^{11} M_{sun}$ spheroids in formation
 - τ (ULIRG lifetime) ~ 200 300 Myr ~ τ (gas consumption) ~ 40 Myr
 - $\sigma(z, ULIRG era) \sim 1.5 \rightarrow \tau(ULIRG era) \sim 1.5 \text{ Gyr}$
 - $n(\text{descendants}) = n(\text{bright SMG}) \ge \tau(\text{ULIRG era}) / \tau(\text{ULIRG lifetime})$ ~ $3 \ge 10^{-5} \text{ Mpc}^{-3} (1500 / 300) \sim 1.5 \ge 10^{-4} \text{ Mpc}^{-3}$ ~ $n(> \text{L}^* \text{ ellipticals at } z \sim 0)$

• $< M_K > = -26.4 \ (z = 2.2) \rightarrow < M_K > \sim -25 \ (z = 0)$

Local ULIRGs: SMBH Growth

Fraction of AGN (Seyfert nuclei): • ~ 1/3 @ $\log[L_{IR}/L_{Sun}] > 12$ • ~ 1/2 @ $\log[L_{IR}/L_{Sun}] > 12.3$

- **Optical & NIR spectroscopy:** *Ground-based telescope facilities*
- MIR spectroscopy: Infrared Space Observatory, Spitzer Space Telescope
- Radio: VLA, VLBA
- X-rays: Chandra X-ray Observatory, XMM-Newton

Trends with Merger Phases (Local ULIRGs: SV, et al. 2002, 2006)

- Nearly all quasar-like ULIRGs are advanced mergers
- **Starburst-like ULIRGs are found in all merger phases**
- Warm, AGN-like ULIRGs live in early-type hosts
- **Tidal features are weaker among warm, AGN-like, early-type ULIRGs**

Trends with Merger Phases (Local ULIRGs: SV, et al. 2002, 2006)

- **Over Ity all quasar-like ULIRGs are advanced mergers**
- **Starburst-like ULIRGs are found in all merger phases**
- **Warm, AGN-like ULIRGs live in early-type hosts**
- **©** Tidal features are weaker among warm, AGN-like, early-type ULIRGs

Velocity Dispersion Distributions of QSOs (Dasyra et al. 2006ab, 2007)

Properties of ULIRGs and QSOs

Dasyra et al. 2007

	log L _{bol}	m/m* m*=1.4x10 ¹¹ M _☉	log m _{BH} (M _☉)	η_{Edd}
<ulirgs></ulirgs>	12.2	0.8	7.9	0.5
PG QSOs	12.2	1.5	8.0	0.3

 $\sim r_{eff}\sigma^2 \sim \sigma^4$

Distant ULIRGs: SMBH Growth

Fraction of AGN (Seyfert nuclei):

- ~ 50 75% @ $\log[L_{IR}/L_{Sun}] > 12.5$
- (SMGs)
- But apparently AGN is not dominant

Distant ULIRGs: SMBH Growth

(SST ULIRGs)

- Dependence on infrared luminosity
- AGN dominance:
 ~40% (ULIRGs) →
 ~85% (HLIRGs)

Small number of objects...

SMGs: M_{BH} – M_{*} relation

ULIRG – Spheroid/QSO in formation (low-to-moderate z)

- Forming spheroids
 - Black hole growth
- **Galactic winds**

ULIRG – Spheroid/QSO in formation (high-z)

	Gas	(Li et a	ıl. 2006)	Stars	
z= 12.75	z= 10.32	z= 9.17	z= 12.75	z= 10.32	z= 9.17
6 47	28	2	×		£
20 kpc 3.6"			20 kpc 3.6"		10
z= 8.63	z= 8.16	z= 7.63	z= 8.63	z= 8.16	z= 7.63
z= 7.00	z= 6.54	z= 4.99	z= 7.00	z= 6.54	z= 4.99