Theory of Phases in Optical Interferometry

John Young

University of Cambridge

Thanks to: Chris Haniff, John Monnier, J-P Berger

Outline of Talk

- Fringe patterns; amplitude and phase
- Impact of atmosphere
- Techniques to get phase information:
 - Phase Referencing
 - Differential Phase
 - Closure Phase
- Closure Phase
 - Definition and properties
 - Use in mapping
 - Use in model fitting

Interferometers measure fringes (revision)

Fringe amplitude and phase depend on FT of source brightness distribution (revision)

- Recall sinusoidal interferometer output (fringes): $P \propto 1 + \cos(kD), \quad D = \mathbf{s}.\mathbf{B} + d_1 - d_2$
- This is related to the Fourier Transform of the source brightness distribution:

 $P(\mathbf{s}_{0}, \mathbf{B}, \delta) = I_{\text{total}} + \text{Re}[V(\mathbf{B}) \exp(-ik\delta)],$ $V(\mathbf{B}) = V(u,v) = \int I(\alpha, \beta) \exp(-2\pi i (\alpha u + \beta v)) \, d\alpha \, d\beta$

δ is offset from expected white-light fringe delay.
 Measure P at e.g. δ=0 and δ=π/4 to obtain complex V

BUT....

- When we observe through the Earth's atmosphere, the phase of the fringe pattern is perturbed
- We can still measure the phase, but it no longer tells us anything about the source

Actual (dispersed) fringe pattern

Delay

Fringe motion = phase fluctuations

• Note motions are > 1 fringe

Fringe motion = phase fluctuations

• Note motions are > 1 fringe

The atmosphere

- A 12m × 12m patch of good atmosphere
- Each contour represents one radian of phase delay for light at a wavelength of 2 microns

Phasescreen

What this does

- Atmosphere introduces an unknown phase delay above each interferometric collector
- Example: suppose only one aperture affected
- Shifts output of interferometer away from expected white-light position

Why we can't average the phase

Even on a good site in the near-infrared, phase excursions exceed π radians

Timescale for phase variations

• Coherence time τ_0 :

Interval over which RMS phase change is 1 rad

- Scales as $\lambda^{6/5}$, so 3ms at 500nm corresponds to 18ms at 2.2 μm
- Must use short exposures to avoid smeared fringes

Recap

- Interferometers measure fringe patterns:
 - Amplitude
 - Phase: location (in delay-space) of white-light fringe
- Fringe amplitude and phase are amplitude and phase of one Fourier component of the source brightness distribution
- Atmosphere perturbs measured phase by > π rad
- Timescale for phase perturbations is coherence time
 - Tens of milliseconds in NIR
 - Need short exposures even if only measuring amplitude

Why do we care about phase?

- Why don't we just measure the fringe amplitude then?
- Answer: Depends on what science you want to do. Sometimes just the amplitude is enough, often its not.

- Aside: atmosphere also affects measured visibility amplitude
- Mitigate by interleaving observations of science object and unresolved calibrator star

Most of information is in visibility phases (i)

- Without closure phase data, map is necessarily centro-symmetric
- With phase information, correct source brightness distribution is discovered

Most of information is in visibility phases (i)

Amplitudes and phases Phases only

Techniques to recover phase information

- Closure phase (most of this talk & practical session)
- Phase referencing
- Differential phase

Phase Referencing (Dual Star Interferometry)

Phase Referencing e.g. PRIMA

- Fringes on 2 sources simultaneously
- Track fringes on reference source using BC#1
- Measure amplitude and phase of science object fringes in BC#2
- Metrology system tells you phase zero-point for BC#2 – measured phase then equals true visibility phase

Differential phase e.g. AMBER/MIDI

- Extra hardware not required
- Nearby reference star not required
- Measure fringe phase as function of wavelength
- Model and remove atmospheric dispersion $\rightarrow \Phi_{_{DP}} = \phi(\lambda) - \phi(\lambda_{_{ref}})$
- Tells you photocentre shift w.r.t λ_{ref}
- Need a model for the source to interpret further

The Closure Phase

$$\Phi_{12} = \phi_{12} + \varepsilon_1 - \varepsilon_2$$

$$\Phi_{23} = \phi_{23} + \varepsilon_2 - \varepsilon_3$$

$$\Phi_{31} = \phi_{31} + \varepsilon_3 - \varepsilon_1$$

$$\Phi_{12} + \Phi_{23} + \Phi_{31} = \phi_{12} + \phi_{23} + \phi_3$$

- Sum of visibility phases around a closed triangle of baselines
- Telescope-dependent errors (e.g. atmosphere) cancel

The Bispectrum

- Often more convenient to work with the bispectrum (a.ka. "Triple product")
 = product of complex visibilities around a closed triangle of baselines
- Argument of bispectrum is the closure phase

Bispectrum measurements can be averaged

- Successive bispectrum measurements can be averaged in the complex plane
- Average is useful even if SNR of individual measurements is low

Recap on Visibility Functions

- FT is linear → V(component1 + component2)
 = V(component1) + V(component2)
 - Remember *V* is complex
 - Use this to predict bispectrum and hence closure phase for complicated sources

What does a closure phase measure?

- Insensitive to source position
 - Unlike visibility phase
- Point-symmetric sources have CP of 0 or 180°
 - Common examples: symmetric disc, equal binary
- CP measures fraction of asymmetric flux
 - On the angular scale to which you have resolved the source

$$- | CP / rad | \approx F_{asymm} / F_{symm}$$

 With enough closure phases, you can discover the nature of the asymmetry

Differential Phase Example

Recap: closure phase

- Bispectrum is product of complex visibilities around closed triangle of baselines
 - Closure phase is argument of bispectrum
- Bispectrum is "good observable" in presence of atmosphere
 - Can be averaged over many coherence times
- Closure phase measures fraction of asymmetric flux, on scale at which you have resolved the source

Important Properties of Closure Phases

- More robust to calibration error than visibility amplitude
 - Atmospheric turbulence generally does not bias measurement
 - Reasonable hope of measurement error reducing as \sqrt{N}
 - There can be biases due to chromatic effects (same for visibility amplitude)
- Sensitive to asymmetries in brightness distribution
 - Bispectrum *real* for point-symmetry ($\Phi_{CP} = 0 \text{ or } 180^\circ$)
 - Must resolve object to have significant signal
 - Critical for validating model fits to visibility amplitude data
 - Necessary for imaging (if no phase referencing)

Model Fitting with Closure Phases

- Conventional techniques used to fit model for source brightness distribution to measured visibility amplitudes and closure phases/bispectra
 - Least-squares
 - Bayesian: minimise negative log posterior probability $L = Prior + \Sigma (D_i - M(a))^2 / (2\sigma_i^2)$

by varying vector **a** of model parameters

- Here D_i is Squared Visibility or Closure Phase (D_i-M calculated modulo 2π)
- Model is either:
 - Sum of uniform discs, elliptical Gaussians etc.
 - Output of radiative transfer code

Mapping with Closure Phases: (a) Iterative Deconvolution

- Closure phases used as a constraint in an iterative scheme
 - Assign some phases consistent with the closure phases using a <u>model</u>
 - Fourier Invert
 - ⁻ Deconvolve (e.g. CLEAN) \rightarrow new model
 - Start over with new model
 - Unless procedure has <u>converged</u>

Mapping with Closure Phases: (b) Fitting with Regularization

- Fit model consisting of pixel values to visibility amplitude and closure phases
- No unique solution, so constrain using prior knowledge:
 - Positivity
 - Limited Field of View
 - Regularization term to favour "simple" solutions
 - e.g. Maximum Entropy: compressed range of pixel values
 - Note that iterative schemes incorporate prior knowledge implicitly

Longest baseline $/M\lambda$

Concluding Remarks

- Phase information important for unambiguous interpretation of Fourier plane data
- Several techniques for obtaining phase information in phase-unstable conditions
 - Closure phase
 - Differential phase
 - Phase referencing (see talk on PRIMA)
- Closure phases/differential phases can be used in mapping and model-fitting