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Outline of Talk

Fringe patterns; amplitude and phase
Impact of atmosphere

Techniques to get phase information:
- Phase Referencing

— Differential Phase

— Closure Phase

Closure Phase

— Definition and properties

- Use in mapping

— Use in model fitting



Interferometers measure fringes (revision)
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Fringe amplitude and phase depend on FT of
source brightness distribution (revision)

* Recall sinusoidal interferometer output (fringes):
Po«1+cos(kD), D=sB+d —d

 This is related to the Fourier Transform of the source
brightness distribution:

P(s,, B,0)=1__+ Re[V(B) exp(-ikd)],
V(B) = V(u,v) = | I(a, B) exp(-2Ti (au + Bv)) da dp

* O is offset from expected white-light fringe delay.
Measure P at e.g. 8=0 and 0=11/4 to obtain complex V



BUT....

* When we observe through the Earth's atmosphere, the
phase of the fringe pattern is perturbed

* We can still measure the phase, but it no longer tells
us anything about the source



Actual (dispersed) fringe pattern
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Fringe motion = phase fluctuations

* Note motions are > 1 fringe




Fringe motion = phase fluctuations

* Note motions are > 1 fringe




The atmosphere

* A12m x 12m patch of _Phasescreen
good atmosphere

* Each contour represents
one radian of phase delay
for light at a wavelength
of 2 microns
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What this does

* Atmosphere introduces an O et
unknown phase delay "
above each interferometric
collector

* Example: suppose only one
aperture affected

* Shifts output of
interferometer away from
expected white-light
position

Fringe Signal (arbitrary offset)




Why we can't average the phase

Placid Atmosphere (A0 < & radians)
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* Even on a good site in the near-infrared, phase
excursions exceed 11 radians
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Interval over which RMS phase change is 1 rad
- Scales as A°°, so 3ms at 500nm corresponds to 18ms at

* Must use short exposures to avoid smeared fringes



Recap

Interferometers measure fringe patterns:

- Amplitude
- Phase: location (in delay-space) of white-light fringe

Fringe amplitude and phase are amplitude and phase
of one Fourier component of the source brightness

distribution
Atmosphere perturbs measured phase by > 1 rad
Timescale for phase perturbations is coherence time

— Tens of milliseconds in NIR
— Need short exposures even if only measuring amplitude




Questions?



Why do we care about phase?

* Why don't we just measure the fringe amplitude then?

* Answer: Depends on what science you want to do.
Sometimes just the amplitude is enough, often its not.

* Aside: atmosphere also affects measured visibility
amplitude

* Mitigate by interleaving observations of science object
and unresolved calibrator star



Milliarcseconds

Most of information is in visibility phases (1)
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* Without closure phase data, map is necessarily
centro-symmetric

* With phase information, correct source brightness
distribution is discovered



Most of information is in visibility phases (1)

Amplitudes and phases Phases only



Techniques to recover phase information

* Closure phase (most of this talk & practical session)
* Phase referencing
* Differential phase



Phase Referencing
(Dual Star Interferometry)
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Phase Referencing e.g. PRIMA
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Difterential phase e.g. AMBER/MIDI

Extra hardware not required
Nearby reference star not required

Measure fringe phase as function of wavelength

Model and remove atmospheric dispersion
— D= 6(N) - o(A)
Tells you photocentre shift w.r.t A

ref

Need a model for the source to interpret further



The Closure Phase
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The Bispectrum

* Often more convenient to work with the bispectrum

(a.ka. “Triple product”)
= product of complex visibilities around a closed

triangle of baselines
* Argument of bispectrum is the closure phase



Bispectrum measurements can be averaged

» Successive bispectrum measurements can be
averaged in the complex plane

* Average is useful even if SNR of individual
measurements is low
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Recap on Visibility Functions

* FTislinear — V(component1 + component2)
= V(component1) + V(component2)

- Remember V is complex

— Use this to predict bispectrum and hence closure phase
for complicated sources




What does a closure phase measure?

* Insensitive to source position
= Unlike visibility phase
* Point-symmetric sources have CP of 0 or 180°
- Common examples: symmetric disc, equal binary
* CP measures fraction of asymmetric flux
~ On the angular scale to which you have resolved the

source _ -
_|CPirad |=F_ IF. .= Jawm
VSym

- With enough closure phases, you can discover the
nature of the asymmetry



Differential Phase Example
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Recap: closure phase

* Bispectrum is product of complex visibilities around
closed triangle of baselines

— Closure phase is argument of bispectrum

* Bispectrum is “good observable” in presence of
atmosphere

— Can be averaged over many coherence times

* Closure phase measures fraction of asymmetric flux,
on scale at which you have resolved the source




Questions?



Important Properties of Closure Phases

* More robust to calibration error than visibility amplitude

— Atmospheric turbulence generally does not bias
measurement

- Reasonable hope of measurement error reducing as YN

— There can be biases due to chromatic effects (same for
visibility amplitude)

* Sensitive to asymmetries in brightness distribution
- Bispectrum real for point-symmetry (d.. = 0 or 180°)
- Must resolve object to have significant signal

— Critical for validating model fits to visibility amplitude data
- Necessary for imaging (if no phase referencing)



Model Fitting with Closure Phases

* Conventional techniques used to fit model for source
brightness distribution to measured visibility
amplitudes and closure phases/bispectra

- Least-squares

— Bayesian: minimise negative log posterior probability
L= Prior + Z (D-M(a))*/(20 %)
by varying vector a of model parameters

« Here D is Squared Visibility or Closure Phase (D-M calculated
modulo 21)

* Model is either:
— Sum of uniform discs, elliptical Gaussians etc.
— Qutput of radiative transfer code



Mapping with Closure Phases:
(a) Iterative Deconvolution

* Closure phases used as a constraint in an iterative
scheme

— Assign some phases consistent with the closure
phases using a model

- Fourier Invert
— Deconvolve (e.g. CLEAN)— new model

- Start over with new model
— Unless procedure has converged




Mapping with Closure Phases:
(b) Fitting with Regularization

* Fit model consisting of pixel values to visibility
amplitude and closure phases

* No unique solution, so constrain using prior
knowledge:

— Positivity
- Limited Field of View
— Regularization term to favour “simple” solutions
* e.g. Maximum Entropy: compressed range of pixel values

- Note that iterative schemes incorporate prior
knowledge implicitly
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Concluding Remarks

* Phase information important for unambiguous
interpretation of Fourier plane data

* Several techniques for obtaining phase information in
phase-unstable conditions

— Closure phase
- Differential phase
- Phase referencing (see talk on PRIMA)

* Closure phases/differential phases can be used in
mapping and model-fitting



