## The Central Black Hole and Relationships with the Host Galaxy

Bradley M. Peterson The Ohio State University

"Active Galactic Nuclei at the Highest Angular Resolution"

August 2007

#### **Topics to be Covered**

- Lecture 1: AGN fundamentals, evidence for supermassive black holes, AGN continuum variability
- Lecture 2: Emission-line variability, reverberation mapping, the radius—luminosity relationship
- Lecture 3: AGN black hole masses, comparisons between methods, relationships between BH mass and AGN/host properties, requirements for velocity–delay maps, the nature of NLS1s

#### Lecture 3

- Time-variable lags
  - How is the BLR fine-tuned?
- Reverberation-based black hole masses
  - Virial relationship and characterizing line widths
- Calibrating the mass scale via  $M_{\rm BH}$ – $\sigma_*$
- The  $M_{\rm BH} L_{\rm bulge}$  relationship
- The  $M_{\rm BH} L_{\rm AGN}$  relationship
- Masses from scaling relationships
- Requirements for a velocity–delay map
- The nature of NLS1s (time permitting)

## Time-Variable Lags

 14 years of observing the Hβ response in NGC 5548 shows that lags increase with the mean continuum flux.



## **Time-Variable Lags**

- Measured lags range from 6 to 26 days.
- Best fit is log R ∝ (0.66 ± 0.13) log L<sub>opt</sub>



Bentz et al. 2007

## **Time-Variable Lags**

- Measured lags range from 6 to 26 days.
- Best fit is log *R* ∝ (0.66 ± 0.13) log *L*<sub>opt</sub>
- However, UV varies more than optical:
  - $\log L_{\rm opt} \propto (0.84 \pm 0.05)$  $\log L_{\rm UV}$
- Thus, log R ∝ (0.55 ± 0.14) log L<sub>UV</sub>



Bentz et al. 2007

#### What Fine–Tunes the BLR?

- Why are the ionization parameter and electron density the same for all AGNs?
- How does the BLR know precisely where to be?
- <u>Answer</u>: gas is everywhere in the nuclear regions. We see emission lines emitted under optimal conditions.

#### Locally optimally-emitting cloud (LOC) model

- The flux variations in each line are responsivity-weighted.
  - Determined by where physical conditions (mainly flux and particle density) give the largest response for given continuum increase.
- Emission response in a particular line comes predominantly from clouds with optimal conditions for that line.



Particle density

Korista et al. 1997

### Measuring Black Hole Masses by Reverberation Mapping

- Virial mass measurements based on motions of stars and gas in nucleus.
  - Stars
    - Advantage: gravitational forces only
    - Disadvantage: requires high spatial resolution
      - larger distance from nucleus  $\Rightarrow$  less critical test
  - Gas
    - Advantage: can be found very close to nucleus
    - Disadvantage: possible role of non-gravitational forces

#### Virial Estimators

Mass estimates from the virial theorem:

| Source                   | Distance from              |
|--------------------------|----------------------------|
|                          | central source             |
| X-Ray Fe K $^{\alpha}$   | 3-10 <i>R</i> <sub>S</sub> |
| <b>Broad-Line Region</b> | $200^{-}10^4 R_{\rm S}$    |
| Megamasers               | $4 \times 10^4 R_{\rm S}$  |
| Gas Dynamics             | $8 \times 10^5 R_{\rm S}$  |
| Stellar Dynamics         | $10^{6} R_{s}$             |

In units of the Schwarzschild radius  $R_{\rm S} = 2GM/c^2 = 3 \times 10^{13} M_8 \,\mathrm{cm}$ .

#### $M = f(r \Delta V^2 / G)$

#### where

- r = scale length of region
- $\Delta V$  = velocity dispersion
- f = a factor of order unity, depends on details of geometry and kinematics

## A Virialized BLR

- $\Delta V \propto R^{-1/2}$  for every AGN in which it is testable.
- Suggests that gravity is the principal dynamical force in the BLR.



#### **Characterizing Line Widths**

#### FWHM:

- Trivial to measure
- and extended wings

#### Line dispersion $\sigma_{\text{line}}$ :

- ➢ Well defined
- Less sensitive to blending > Less sensitive to narrow-line components

More accurate for low-contrast lines

Some trivial **FWHM** FWHM profiles: ±σ ±σ  $\pm \sigma$ ±σ  $2(2\ln 2)^{1/2}$  $\sqrt{6}$  $2\sqrt{3}$  $2\sqrt{2}$ **FWHM** 2.83 2.45 2.35 3.46  $\sigma_{ ext{line}}$ 

$$\sigma_{\text{line}} = \left\langle \lambda^2 \right\rangle - \lambda_0^2 = \left( \int \lambda^2 P_\lambda d\lambda / \int P_\lambda d\lambda \right) - \lambda_0^2$$



#### Calibration of the Reverberation Mass Scale

#### $M = f(c\tau_{\rm cent}\sigma^2/G)$

- Determine scale factor f that matches AGNs to the quiescent-galaxy  $M_{BH}$ - $\sigma_*$ . relationship
- Current best estimate:
   f = 5.5 ± 1.8



Bulge velocity dispersion  $\sigma_*$  (km/sec)

- Reverberation-mapped AGNs show broad range of FWHM/ $\sigma_{\text{line}}$
- Mass calibration is sensitive to which line-width measure is used!
  - Even worse, there is a bias with respect to AGN type (as reflected in the profiles)





NLS1 + I Zw 1-type NGC 5548 Hβ

#### Extreme examples







#### Measuring $\sigma_*$

- For z > 0.06, requires observations of CO bandhead in *H*-band (1.6 μm).
- Preliminary results with VLT/ISAAC.
- Beginning to acquire Gemini North *H*-band spectra with NIFS/Altair/LGS system.





#### Measuring AGN Black Hole Masses from Stellar Dynamics



Only two reverberation-mapped AGNs are close enough to resolve their black hole radius of influence  $r_* = GM_{\rm BH}/\sigma_*^2$  with diffraction-limited telescopes.

#### **Direct Comparison: NGC 3227**





#### Davies et al. (2006)

#### Hicks & Malkan (2007)

Stellar dynamics:  $(7 - 20) \times 10^6 M_{\odot}$  (Davies et al. 2006) Reverberation:  $(42 \pm 21) \times 10^6 M_{\odot}$  (Peterson et al. 2004) Gas dynamics:  $20^{+10}_{-4} \times 10^6 M_{\odot}$  (Hicks & Malkan 2007)

21

#### **Direct Comparison: NGC 4151**





#### **Bentz et al. (2006)**

#### Hicks & Malkan (2007)

Stellar dynamics:  $\leq 70 \times 10^6 M_{\odot}$  (Onken et al. 2007) Reverberation:  $(46 \pm 5) \times 10^6 M_{\odot}$  (Bentz et al. 2006) Gas dynamics:  $30^{+7.5}_{-2.2} \times 10^6 M_{\odot}$  (Hicks & Malkan 2007)

## Additional Check on Masses: $M_{\rm BH}$ vs. $L_{\rm bulge}$

- Modeling the surface brightness distributions of AGNs in our ACS sample give L<sub>bulge</sub>.
- Is there a correlation between black hole mass and bulge luminosity (or mass)?
- If so, is it the same as that for quiescent galaxies?

Magorrian et al. (1998)

















## M<sub>BH</sub> vs. L<sub>bulge</sub>

- There is a clear correlation, but more work is necessary to improve slope determination and to compare zero-points with quiescent galaxies.
- At this point, no inconsistency with quiescent galaxies.



#### Evidence That Reverberation-Based Masses Are Reliable

1. Virial relationship for emission-line lags (BLR radius) and line widths

2.  $M_{BH} - \sigma_*$  relationship





3.  $M_{\rm BH} - L_{\rm bulge}$  relationship



#### Evidence That Reverberation-Based Masses Are Reliable

- 4. Direct comparisons with other methods:
  - Stellar dynamical masses for NGC 3227 and NGC 4151

 Gas dynamical masses for NGC 3227, NGC 4151, and NGC 7469





### **Mass-Luminosity Relationship**

 Like radiusluminosity, the massluminosity relationship was anticipated early.



Koratkar & Gaskell 1991

## Mass-Luminosity Relationship

- All are sub-Eddington
- NLS1s have high Eddington rates
- At least some outliers are heavily reddened
- These 36
   AGNs anchor the black hole mass scale



#### Estimating Black Hole Masses from Individual Spectra

Correlation between BLR radius  $R (= c\tau_{cent})$  and luminosity L allows estimate of black hole mass by measuring line width and luminosity only:

$$M = f(c\tau_{\text{cent}} \sigma_{\text{line}}^2/G) \propto f L^{1/2} \sigma_{\text{line}}^2$$

Dangers:

- blending (incl. narrow lines)
- using inappropriate f
  - Typically, the variable part of  $H\beta$  is 20% narrower than the whole line



#### Bentz et al. 2006

### Radius-Luminosity for Lines Other than Hβ

- *R*–*L* relationship is well-established only for Hβ
- For C IV, there are relatively new results from high-z, high-L studies and dwarf Seyferts.



Kaspi et al. (2006)

#### Secondary Mass Indicators

- Reverberation masses serve as an anchor for related AGN mass determinations (e.g., based on photoionization modeling)
  - Will allow exploration of AGN black hole demographics over the history of the Universe.



Vestergaard (2002)

$$M = f(c\tau_{\text{cent}}\sigma^2/G) \propto L^{1/2}\sigma^2$$

# Narrow-Line Widths as a Surrogate for σ<sub>\*</sub>

- Narrow-line widths and σ<sub>\*</sub> are correlated
  - The narrow-line widths have been used to estimate black-hole mass, based on the  $M_{\rm BH}$ -  $\sigma$ \* correlation
  - Limitations imposed by angular resolution, non-virial component (jets)



**Shields et al. 2003** <sup>39</sup>



#### **Estimating AGN Black Hole Masses**



## Next Crucial Step

- Obtain a high-fidelity velocity-delay map for at least one line in one AGN.
  - Cannot assess systematic uncertainties without knowing geometry/kinematics of BLR.
  - Even one success would constitute "proof of concept".



BLR with a spiral wave and its velocity-delay map in three emission lines



A program to obtain a velocity-delay map is not much more difficult than what has been done already!

#### 10 Simulations Based on HST/STIS Performance



Each step increases the experiment duration by 25 days

# The Nature of NLS1s

 Narrow-line Seyfert 1 (*NLS1*) galaxies are true broad-line objects, but with an especially narrow broad component, FWHM < 2000 km s<sup>-1</sup>



#### **Definition of NLS1s**

- FWHM(H $\beta$ )  $\leq$  2000 km s<sup>-1</sup>
- Flux ratio [O III]  $\lambda 5007/H\beta \le 3$ 
  - Ensures they are true Sy1s
- Consider the following:

$$\begin{split} R_{\rm BLR} &\propto L_{\rm AGN}^{1/2} \\ \Delta V \propto \left( \begin{matrix} GM_{\rm BH} \\ R_{\rm BLR} \end{matrix} \right)^{1/2} \\ \Delta V \propto \left( \begin{matrix} M_{\rm BH} \\ L^{1/2} \end{matrix} \right)^{1/2} \propto \left( \begin{matrix} M_{\rm BH} \\ \dot{M}^{1/2} \end{matrix} \right)^{1/2} \propto \left( \begin{matrix} M_{\rm BH} \\ \dot{M}^{1/2} \end{matrix} \right)^{1/2} \propto \left( \begin{matrix} M_{\rm BH} \\ \dot{M} \end{matrix} \right)^{1/4} \end{split}$$

## Definition of NLS1s $\Delta V \propto \left( \frac{M_{\rm BH}}{\dot{m}} \right)^{1/4}$

 If NLS1s are physically defined by high Eddington rate, then high-mass black holes are missed.

 Includes 3C 273 and PG 1700+518, which have NLS1-type spectra.

- FWHM/o<sub>line</sub> also correlates with PC1 (Eigenvector 1)
- Both show some correlation with Eddington rate
  - Some indications inclination matters

**Bolometric luminosity** 

**PC1: low** 

10<sup>46</sup>

10<sup>45</sup>

PC1: high

 $10^{42}$ 

10<sup>43</sup>

10<sup>44</sup>

Optical luminosity  $\lambda L_{\lambda}$  (5100Å)

## **Eigenvector 1**



Black hole mass (solar masses)

 $10^{\circ}$ 

 $10^8$ 

 $10^{7}$ 

10

10<sup>41</sup>

## What does FWHM/ $\sigma_{line}$ actually measure?

Not just inclination (NGC 5548).



#### 

NLS1 + I Zw 1-type NGC 5548 Hβ

#### Extreme examples

## What does FWHM/ $\sigma_{line}$ actually measure?

All data

• Not just Eddington rate.

Subset correctable for starlight

Corrected for starlight: big symbols are NGC 5548

**Collin et al. (2006)** 



#### **Can We Determine Inclination?**

- Suggestion (Wu & Han 2001; Zhang & Wu 2002; McLure & Dunlop 2001): Use prediction of  $M_{\rm BH} \sigma_* \Rightarrow M_{\sigma^*}$  (assumed isotropic)
  - Compare to reverberation measurement  $M_{\rm rev}$
  - Expect that small  $M_{rev} / M_{\sigma^*} \Rightarrow$  low (face-on) inclination
  - Similarly, expect that some NLS1s or other likely low inclination to have small  $M_{\rm rev}$  /  $M_{\sigma^*}$

#### **Can We Determine Inclination?**

• Even if  $M_{rev} / M_{\sigma^*}$  is a poor inclination predictor for specific sources, Collin et al. (2006) make a statistical argument that some objects with low FWHM/ $\sigma_{line}$ values are low inclination.



#### Test Case 1: 3C 120

- Superluminal jet implies that 3C 120 is nearly face-on (*i* < 20 °)</li>
- Does not stand out in  $M_{\rm BH} \sigma_{\star}$





#### Test Case 2: Mrk 110

An NLS1 with an independent mass estimate from gravitational redshift of emission lines (Kollatschny 2003):  $M_{\sigma^*} = 4.8 \times 10^6 M_{\odot}$  $M_{\rm rev} = 25 \ (\pm 6) \times 10^6 \ M_{\odot}$  $M_{\rm grav} = 14 \ (\pm 3) \times 10^6 \ M_{\odot}$ 



53

### Other Ways to Determine Inclination

- Radio jets
- Spectropolarimetry
- Reverberation mapping (full velocitydelay map)

## **Evidence Inclination Matters**

- Inverse correlation between R (core/lobe) and FWHM (Wills & Browne 1986)
  - Core-dominant are more face-on so lines are narrower
- Correlation between α<sub>radio</sub> and FWHM (Jarvis & McLure 2006)
  - Flat spectrum sources are closer to face-on and have smaller widths
    - $\alpha_{radio}$  > 0.5: Mean FWHM = 6464 km s<sup>-1</sup>
    - $\alpha_{radio}$  < 0.5: Mean FWHM = 4990 km s<sup>-1</sup>
    - Width distribution for radio-quiets like flat spectrum sources (i.e., closer to face-on)
- Width of C IV base is larger for smaller R (Vestergaard, Wilkes, & Barthel 2000)
  - Line base is broader for edge-on sources

## **Concluding Points**

- Masses of the supermassive black holes in AGNs have been measured by reverberation mapping, stellar and gas dynamics, and scaling relationships.
  - Typical Eddington ratios are ~0.1
  - Reverberation-based masses appear to be accurate to a factor of about 3. Direct tests and additional statistical tests are in progress.
  - Scaling relationships allow masses of many quasars to be estimated easily. Uncertainties typically ~4 at this time
- AGN M<sub>BH</sub> σ<sub>\*</sub> slope consistent with quiescent galaxy M<sub>BH</sub> σ<sub>\*</sub> slope. Zero point currently calibrates reverberation mass scale
- AGN  $M_{\rm BH} L_{\rm bulge}$  currently consistent with that for normal galaxies.
- Full potential of reverberation mapping has not yet been realized.
  - Significant improvements in quality of results are within reach.



**Backup Slides** 

#### A Plausible Disk-Wind Concept

