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Topics to be Covered

 [ecture 1: AGN fundamentals, evidence for
supermassive black holes, AGN continuum
variability
Lecture 2: Emission-line variabillity,

reverberation mapping, the radius—luminosity
relationship

[ ecture 3: AGN black hole masses,
comparisons between methods, relationships
between BH mass and AGN/host properties,
requirements for velocity—delay maps, the
nature of NLS1s




Lecture 3

Time-variable lags
— How is the BLR fine-tuned?

Reverberation-based black hole masses
— Virial relationship and characterizing line widths

Calibrating the mass scale via Mg,,—0.
The Mg — Ly, 4 relationship

The Mgy — L,gy relationship

Masses from scaling relationships
Requirements for a velocity—delay map
The nature of NLS1s (time permitting)




Time-Variable Lags

* 14 years of
observing the Hf
response in NGC
5548 shows that
lags increase with
the mean continuum

F,(5100A)

48000 49000 50000 51000 52000
JD (2400000+)




Time-Variable Lags

 Measured lags range
from 6 to 26 days.

Best fit is log R o (0.66
+ 0.13) log L

Bentz et al. 2007




Time-Variable Lags

Measured lags range
from 6 to 26 days.

Best fit is log R o« (0.66
+ 0.13) log L

However, UV varies

more than optical:

— 10g Ly = (0.84 = 0.05)
log L,

Thus, log R « (0.55 +

0.14) log Ly,

Bentz et al. 2007




What Fine—Tunes the BLR?

* Why are the ionization parameter and
electron density the same for all AGNs?

 How does the BLR know precisely
where to be?

 Answer: gas Is everywhere in the
nuclear regions. We see emission lines
emitted under optimal conditions.




Locally optimally-emitting cloud (LOC) model

The flux variations in
each line are
responsivity-weighted.
— Determined by where
physical conditions
(mainly flux and particle
density) give the largest
response for given
continuum increase.
Emission response in a
particular line comes
predominantly from P
clouds with optimal Particle density
conditions for that line. Korista et al. 1997
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Measuring Black Hole Masses by
Reverberation Mapping

* Virial mass measurements based on motions
of stars and gas in nucleus.

— Stars
« Advantage: gravitational forces only
« Disadvantage: requires high spatial resolution
— larger distance from nucleus = less critical test
— Gas
« Advantage: can be found very close to nucleus
« Disadvantage: possible role of non-gravitational forces




Virial Estimators

Source Distance from
central source

X-Ray Fe K& 3-10 Rs
Broad-Line Region 200-10* Rs
Megamasers 4 %10 Rs
Gas Dynamics 8 X10° R

Stellar Dynamics  10° Rs

In units of the Schwarzschild radius
Rs = 2GM/c?=3 x 10" Mg cm.

Mass estimates from the
virial theorem:

M=f(rAV2/G)

where

r = scale length of
region

AV = velocity dispersion

f = a factor of order
unity, depends on
details of geometry
and kinematics




A Virialized BLR

« AV < R-V2for every
AGN in which it is
testable.

« Suggests that gravity

IS the principal
dynamical force in the
BLR.




Characterizing Line Widths
FWHM: Line dispersion o,

ine-
> Trivial to measure > Well defined

> Less sensitive to blending > Less sensitive to narrow-line
and extended wings components

» More accurate for low-contrast lines

Some
trivial
profiles:

2(21n2)""
2.35 3.46 2.83

O = (22) = 22 = qszldA / [ P.dx ) %




Viria

00000

FWHM (km s™)

Three contributing factors account for
additional scatter:
(1) Failure to account for narrow component

(2) Use of mean rather than rms spectrum

(3)

Use of FWHM instead of o,

| NGC 5548

HST spectra 1993

—Si IV 21400
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rms spectrum —

1400

1500 1600
Wavelength (;\)

1700




Calibration of the Reverberation
Mass Scale

M= f(cT,, 02 /G)

* Determine scale [ Ferrarese slope > |
factor f that matches

AGNs to the

quiescent-galaxy
Mg, -o.. relationship

Current best
estimate:
f=55+1.8

Black hole mass (M_,)

Bulge velocity dispersion G, (km/sec)




* Reverberation-mapped AGNs show broad range of

FWHM/o; .

e Mass calibration is sensitive to which line-width
measure iIs used!

— Even worse, there is a bias with respect to AGN type (as
reflected in the profiles)
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PG 1700+518 FWHM/o,,_ =0.71
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Reverberation, Ca |l
Tremaine et al.

Measuring o

 For z> 0.06, requires
observations of CO
bandhead in H-band
(1.6 um). 4 o

30 60 100 200 300 400

Preliminary results S
With VLT/ISAAC. 1 070 PG 0007+106 PG 0050+124

NGC 4395

8

Black hole mass (solar masses)

Beginning to acquire ol W’W:
Gemini North H-band

1.56 158 160 162 164 166

spectra with
NIFS/Altair/LGS
system.

LBQS 0307-0101 PG 1119+120
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0.99 1 0.963 1
0.95 0.910
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Measuring AGN Black Hole Masses from Stellar
Dynamics

NGC 3227

r. resolved ‘

r—
:
®
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g
=)
2
z
A
=

/ANGC 4151

10
D, (Mpc)

Only two reverberation-mapped AGNSs are close enough to resolve
their black hole radius of influence r. = GMg/0.? with diffraction-limited

telescopes.




Direct Comparison: NGC 3227
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Davies et al. (2006) Hicks & Malkan (2007)

Stellar dynamics: (7 — 20) x 10° M, (Davies et al. 2006)
Reverberation: (42 + 21) x 10° M (Peterson et al. 2004)
Gas dynamics: 20*1% , x 10° M, (Hicks & Malkan 2007)
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Light curves Cross—cotrrelation functions

Direct Comparison: NGC 4151
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Bentz et al. (2006) Hicks & Malkan (2007)

Stellar dynamics: < 70 x 10° Mg (Onken et al. 2007)

Reverberation: (46 + 5) x 10° M (Bentz et al. 2006)
Gas dynamics: 30*7°_,, x 10® Mg (Hicks & Malkan 2007)




Additional Check on Masses:

MBH VS. Lbulge

* Modeling the surface
brightness distributions

of AGNSs in our ACS
sample give L.

|s there a correlation
between black hole
mass and bulge
luminosity (or mass)?

If so, is it the same as
that for quiescent
galaxies? Bulge luminosity
Magorrian et al. (1998)
Wandel (2002) 23
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log Mg, (Mo)

10

Corrected Masses
and Bulge Luminosities
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log Mg, (Mo)
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Corrected Masses
and Bulge Luminosities
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log Mg, (Mo)

10

All reverberation-mapped

AGNSs in ACS sample
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10 .

All reverberation-mapped
AGNSs in ACS sample
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Mg

 There is a clear
correlation, but more
work IS necessary to
Improve slope
determination and to
compare zero-points
with quiescent galaxies.

« At this point, no
iInconsistency with
gquiescent galaxies.

9 10 11 12

Bulge luminosity

Bentz et al., in preparation




Evidence That Reverberation-Based
Masses Are Reliable

1. Virial relationship for - G i
emission-line lags (BLR
radius) and line widths

=
=

2. Mg, — o. relationship

3. Mgy — Lyi4e relationship




Evidence That Reverberation-Based
Masses Are Reliable

4. Direct comparisons with
other methods:

XZ
30 35 40 45 50

— Stellar dynamical masses
for NGC 3227
and NGC 4151

— Gas dynamical masses for
NGC 3227, NGC 4151,
and NGC 7469




Mass-Luminosity Relationship

_ike radius-
uminosity, the mass-
uminosity relationship
was anticipated early.

47

45 46

Log Bolometric Luminosity

44

. - - N SRS |

108 10°

Moss (solor mass)

Koratkar & Gaskell 1991




Mass-Luminosity Relationship

All are sub-
Eddington

NLS1s have
high Eddington
rates

At least some
outliers are
heavily
reddened

These 36
AGNSs anchor
the black hole
mass scale

Black hole mass (solar masses)

1 041

Bolometric luminosity
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Estimating Black Hole Masses
from Individual Spectra

Correlation between BLR radius
R (= ct,) and luminosity L
allows estimate of black hole
mass by measuring line width
and luminosity only:

M = f(Crcent O-Iinez /G) o fLVZ O-Iinez

Dangers:
* blending (incl. narrow lines)
* using inappropriate f
— Typically, the variable part of HB

Is 20% narrower than the whole

line Bentz et al. 2006




Radius-Luminosity for Lines
Other than Hf3

 R-L relationship is
well-established only
for HP3

For C |V, there are

relatively new

results from high-z,

high-L studies and - 10° 10" 10" 10" 10° 107 107 107 107
dwarf Seyferts. 1L,(1350 A) [ergs 5]

Kaspi et al. (2006)

37

L4l
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Secondary Mass
Indicators

 Reverberation masses
serve as an anchor for
related AGN mass
determinations (e.g.,
based on photoionization
modeling)

— Will allow exploration of
AGN black hole

demographics over the Vestergaard (2002)
history of the Universe.

Redshift

M=f(ct,02%IG) x L1252




Narrow-Line Widths as
a Surrogate for o.

 Narrow-line widths
and o. are

correlated

— The narrow-line
widths have been
used to estimate
black-hole mass,
based on the Mg,- o
. correlation

— Limitations imposed 1 o ,

by angular “Narrow [O Ill] FWHM
resolution, non-virial

component (jets)

Shields et al. 2003




Phenomenon:

Primary
Methods:

Fundamental
Empirical
Relationships:

Estimating AGN Black Hole Masses

Quiescent Type 2 Type 1
Galaxies AGNSs AGNs
! v oo Y
Stellar, gas Megamasers ‘ :2d:|1-d
dynamics :RM:|RM[ ]
¢ ---;--- T

Secondary
Mass
Indicators:

‘Application: ‘

My, - o. D R .:I AGN My, — o. |->
& y 4
Fundamental [O 1] line width Broad-line width V‘
plane: V= o.= Mg, & size scaling with
2, [, = O luminosity
= Mg, R o 12 = Mg,
\ 2 / T
BL Lac - _
objects Low-z AGNs ‘ ‘ High-z AGNs ‘




Next Crucial
Step

« Obtain a high-fidelity
velocity-delay map for
at least one line in one
AGN.

— Cannot assess

systematic uncertainties
without knowing
geometry/kinematics of
BLR.

— Even one success would
constitute “proof of
concept”.

RGCB=La,CIV,H eH

RGB=Lo,CIV,Hell

BLR with a spiral wave and its
velocity-delay map in three emission
lines




UV continuum
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A program to obtain a velocity-delay map is not
much more difficult than what has been done already!
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10 Simulations Based on HST/STIS Performance
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The Nature of
NLS1s

J Sy2 (Mrk 1066)

j

{

|
He Il [O 1]

* Narrow-line Seyfert 1
(NLS1) galaxies are
true broad-line objects,
but with an especially i

Fe ll
narrow broad S
Component, FWHM< 0 I|I|I_I|el||I|I_I|BII|III|III|III

2000 km S'1 4400 4600 4800 5000 5200 5400 5600
Wavelength

NLS1 (Mrk 42) _

~ Relative Flux

;

Sy1 (NGC 3516
Fell




Definition of NLS1s
. FWHM(HB) < 2000 km s
- Flux ratio [O 1] A5007/HB < 3

— Ensures they are true Sy1s
» Consider the following:

1/2
RBLR X LAGN

AV«(GMM

1/2

Ry r )

1/2 1/2 1/4
M M M
av (M) o (M) (M)

45




Definition of NLS1s

AV o (MB%I)

 If NLS1s are physically defined by high
Eddington rate, then high-mass black

1/4

holes are missed.

— Includes 3C 273 and PG 1700+518, which
have NLS1-type spectra.




« FWHM/g;,. also correlates
with PC1 (Eigenvector 1)

Both show some correlation
with Eddington rate

— Some indications inclination

Black hole mass (solar masses)

matters

Bolometric luminosity

Eigenvector 1
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What does FWHM/o,;,, actually

measure?
Not just inclination (NGC 5548).

FWHM/c,,  (mean spectrum)

| I | | | I | | | |

Tam e o NLS1 + | Zw 1-type

Wavelength (Zx)

NGC 5548 Hp

Extreme examples



What does FWHM/o;;
actually measure?

* Not just Eddington rate.

Collin et al. (2006)




Can We Determine Inclination?

» Suggestion (Wu & Han 2001; Zhang &
Wu 2002; McLure & Dunlop 2001): Use
prediction of Mg, — 0. = M_. (assumed
iIsotropic)

— Compare to reverberation measurement

M

rev
— Expect that small M., / M_.= low (face-on)

Inclination

— Similarly, expect that some NLS1s or other

likely low inclination to have small
Mrev / Ma*




Evenif M,/ M_.is
a poor inclination
predictor for specific
sources, Collin et al.
(2006) make a
statistical argument
that some objects
with low FWHM/o;,.
values are low
iInclination.

Can We Determine Inclination?

FWHM/G'M <2.35
a=01__—— ——

NGC 7469
7 Wik 590

/NGC 4051

/ lac120

/ Mac3s16
offset factor: 4
/NGC 3227
4.,.v"'xlv1rk 7 9

NGC 3783 |

]
Msig. / VP_f(mean)




Test Case 1: 3C 120

« Superluminal jet implies
that 3C 120 is nearly
face-on (i < 20 °)

 Does not stand out In
Mg — O-

Black hole mass (M_, )

11 1 I 1 1 1 I 1 1 1 I 1 1 1
4600 4800 5000 5200 5400

Wavelength

| |
200 300 400

|
60 100

Bulge velocity dispersion o, (km/sec)



Test Case 2: Mrk 110

An NLS1 with an
Independent mass
estimate from
gravitational redshift
of emission lines

(Kollatschny 2003):
M_.=4.8 x 10 Mg
M., =25 (£6) x 105 Mg

(A lsun)

Black hole mass

M

grav

=14 (£3) x 106 M




Other Ways to Determine
Inclination

« Radio jets
» Spectropolarimetry

* Reverberation mapping (full velocity-
delay map)




Evidence Inclination Matters

 Inverse correlation between R (core/lobe) and FWHM
(Wills & Browne 1986)
— Core-dominant are more face-on so lines are narrower

» Correlation between a4, and FWHM (Jarvis &
McLure 20006)

— Flat spectrum sources are closer to face-on and have

smaller widths
°* Q > 0.5: Mean FWHM = 6464 km s

radio

°c Q < 0.5: Mean FWHM = 4990 km s

radio
» Width distribution for radio-quiets like flat spectrum sources

(i.e., closer to face-on)

« Width of C IV base is larger for smaller R
(Vestergaard, Wilkes, & Barthel 2000)

— Line base is broader for edge-on sources




Concluding Points

Masses of the supermassive black holes in AGNs have
been measured by reverberation mapping, stellar and gas
dynamics, and scaling relationships.

— Typical Eddington ratios are ~0.1

— Reverberation-based masses appear to be accurate to a factor of
about 3. Direct tests and additional statistical tests are in progress.

— Scaling relationships allow masses of many quasars to be
estimated easily. Uncertainties typically ~4 at this time

AGN Mg, — o- slope consistent with quiescent galaxy Mg, —
o. slope. Zero point currently calibrates reverberation mass
scale

AGN Mgy, — Ly 4 CUrrently consistent with that for normal
galaxies.

Full potential of reverberation mapping has not yet been
realized. 56

— Significant improvements in quality of results are within reach.
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A Plausible Disk-Wind Concept

A Structure for Quasars
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