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Topics to be Covered
• Lecture 1: AGN fundamentals, evidence for

supermassive black holes, AGN continuum
variability

• Lecture 2: Emission-line variability,
reverberation mapping, the radius–luminosity
relationship

• Lecture 3: AGN black hole masses,
comparisons between methods, relationships
between BH mass and AGN/host properties,
requirements for velocity–delay maps, the
nature of NLS1s
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Lecture 2

• Emission-line variability
• Reverberation mapping

– Principles
– Practice
– Results

• The BLR radius–luminosity relationship



Emission-Line
Variability

• First detected reported
by Andrillat & Souffrin
(1968)
– Based on photographic

spectra of NGC 3516

• Subsequent reports
were scattered, and
seemed to be widely
regarded as
“curiosities”.
– Tohline and Osterbrock

(1976); Phillips (1978) Andrillat & Souffrin 1968



Emission-Line Variability
• Only very large changes

could be detected
photographically or with
intensified television-type
scanners (e.g., Image
Dissector Scanners).

• Changes that were
observed were often
dramatic and reported as
Seyferts changing “type”
as broad components
appeared or disappeared.

Tohline & Osterbrock 1976
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Emission-Line Profile Variability
• Variability of broad

emission-line profiles was
detected in the early
1980s.

• This was originally
thought to point to an
ordered velocity field and
propagation of excitation
inhomogenieties.

• Led to development of
reverberation mapping
(seminal paper by
Blandford & McKee
1982).

Foltz et al. 1981
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First Monitoring Programs
• Made possible by existence of International

Ultraviolet Explorer and proliferation of linear
electronic detectors on moderate-size (1–2m)
ground-based telescopes

• NGC 4151: UV monitoring by a European consortium
(led by M.V. Penston and  M.-H. Ulrich). 
– Typical sampling interval of 2–3 months.
– Several major results:

• close correspondence of UV/optical continuum variations
• line fluxes correlated with continuum, but different lines respond

in different ways (amplitude and time scale)
• complicated relationship between UV and X-ray
• variable absorption lines
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First Monitoring Programs
• NGC 4151:

Monitored at Lick
Observatory by
Antonucci and
Cohen in 1980 and
1981
– short time scale

response of Balmer
lines (<1 month)

– higher amplitude
variability of higher-
order Balmer lines
and He II λ4686

CONT

Hα

Hβ

He II

Antonucci & Cohen (1983)



First Monitoring Programs
• Akn 120:

– Monitored in optical by
Peterson et al. (1983; 1985).

• Hβ response time suggested
BLR less than 1 light month
across

• Suggested serious problem
with existing estimates of sizes
of broad-line region

– Higher luminosity source, so
monthly sampling provided
more critical challenge to
BLR models

Data from Peterson et al. 1985
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Reverberation Mapping
Assumptions

1) The continuum originates in a point source
2) The most important timescale is the BLR light-

crossing time τLT = R/c.
• Dynamical time is τdyn = R/FWHM, so τdyn/τLT = c/FWHM ≈

100.
• Recombination time is τrec ≈ (αB ne)–1≈ 400 s–1 for a density

of 1010 cm–3.
3) There is a simple, though not necessarily linear,

relationship between the observable UV/optical
continuum and the ionizing continuum
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Reverberation Mapping Concepts:
Response of an Edge-On Ring

• Suppose line-emitting
clouds are on a circular
orbit around the central
source.

• Compared to the signal
from the central source,
the signal from
anywhere on the ring is
delayed by light-travel
time.

• Time delay at position (r,
θ) is τ = (1 + cos θ)r / c

τ = r/c

The isodelay surface is
a parabola:

ècos1

ô

+
=

c
r

τ = r cosθ /c
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τ = r/c

“Isodelay Surfaces”
All points
on an “isodelay
surface” have
the same extra
light-travel time
to the observer,
relative to
photons
from the
continuum
source.

τ = r/c
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• Clouds at intersection of
isodelay surface and orbit
have line-of-sight velocities
V = ±Vorb sinθ.

• Response time is
τ = (1 + cos θ)r/c

• Circular orbit projects to an
ellipse in the (V, τ) plane.

Velocity-Delay Map
for an Edge-On Ring
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Projection in Time Delay
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Delay Map for a Ring
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Projection in Line-of-Sight
Velocity
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Line Profile for a
Ring

• Characterize line
width
– FWHM = 2Vorb
– σline
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Thick Geometries
• Generalization to a disk or

thick shell is trivial.
• General result is illustrated

with simple two ring system.

A mult ip le-ring  system
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Observed Response of an
Emission Line

The relationship between the continuum and emission
can be taken to be:

Emission-line
light curve

“Velocity-
Delay Map”

Continuum
Light Curve

Simple 
velocity-delay map

Velocity-delay map is observed line 
response to a δ-function outburst

( , ) ( , ) ( )L V t V C t d! ! !
"

#"

= $ #%



Broad-line region
as a disk, 

2–20 light days
Black hole/accretion disk

Time after continuum outburst

Time
delay

Line profile at
current time delay

“Isodelay surface”

20 light days
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Two Simple Velocity-Delay Maps

Inclined Keplerian
disk

Randomly inclined
circular Keplerian orbits

The profiles and velocity-delay maps are superficially similar,
but can be distinguished from one other and from other forms.
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Recovering Velocity-
Delay Maps from

Real Data

• Existing velocity-delay maps are noisy and ambiguous
• In no case has recovery of the velocity-delay map been

a design goal for an experiment!

C IV and He II in NGC 4151
(Ulrich & Horne 1996)

Optical lines in Mrk 110
(Kollatschny 2003)



Emission-Line Lags
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• Because the data requirements are relatively modest,
  it is most common to determine the cross-correlation 
  function and obtain the “lag” (mean response time):

A short digression on cross-correlation of time series…
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Linear Correlation
• Degree to which two

parameters are linearly
correlated can be
expressed in terms of
the linear correlation
coefficient:
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r = 0: no correlation

r = –1: perfect anticorrelation
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Correlation Between
Time-Varying
Parameters

• In fact, the data shown
in the example are
continuum and Hβ
fluxes in a variable
Seyfert 1 galaxy, Mrk
335.
– x = C(t)
– y = L(t)

• The continuum and
emission-line fluxes are
highly correlated.

Mrk 335 data consists of  24 points
average spacing of 7.9 days.



The same data plotted as a function of time.
We see that the correlation is good, but in fact 
would be even better if we shifted them in time.



29

Instead of letting x = C(t) and y = L(t), improve the correlation by
letting x = C(t) and y = L(t + τ), where τ is the time-shift or “lag”
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Shift = 0 units Shift = 1 unitShift = 2 unitsShift = 3 units

Cross-correlating evenly spaced data is trivial

Goal: find the value of the shift

that maximizes the correlation 

coefficient.



Practical problem: in general, data are
not evenly spaced. One solution is to interpolate
between real data points.



Each real datum C(t) in
one time series is
matched with an
interpolated value L(t + τ)
in the other time series
and the linear correlation
coefficient is computed
for all possible values
of the lag τ.

Interpolated line points lag
behind corresponding
continuum points by 16 days.
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Cross-Correlation Function

• Linear correlation
coefficient as a function
of time lag is the
“cross-correlation
function” (CCF).

• The formal definition of
the CCF as a
continuous function is
the convolution
integral:

r = 0.596

CCF( ) ( ) ( )L t C t dt! !
+"

#"
= #$
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The Time-Shift Improves the
Linear Correlation
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Reverberation
Mapping Results

• Reverberation lags
have been measured
for 36 AGNs, mostly
for Hβ, but in some
cases for multiple
lines.

• AGNs with lags for
multiple lines show
that highest
ionization emission
lines respond most
rapidly ⇒ ionization
stratification
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NGC 5548 - 1989
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Photoionization Modeling of the
BLR (circa 1982)

• Single-cloud model:
– Assume that C IV λ1549

and C III] λ1909 arise in
same zone

– Implies ne = 3 ×109 cm–3

– Line flux ratios then yield
U ≈ 10–2

Ferland & Mushotzky (1982)
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Predicting the Size of the BLR
(for NGC 5548)
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This is an order of magnitude larger than observed!
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A Stratified BLR

• C IV and C III] are primarily produced at
different radii.

• Density in C IV emitting region is about
1011 cm–3



BLR Radius-Luminosity
Relationship

• Similarity of AGN
spectra over wide
range of luminosity
suggests that
physical conditions
in the BLR are
similar.
– U, and ne are the

same
1/ 2
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BLR Radius-Luminosity
Relationship

• R ∝ L½
relationship was
anticipated long
before it was
well-measured.

Koratkar & Gaskell 1991
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BLR Radius-Luminosity
Relationship

• Kaspi et al. (2000)
succeeded in
observationally
defining the R-L
relationship
– Increased luminosity

range using PG
quasars

– PG quasars are
bright compared to
their hosts

Kaspi et al. 2000

R ∝ L0.7
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BLR Radius-Luminosity
Relationship

• Problems:
– Some lag measurements

were in error
– Starlight contamination of

host galaxies was not
taken into account

• Large apertures for
spectrophotometric
accuracy

• Aperture varied among
experiments and groups Kaspi et al. 2000

R ∝ L0.7
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Typical Aperture Geometries for
Reverberation-Mapped AGNs
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ACS HRC images and model
residuals
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Host Galaxies with AGNs Removed



BLR Radius-Luminosity
Relationship

• Improved R-L
relationship
– Host galaxy starlight

removed
– Improved masses for

NGC 4593 and NGC
4151

• Slope now consistent
with R ∝ L1/2

• This is an important
result we’ll return to
later.

Bentz et al. 2006

R ∝ L0.7


