The Central Black Hole and Relationships with the Host Galaxy

Bradley M. Peterson The Ohio State University

"Active Galactic Nuclei at the Highest Angular Resolution"

August 2007

Lecture 1

AGN fundamentals

- Basic observations, taxonomy
- Arguments for black holes as the "central engine"
 - Accretion and the Eddington limit
- Evidence for supermassive black holes
- AGN continuum variability

"Active Galactic Nuclei (AGN)"

- The phrase "active nuclei" was originally used by V.A. Ambartsumian in 1968
 - "the violent motions of gaseous clouds, considerable excess radiation in the ultraviolet, relatively rapid changes in brightness, expulsions of jets and condensations" *Ambartsumian 1970*
- First use in paper title: Dan Weedman (1974)
 - "nuclei that contain extensive star formation or luminous non-thermal sources" вала, 6, 441
- First use in PhD dissertation title: Jean Eilek (1975)
 - "Cosmic Ray Acceleration of Gas in Active Galactic Nuclei"

"Active Galactic Nuclei (AGN)"

- "Activity" was usually taken to mean "radio source"
- Came to be used to encompass "Seyfert galaxies" and "quasars"
 - "...energetic phenomena in the nuclei, or central regions, of galaxies which cannot be attributed clearly and directly to stars." (Peterson 1997, An Introduction to Active Galactic Nuclei)
- Modern definition: "Active nuclei are those that emit radiation that is fundamentally powered by accretion onto supermassive (> $10^6 M_{\odot}$) black holes."

• Strong X-ray emission

Strong X-ray emission

 Non-stellar ultraviolet/optical continuum emission

- Strong X-ray emission
- Non-stellar ultraviolet/optical continuum emission
- Relatively strong radio emission

- Strong X-ray emission
- Non-stellar ultraviolet/optical continuum emission
- Relatively strong radio emission
- UV through IR spectrum dominated by strong, broad emission lines.

Not every AGN shares all of these characteristics.

AGN Classification

There are three major classes of AGNs:
 – Seyfert galaxies
 – Quasars
 – Radio galaxies

Seyfert Galaxies

- Spiral galaxies with high surface brightness cores
 - Spectrum of core shows strong, broad emission lines

NGC 4151

Quasars

- "Quasar" is short for "quasi-stellar radio source".
 - Discovered in 1960s as radio sources.
 - Radio astronomy was an outgrowth of radar technology developed in the Second World War

Radio Galaxies

- Most radio sources were found to be associated with galaxies.
- However, some of the radio sources were high Galactic latitude (out of the Galactic plane) starlike sources.

The radio galaxy Centarus A

Quasars

- These "radio stars" had a somewhat "fuzzy" appearance.
- Some radio stars had linear features like "jets".
- These unusual sources were thus "quasi-stellar radio sources".

The brightest (still!) quasi-stellar source, 3C¹273

Optical Studies of Quasi-Stellar Radio Sources

- Optical observations of these sources were made with the Hale 5m telescope on Mt. Palomar.
- Early spectra were confusing. In 1963, Maarten Schmidt identified features as redshifted emission lines.

Maarten Schmidt (left) and Allan Sandage

First Spectrum of Hδ Hγ Hβ 3C 273 Hδ Hγ Hβ

3C273

ΗδΗγ Ηβ

4000 Å

5000 Å

6000 Å

Quasi-Stellar Sources

 The spectral lines in 3C 273 are highly redshifted:

$$z = \frac{\Delta\lambda}{\lambda} = 0.158$$

 This is comparable to the most distant clusters of galaxies known in 1963.

3C273

The Brightest Objects in the Universe

- For 3C 273, the large redshift implies:
 - <u>− *D* ≈ 680 Mpc</u>
 - 3C 273 is about 100 times brighter than giant galaxies like the Milky Way or M 31.

The Andromeda Galaxy M 31

And Now Another Surprise...

- Shortly after their discovery, quasars were found to be highly variable in brightness.
- Rapid variability implies that the emitting source mus be very small.

Source "Coherence"

• A variable source must be smaller than the light-travel time associated with significant variations in Δt brightness.

brightne

 $\begin{vmatrix} & & \\ & & \\ D &= c\Delta t \end{vmatrix}$

time 19

Sizes of Quasars

- Variability on time scales as short as one day implies sources that are less than one light day in size.
- A volume the size of our Solar System produces the light of a nearly a trillion (10¹²) stars!
- This ushered in a two-decade controversy about the nature of quasars redshifts.
 - Weedman's premise: this wouldn't have happened had not the original Seyferts and original quasars been such extreme members of their respective classes

Seyferts and Quasars

- Modern view:
 - Seyferts are lower-luminosity AGNs
 - Quasars are higher-luminosity AGNs
- View in the 1960s:
 - Seyferts are relatively local spiral galaxies with rather abnormally bright cores
 - Quasars are mostly unresolved, high redshift, highly luminous, variable, non-stellar radio sources

NGC 4051Mrk 335PG 0953+414z = 0.00234z = 0.0256z = 0.234 $\log L_{opt} = 41.2$ $\log L_{opt} = 43.8$ $\log L_{opt} = 45.1$

Finding Quasars

 That quasars are very blue compared to stars was recognized early.

Optical color selection allows us to bypass the difficult radio identification by using "UV excess".

Quasi-Stellar Objects

- Most of these blue star-like sources are like the radioselected quasars, but are *radio-quiet*.
- These became generically known as "quasi-stellar objects", or QSOs.

Spitzer-era mean SED from Shang et al. (2006)

AGN Taxonomy

- Khachikian and Weedman (1974) found that Seyfert galaxies could be separated into two spectroscopic classes.
 - Type 1 Seyferts have broad and narrow lines

AGN Taxonomy

- Khachikian and Weedman (1974) found that Seyfert galaxies could be separated into two spectroscopic classes.
 - Type 1 Seyferts have broad and narrow lines
 - Type 2 Seyferts have only narrow lines

AGN Taxonomy

 Narrow-line Seyfert 1 (*NLS1*) galaxies are true broad-line objects, but with an especially narrow broad component, FWHM < 2000 km s⁻¹

AGN Taxonomy

- Heckman (1980) identified a class of Low-Ionization Nuclear Emission Region (*LINER*) galaxies.
 - Lower ionization level lines are stronger than in Sy 2

AGN Taxonomy

- BL Lac objects share many quasar properties (blue, variable, radio sources), but have no emission or absorption lines.
 - Appear to be quasars observed along the jet axis
 - Are often subsumed into a larger class called *blazars*.

Current AGN Paradigm

- Black hole plus accretion disk
- Broad-line region -
- Narrow-line region
- Dusty "obscuringtorus"
- Jets (optional?)

Driving Force in AGNs

Simple arguments suggest AGNs are powered by supermassive black holes

 Eddington limit requires M ≥ 10⁶ M_☉ for moderately luminous Seyfert galaxy with L ≈ 10⁴⁴ ergs s⁻¹

Requirement is that self-gravity exceeds radiation pressure

• Energy flux

$$F = \frac{L}{4\pi r^2}$$

Momentum flux

$$P_{\rm rad} = \frac{F}{c} = \frac{L}{4\pi r^2 c}$$

- Force due to radiation $F_{\rm rad} = P_{\rm rad}\sigma_e = \frac{L\sigma_e}{4\pi r^2 c}$
- This must be less than $\frac{L\sigma_e}{4\pi r^2 c} < \frac{GMm}{r^2}$ gravity

$$L < \frac{4\pi Gcm}{\sigma_e} \approx 1.26 \times 10^{38} \left(\frac{M}{M}\right) \text{ergs s}^{-1}$$

"The Eddington Limit"

- Simple arguments suggest AGNs are powered by supermassive black holes
 - Potential energy of infalling mass is converted to radiant energy with some efficiency η so $E = \eta mc^2$

– Potential energy is $U = GM_{BH}m/r$

- Energy dissipated at ~10 R_g where $R_g = GM_{BH}/c^2$ (to be shown)
- Available energy:

$$U = \frac{GM_{\rm BH}m}{10R_g} = 0.1 \frac{GM_{\rm BH}m}{GM_{\rm BH}/c^2} = 0.1mc^2$$

- Thus $\eta \approx 0.1$

Eddington Rate

- Accretion rate necessary to attain $\dot{M}_{Edd} = \frac{L_{Edd}}{\eta c^2} = \frac{1.47 \times 10^{17}}{\eta} \left(\frac{M_{BH}}{M}\right) \text{gm s}^{-1}$ is the maximum possible
- Eddington rate is ratio of actual accretion rate to maximum possible

$$\dot{m} = \dot{M} / \dot{M}_{Edd}$$

Evidence for Supermassive Black Holes

• Milky Way: Stars orbit a black hole of $2.6 \times 10^6 M_{\odot}$.

• NGC 4258: H_2O megamaser radial velocities and proper motions give a mass 4 ×10⁷ M_{\odot} .

Evidence for Supermassive Black Holes

 In the case of AGNs, reverberation mapping of the broad emission lines can be used to measure black hole masses.

Later elaboration

$$M_{\rm BH} \propto \frac{\Delta V^2 R}{G} \Rightarrow \Delta V \propto R^{-1/2}$$

Evidence That Reverberation-Based Masses Are Reliable

1. Virial relationship for emission-line lags (BLR radius) and line widths

2. $M_{\rm BH} - \sigma_*$ relationship

3. $M_{\rm BH} - L_{\rm bulge}$ relationship

4. Direct comparisons with other methods:

Stellar dynamical masses
 In the cases of
 NGC 3227
 and NGC 4151

8

5

log(M_{BH})

36

Accretion Disks

 Angular momentum of infalling material will lead to formation of an accretion disk.

$$L = \frac{GM_{\rm BH}\dot{M}}{2r} = 2\pi r^2 \sigma T$$
$$T(r) = \left(\frac{GM_{\rm BH}\dot{M}}{4\pi\sigma r^3}\right)^{1/4}$$

-3/4-1/4 M_{BH} $T(r) \approx 3.7 \times 10^5 \,\dot{m}^{1/4}$ ľ K $R_{_{g}}$

Assuming that QSO SED peak at 1000 Å represents accretion disk, Wien's law tells us $T \approx 5 \times 10^5$ K.

For $M_{\rm BH}$ = 10⁸ M_{\odot} , $R \approx 14 R_{\rm g}$.

Optical Continuum Variability

- One of the first recognized properties of quasars (Mathews & Sandage 1963; Smith & Hoffleit 1963).
- Established that significant variations in brightness (~ 0.1 mag) could occur on time scales as short as days
 - Implies size of emitting region must be of order light days (1 light day = 2.6×10^{15} cm).

Quasar Variability

• Quasars were found to be variable at all wavelengths.

Variations appeared to be aperiodic

- Variability in Seyfert galaxies was not reported until 1967, and was less dramatic.
- Most of the quasars that were monitored are now known to be the jet-dominated sources known as "blazars": BL Lac objects and optically violent variables (OVVs).
- Original conclusions about AGN sizes proved to be generally correct, however.

Optical Variability

Amplitude of Optical Variability

Characterizing Variability

• Common parameter to characterize variability is the "excess variance": $F_{\text{var}} = \frac{(\sigma^2 - \Lambda^2)^{1/2}}{(f_{\text{var}})^{1/2}}$

Where: $\langle f \rangle = \frac{1}{N} \sum_{i=1}^{N} f_i$ (Mean flux) $\sigma^2 = \frac{1}{N-1} \sum_{i=1}^{N} (f_i - \langle f \rangle)^2$ (Measured variance of flux) $\Delta^2 = \frac{1}{N} \sum_{i=1}^{N} \Delta_i^2$ (Mean square uncertainty of fluxes)

This accounts for the contribution to the scatter in the fluxes due to random errors.

Observed F_{var} vs. Δt for Well-Studied AGNs

Power-Density Spectra

- A useful way to characterize variability is in terms of the "power density spectrum (PDS)" P(f) = f^{-α}
 - Product of Fourier transform of light curve and its complex conjugate.
- Observed variations can be characterized by $1 \le \alpha \le 2.5$

Cause of Variations

- Actual reason for variability is unknown, but thought to be due to accretion instability
- Variations of the form 1/f α can be explained by magnetohydrodynamic instabilities (disconnection events) within the disk (Kawaguchi et al. 1999).
- Other proposed mechanisms:
 - variable accretion rate
 - in special cases:
 - obscuration
 - microlensing

Physical Time Scales for AGN Accretion Disks

- Light-travel time across X-ray emitting region. $t_{\text{crossing}} = 0.005 M_7 (R/10R_{\text{g}}) \text{ days}$
- Orbital period in X-ray emitting region. $t_{\text{orbital}} = 0.12 M_7 (R/10R_g)^{3/2} \text{days}$
- Time for thermal instabilities to develop.

 $t_{\text{thermal}} = 1.9 \ (\alpha / 0.01)^{-1} M_7 (R / 10R_{\text{g}})^{3/2} \text{ days}$

Physical Time Scales for AGN Accretion Disks

• Sound-crossing time.

 $t_{\rm sound} = 12(R/100H)M_7(R/R_g)^{3/2}$ days

• Time for variations in accretion rate to propagate through disk.

 $t_{\rm drift} = 19,000(R/H)^2 (\alpha/0.01)^{-1} M_7 (R/10R_{\rm g})^{3/2} {\rm days}$