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Lecture 1

• AGN fundamentals
– Basic observations, taxonomy
– Arguments for black holes as the “central

engine”
• Accretion and the Eddington limit

• Evidence for supermassive black holes
• AGN continuum variability
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“Active Galactic Nuclei (AGN)”
• The phrase “active nuclei” was originally used by V.A.

Ambartsumian in 1968
– “the violent motions of gaseous clouds, considerable excess

radiation in the ultraviolet, relatively rapid changes in
brightness, expulsions of jets and condensations”
Ambartsumian 1970

• First use in paper title: Dan Weedman (1974)
– “nuclei that contain extensive star formation or luminous

non-thermal sources” BAAS, 6, 441

• First use in PhD dissertation title: Jean Eilek (1975)
– “Cosmic Ray Acceleration of Gas in Active Galactic Nuclei”
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“Active Galactic Nuclei (AGN)”
• “Activity” was usually taken to mean “radio source”
• Came to be used to encompass “Seyfert galaxies”

and “quasars”
– “…energetic phenomena in the nuclei, or central regions, of

galaxies which cannot be attributed clearly and directly to
stars.” (Peterson 1997, An Introduction to Active Galactic Nuclei )

• Modern definition: “Active nuclei are those that emit
radiation that is fundamentally powered by accretion
onto supermassive (> 106 M) black holes.”
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Properties of AGNs

• Strong X-ray emission
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Properties of AGNs

• Strong X-ray emission
• Non-stellar

ultraviolet/optical
continuum emission

• Relatively strong radio
emission

• UV through IR spectrum
dominated by strong,
broad emission lines.

Not every AGN shares all of these characteristics.
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AGN Classification

• There are three major classes of AGNs:
– Seyfert galaxies
– Quasars
– Radio galaxies
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Seyfert Galaxies

• Spiral galaxies with
high surface
brightness cores
– Spectrum of core

shows strong, broad
emission lines

NGC 4 1 5 1
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Quasars

• “Quasar” is short for
“quasi-stellar radio
source”.
– Discovered in 1960s

as radio sources.
– Radio astronomy

was an outgrowth of
radar technology
developed in the
Second World War
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Radio Galaxies

• Most radio sources
were found to be
associated with
galaxies.

• However, some of
the radio sources
were high Galactic
latitude (out of the
Galactic plane) star-
like sources.

The rad io g alaxy
Centarus A
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Quasars
• These “radio stars”

had a somewhat
“fuzzy” appearance.

• Some radio stars
had linear features
like “jets”.

• These unusual
sources were thus
“quasi-stellar radio
sources”.

The brig htest ( st ill! )
quasi-stellar source,  3 C 2 7 3
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Optical Studies of Quasi-
Stellar Radio Sources

• Optical observations of
these sources were
made with the Hale 5-
m telescope on Mt.
Palomar.

• Early spectra were
confusing. In 1963,
Maarten Schmidt
identified features as
redshifted emission
lines.

Maarten Schm idt ( left)  and
Allan Sandag e
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Hδ Hγ Hβ

4000 Å 5000 Å 6000 Å

First Spectrum of
3C 273

HδHγ Hβ

3C 2 7 3

Comparison
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Quasi-Stellar Sources
• The spectral lines in

3C 273 are highly
redshifted:

• This is comparable
to the most distant
clusters of galaxies
known in 1963.

3C 2 7 3
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The Brightest Objects in the
Universe

• For 3C 273, the large
redshift implies:
– D ≈ 680 Mpc
– 3C 273 is about 100

times brighter than
giant galaxies like the
Milky Way or M 31.

The Andromeda Galaxy M 3 1
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And Now Another Surprise...

• Shortly after their
discovery, quasars
were found to be
highly variable in
brightness.

• Rapid variability
implies that the
emitting source must
be very small.
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Source “Coherence”

• A variable source must be smaller
than the light-travel time associated
with significant variations in
brightness.
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Sizes of Quasars
• Variability on time scales as short as one day implies

sources that are less than one light day in size.
• A volume the size of our Solar System produces the

light of a nearly a trillion  (1012 ) stars!
• This ushered in a two-decade controversy about the

nature of quasars redshifts.
– Weedman's premise: this wouldn’t have happened had not

the original Seyferts and original quasars been such extreme
members of their respective classes



Seyferts and Quasars
• Modern view:

– Seyferts are lower-luminosity AGNs
– Quasars are higher-luminosity AGNs

• View in the 1960s:
– Seyferts are relatively local spiral galaxies with rather abnormally

bright cores
– Quasars are mostly unresolved, high redshift, highly luminous,

variable, non-stellar radio sources

NGC 4051
z = 0.00234

log Lopt = 41.2

Mrk 335
z =0.0256 

log Lopt = 43.8

PG 0953+414
z = 0.234

log Lopt = 45.1
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Finding Quasars
• That quasars are

very blue compared
to stars was
recognized early.

Optical color selection allows
us to bypass the difficult 
radio identification by using
“UV excess”.



Quasi-Stellar Objects

• Most of these blue
star-like sources are
like the radio-
selected quasars,
but are radio-quiet.

• These became
generically known
as “quasi-stellar
objects”, or QSOs.

Spitzer-era mean SED from 
Shang et al. (2006)

“Big Blue Bump”

Elvis et al. (1994)

Big
Blue

Bump
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AGN Taxonomy

• Khachikian and
Weedman (1974)
found that Seyfert
galaxies could be
separated into two
spectroscopic
classes.
– Type 1 Seyferts have

broad and narrow
lines
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AGN Taxonomy

• Khachikian and
Weedman (1974)
found that Seyfert
galaxies could be
separated into two
spectroscopic
classes.
– Type 1 Seyferts have

broad and narrow
lines

– Type 2 Seyferts have
only narrow lines
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AGN
Taxonomy

• Narrow-line Seyfert 1
(NLS1) galaxies are
true broad-line objects,
but with an especially
narrow broad
component, FWHM <
2000 km s-1
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AGN
Taxonomy

• Heckman (1980)
identified a class
of Low-Ionization
Nuclear Emission
Region (LINER)
galaxies.
– Lower ionization

level lines are
stronger than in
Sy 2
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AGN Taxonomy
• BL Lac objects

share many quasar
properties (blue,
variable, radio
sources), but have
no emission or
absorption lines.
– Appear to be

quasars observed
along the jet axis

– Are often subsumed
into a larger class
called blazars.
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Current AGN Paradigm

• Black hole plus
accretion disk

• Broad-line region
• Narrow-line region
• Dusty “obscuring

torus”
• Jets (optional?)
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Driving Force in AGNs

• Simple arguments suggest AGNs are
powered by supermassive black holes
– Eddington limit requires M ≥ 106 M for

moderately luminous Seyfert galaxy with L ≈
1044 ergs s-1

– Requirement is that self-gravity exceeds
radiation pressure
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• Energy flux

• Momentum flux

• Force due to radiation

• This must be less than
gravity
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• Simple arguments suggest AGNs are
powered by supermassive black holes
– Potential energy of infalling mass is

converted to radiant energy with some
efficiency η so E = ηmc2

– Potential energy is U = GMBHm/r
– Energy dissipated at ~10 Rg where Rg =

GMBH /c2 (to be shown)
– Available energy:

– Thus η ≈ 0.1

2BH BH
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BH
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GM m GM m
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Eddington Rate

• Accretion rate
necessary to attain
Eddington luminosity
is the maximum
possible

• Eddington rate is
ratio of actual
accretion rate to
maximum possible
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Evidence for Supermassive Black
Holes

• NGC 4258: H2O megamaser
radial velocities and proper
motions give a mass 4 ×107M.

• Milky Way:
Stars orbit a
black hole of
2.6 ×106M.
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Evidence for Supermassive Black
Holes

• In the case of AGNs,
reverberation
mapping of the
broad emission lines
can be used to
measure black hole
masses.
– Later elaboration
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Evidence That Reverberation-Based
Masses Are Reliable

1. Virial relationship for
emission-line lags (BLR
radius) and line widths

2. MBH – σ* relationship

3. MBH – Lbulge relationship

4. Direct comparisons with 
other methods:

– Stellar dynamical masses 
In the cases of 
NGC 3227 
and NGC 4151
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Accretion Disks

• Angular momentum
of infalling material
will lead to formation
of an accretion disk.
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3/ 41/ 4
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Assuming that QSO SED
peak at 1000 Å represents
accretion disk, Wien’s law
tells us T ≈ 5×105 K.

For MBH = 108 M,
R ≈ 14 Rg.
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Optical Continuum Variability
• One of the first recognized properties of

quasars (Mathews & Sandage 1963;
Smith &Hoffleit 1963).

• Established that significant variations in
brightness (~ 0.1 mag) could occur on
time scales as short as days
– Implies size of emitting region must be of

order light days (1 light day = 2.6 × 1015

cm).
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Quasar Variability
• Quasars were found to be variable at all

wavelengths.
– Variations appeared to be aperiodic

• Variability in Seyfert galaxies was not
reported until 1967, and was less dramatic.

• Most of the quasars that were monitored are
now known to be the jet-dominated sources
known as “blazars”: BL Lac objects and
optically violent variables (OVVs).

• Original conclusions about AGN sizes proved
to be generally correct, however.
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Optical Variability

NGC 5548
13 years
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Amplitude of Optical Variability

The mean absolute
value at each Δt is
the “structure function”.
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Characterizing Variability
• Common parameter to characterize variability is

the “excess variance”: 2 2 1/ 2

var
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This accounts for the contribution to the scatter in the
fluxes due to random errors.
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Observed Fvar vs. Δt for Well-Studied AGNs



Power-Density
Spectra

• A useful way to characterize
variability is in terms of the
“power density spectrum
(PDS)” P( f ) = f –α
– Product of Fourier transform of

light curve and its complex
conjugate.

• Observed variations can be
characterized by 1 ≤ α ≤ 2.5
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Cause of Variations
• Actual reason for variability is unknown, but

thought to be due to accretion instability
• Variations of the form 1/f α can be explained

by magnetohydrodynamic instabilities
(disconnection events) within the disk
(Kawaguchi et al. 1999).

• Other proposed mechanisms:
– variable accretion rate
– in special cases:

• obscuration
• microlensing
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Physical Time Scales for AGN
Accretion Disks

• Light-travel time across X-ray emitting region.

• Orbital period in X-ray emitting region.

• Time for thermal instabilities to develop.

crossing 7 g0.005 ( 10 ) dayst M R R=

3/ 2

orbital 7 g0.12 ( /10 ) dayst M R R=

1 3/ 2

thermal 7 g1.9 ( / 0.01) ( /10 ) dayst M R R! "
=
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Physical Time Scales for AGN
Accretion Disks

• Sound-crossing time.

• Time for variations in accretion rate to propagate
through disk.

3/ 2

sound 7 g12( /100 ) ( / ) dayst R H M R R=

2 1 3/ 2

drift 7 g19,000( / ) ( / 0.01) ( /10 ) dayst R H M R R! "
=


