

The Atacama Large Millimeter/submillimeter Array

Brief history of ALMA

ALMA is the merger of three progects conceived in the 1980's and 1990's

A Next Generation Millimeter Telescope

A major step in astronomy: a mm/submm equivalent of VLT, HST, JWST and EVLA.

Some key scientific drivers:

- Detect Milky Way-like galaxies at z~3 in less than 24h
- Image gas kinematics in protostars and protoplanetary disks at 150 pc (-> planets formation)
- Astrochemistry: new (pre-biotic) molecules

Requirements:

- High quality imaging with 0.1" resolution at 3 mm
- Continuum sensitivity ~ a few μ Jy
- Line sensitivity ~ a few μK
- Submm capabilities

These requirements imply:

- An array of antennas
- A collecting area > 5,600 m²
- A site which is high, dry, large, flat

ALMA "in a nutshell": $54 \times 12m + 12 \times 7m$ antennae ~6500 m² collecting area Located at an altitude of 5000m Array configurations between 150m and 18km 8 bands between 86-720 GHz = 310μ m-3.5mm Sensitivity 0.2 mJy in 1 min at 345 GHz Ang. resolution: 0.7"-0.005" @ 0.5mm 4"-0.03" @ 3mm

ALMA site

ALMA site

ALMA site

Chajnantor Plateau (5000m) – looking north

Antenna Configurations (compact)

Antenna Configurations (max, example)

Moving the ALMA antennas

ACA: Atacama Compact Array

It will provide the ~"zero spacings" to detect diffuse emission on scales >~ 1"

Atmospheric transmission at Chajnantor

ALMA frequency bands

Maximum frequency simultaneous coverage: 8 GHz \Rightarrow each band can be fully covered with 3 frequency setups Max spectral resolution: 0.01 km/s

ALMA Median Continuum Sensitivity

(**1 minute**; AM=1.3; 75% Quartile opacities λ >1mm, 25% λ <1mm)

Frequency	Wavelength	Continuum	
(GHz)	(mm)	(mJy)	
110	2.7	0.03	
140	2.1	0.04	
230	1.3	0.07	For c
345	0.87	0.12	SCUI
675	0.44	0.85	
850	0.35	1.26	

For comparison: SCUBA ~1mJy in 1 hours

Sensitivity comparison with previous facilities

Continuum (5 hours, 1σ)

ALMA timeline

- **2007** First antennae arrival and testing at Chajnantor
- Early 2009 Commissioning begins with 3-element array
- Late 2009 Call for shared risk proposals
 - 6 antennae, 2 bands
 - Offline data reduction
- **2012 Pipeline images for standard modes**
- **2012 Baseline ALMA construction complete**

ALMA science (AGN focused)

Resolve the innermost region of AGNs

NGC1068

Use high temperature and high density gas tracers, e.g. high CO transition, HCN, HCO+,...

Is there an innermost molecular structure? What is its morphology, dynamics and physical state?

Test clumpy model for nuclear dust thermal emission

Type 1

(see Elitzur's Lecture)

Identify hidden/elusive AGNs through their XDR's

Measuring Black Hole masses in galactic nuclei

A "picture" of the Galactic Center Black Hole taken with ALMA + mm VLBI

ALMA observations of high-z galaxies

Deep optical field (HDF): rich in low-z galaxies, poor in high-z galaxies.

(12 days of integration)

z<1.5

z>1.5

ALMA deep field: poor in low-z galaxies, rich in high-z galaxies.

simulation 3 days of integration 4'x4' arcmin

The main limit of past and current facilities (SCUBA) is "confusion": below a certain flux limit (which depends on the beam size) most sources blend together

deep SCUBA map (HDF)

ALMA will provide accurate positions of mm-submm sources ⇒ unambiguos cross identification at other wavelengths

ALMA will directly provide the redshift of the sources by detecting their CO transitions

So far CO detections at high-z have been obtained only in extremely luminous sources (ULIRGs-QSOs)

ALMA will be able to detect a Milky Way at z=3: CO(4-3) in 12 hours

QSO BR1202-0725 at z=4.12

Use of CO lines to identify the redshift of high-z galaxies

With 3 tunings it will be possible to fully cover band 3 (84-116 GHz) ⇒ at least one CO line

At z>3 at least 2 CO lines within band 3, else (z<3) observe another band to confirm redshift

Example of QSO at z=6.4

ALMA J1148 24 hours

Not only $\sim \infty$ S/N on CO line (\Rightarrow detailed dynamical studies, see discussion later on), but also several other molecular lines -> astrochemistry -> XDR tracers

At z>7 galaxies can be identified through the detection of high order CO lines, $J_{upper}>7...$ are these transitions excited?

at high J rapid drop of intensity... bad news for ALMA: difficult to use CO at z>7, unusable at z>10

[CII]158µm line: the main coolant of the ISM

Emitted in PDR's \Rightarrow tracer of star formation

Generally the strongest line in the spectrum of galaxies (~5-100 times stronger than CO lines)

~1% of the whole bolometric luminosity is emitted in this single line

Issue: its luminosity drops at high bolometric luminosities ($L_{FIR} > 10^{11.5} L_{\odot}$)

First detection of [CII]158µm at high-z

Maiolino+05

Six time brighter than CO

Even if in worse case still detectable

[CII]158µm: main ALMA tool to investigate high-z galaxies

Relative to CO lines (besides being brighter) [CII]158µm has also the advantage of being observed at higher frequencies \Rightarrow higher angular resolution (~ factor of 2-3)

[CII]158 μ m will provide the redshift, but also SFR and kinematics (-> M_{dyn})

[OI]63\mum: second brightest line in galaxies, but is expected to be even stronger than [CII]158 μ m in young, high-z galaxies

[OI]63µm additional ALMA tool to investigate high-z galaxies:

- redshift
- [OI]+[CII] -> Star Formation Rate
- [OI]/[CII] -> chemical enrichment

Finally...

YOU are expected to provide new, fresh ideas to best exploit the unprecedented capabilities of ALMA