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Abstract

I review disc accretion in AGN. I consider the conditions for forming discs small

enough to accrete within a Hubble time, black hole feedback and the M–sigma and

SMBH–bulge mass relations, and the spin of supermassive black holes.

Key words:

1 Introduction

Accretion of matter on to a black hole is the most effective way of extracting
energy from normal matter. This process must therefore power the brightest
objects in the Universe, including AGN, and shows that the black hole mass
in these objects is growing. The centre of almost every galaxy is now known
to host a supermassive black hole (SMBH). The need to grow these holes to
their current huge masses must mean that almost every galaxy is active from
time to time.

As we shall see, accretion on to the supermassive black holes in AGN requires
the infalling gas to lose almost all of its angular momentum. Some form of
disc accretion is therefore inevitable. This allows us to profit from much of
the knowledge gained by studying accretion discs in other contexts, particu-
larly accreting binary systems. For example mass loss through winds is a very
common feature of disc accretion, and is particularly important when the hole
is fed mass at rates above the Eddington value. Basic ideas about discs show
that such systems have a strong effect on their surroundings, either the inter-
stellar medium for binaries, or the entire galaxy bulge for SMBH. In the latter
case this feedback leaves an imprint of the SMBH on the whole structure of
the bulge.

A clear difference between accretion in close binaries and in AGN is that in
binaries the angular momentum of the accreting gas is often constrained to
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be always in the same sense. By contrast in AGN each new accretion episode
may have angular momentum completely uncorrelated with earlier or later
episodes. Thus while accreting black holes in binaries generally spin up, this
is much less obvious in AGN. Since the black hole mass in AGN increases
by large factors this opens the possibility of changing the accretion efficiency,
which becomes very large for rapid black–hole spin.

I review these and other problems briefly below.

2 Accretion disc theory

Accretion disc theory is the subject of many books and reviews (see e.g. Frank
et al., 2002 and Pringle, 1981). Accordingly this section simply summarizes
the main results without giving detailed derivations.

2.1 Disc formation

Matter accreting on to a mass M forms a disc if its specific angular momentum
J is too large for it to impact the object directly. I define the circularization
radius

Rcirc =
J2

GM
, (1)

which is where the matter would orbit if it lost energy but no angular momen-
tum. The condition for disc formation is that Rcirc should exceed the effective
size of the accretor (a parabolic orbit with specific angular momentum J would
reach a minimum separation 0.5Rcirc). In AGN the accretor is a black hole,
and the the effective size is the radius of the innermost stable circular orbit
RISCO.

Any conceivable source of accreting matter in AGN has specific angular mo-
mentum J large enough to ensure Rcirc >> RISCO; indeed we shall see later
that the scale of this inequality is itself a problem for AGN feeding. Under
these conditions disc formation follows if, as usual, energy is lost through
dissipation faster than angular momentum is redistributed. Since the orbit
of lowest energy for a given angular momentum is a circle, matter follows a
sequence of circular orbits about the compact accretor.

The agency for both energy dissipation and angular momentum transport
is usually called viscosity (although this cannot be the standard small–scale
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viscosity of kinetic theory). Even after several decades of work it is still not
properly understood. The best candidate mechanism invokes the magnetoro-
tational instability (MRI: Balbus & Hawley, 1991). Here a comparatively weak
magnetic field threading the disc is wound up by the shear, and transports
angular momentum outwards. Reconnection limits the field growth and pro-
duces dissipation. Numerical simulations show that this is a promising mech-
anism, but it is not yet clear that the effect is large enough (cf King et al,
2007) to satisfy observational constraints. There are even worries (Fromang
& Papaloizou, 2007) that current simulations give results which depend on
numerical resolution.

This lack of knowledge of viscosity means that there is as yet no deterministic
theory of accretion discs. We cannot make definite predictions as to what will
happen in a completely general case. This leaves open alternative possibilities,
only some of which will survive as realistic when a full understanding of viscos-
ity emerges. A typical example of such alternatives is the question of whether
gas always tries to cool and spiral slowly inwards, or if there exist conditions
under which it can rid itself very rapidly of angular momentum and advect
rapidly inwards without radiating significantly (a so–called ADAF). Similarly
the question of how jets form and remove matter from accretion discs remains
unsolved because of our lack of understanding of viscosity.

This fundamental indeterminacy has allowed theorists free rein in imagining
various interesting possibilities. Fortunately there are certain situations in
which we can sidestep our lack of understanding of viscosity and draw fairly
clear conclusions. The resulting good agreement with observation does suggest
that the broad outlines of the incomplete theory are reasonable.

2.2 Thin discs

While viscosity transports angular momentum and thus spreads the initial
ring at Rcirc into a disc, the nature of this accretion disc is determined by
the efficiency with which the disc can cool. Very often this efficiency is high.
Intuitively this suggests that the matter cannot have dynamically significant
pressure, so that the circular orbits of disc gas are actually Keplerian. Si-
multaneously it seems likely that the disc is thin: that is, its scaleheight H
obeys

H ≃
cs

vK

R << R (2)
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at disc radius R, where cs is the local sound speed, and

vK =
(

GM

R

)1/2

(3)

is the Kepler velocity, with M the accretor mass. In this state the azimuthal
velocity is close to vK and the radial and vertical velocities are much smaller.
The properties of being thin, Keplerian and efficiently cooled are all equivalent,
and if any one of them breaks down so do the other two.

If the thin disc approximation holds, the vertical structure is almost hydro-
static and decouples from the horizontal structure, which can be described
in terms of its surface density Σ. Mass and angular momentum conservation
imply that this obeys a nonlinear diffusion equation

∂Σ

∂t
=

3

R

∂

∂R

(

R1/2 ∂

∂R
[νΣR1/2]

)

. (4)

Here ν is the kinematic viscosity, which is usually parametrized as

ν = αcsH. (5)

where α is a dimensionless number. In a steady state this gives

νΣ =
Ṁ

3π

[

1 − β
(

Rin

R

)1/2]

, (6)

where Ṁ is the accretion rate and the dimensionless quantity β is specified by
the boundary condition at the inner edge Rin of the disc. For example, a disc
ending at the radius R∗ of a non–rotating star has Rin = R∗. There is some
debate as to the correct value of β for a black hole accretor, as this depends on
whether the accretion flow within the ISCO has significant magnetic content
to connect it to the disc flow further out (cf Krolik, 1999).

In a steady thin disc dissipation D(R) per unit surface area is also proportional
to νΣ, i.e.

D(R) =
9

8
νΣ

GM

R3

[

1 − β
(

Rin

R

)1/2]

, (7)

so that the surface temperature T is independent of the viscosity ν despite
being entirely generated by it:

T = Tvisc =

{

3GMṀ

8πR3σ

[

1 − β
(

R∗

R

)1/2
]}1/4

. (8)
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The total accretion luminosity is given by integrating D(R) over both sides
of the disc. For a black hole we have to use general relativity at radii close to
the Schwarzschild radius. The result is

Lacc = ǫṀc2 (9)

where ǫ ∼ 0.05− 0.42 is the efficiency of rest–mass conversion, which depends
on the inner boundary condition, and in particular the black hole spin.

2.3 Disc timescales

Equation (4) shows that Σ changes on a timescale

tvisc ∼
l2

ν
(10)

if its spatial gradient is over a lengthscale l. Hence we would expect a disc
to make significant changes in its surface density and thus its luminosity on
a timescale ∼ R2/ν, where R is its outer radius. We can use this fact to get
an idea of the magnitude of the viscosity in observed discs in close binaries.
In dwarf novae, which are short–period white–dwarf binaries, the disc size is
R ∼ 1−3×1010 cm, and surface density changes take a few days. This suggests
that α ∼ 0.1.

There are two other obvious timescales in a disc. The first is the dynamical
timescale

tdyn ∼
R

vK

=
(

R3

GM

)1/2

, (11)

characterizing states in which dynamical equilibrium is disturbed; note that
vertical hydrostatic balance is resored on a timescale

tz ∼
H

cs

=
R

vK

= tdyn (12)

where we have used eqn (2). The second is the thermal timescale

tth =
Σc2

s

D(R)
∼

R3c2
s

GMν
=

c2
s

v2
K

R2

ν
=

(

H

R

)2

tvisc (13)
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where we have used eqn (7). The alpha–disc parametrization (4) can be used
to show that

tvisc ∼
1

α

(

H

R

)−2

tdyn (14)

so we finally have the ordering

tdyn ∼ tz ∼ αtth ∼ α(H/R)2tvisc, (15)

i.e. dynamical < thermal < viscous.

3 AGN Discs

To get some idea of typical AGN disc conditions we consider a case with
M = 108M⊙, Ṁ = 1M⊙ yr−1. The gravitational energy release is dominated
by the central regions of the disc, where R ∼ few × GM/c2 ∼ few × 1013 cm.
We can easily check that the condition for a thin disc (i.e. efficient cooling) is
satisfied here. The temperature (8) is of order ∼ few × 105 K Thus we expect
most of the luminosity from AGN to be emitted in the UV and soft X–rays (in
the rest–frame). The dynamical and thermal timescales in the central regions
are ∼ 103 − 104 s respectively. These are the shortest possible timescales for
significant variability.

Although the centre of the disc dominates the emitted luminosity, most of the
mass is stored in the outer regions, and must move inwards under viscosity to
power the AGN. To estimate the timescale

tvisc ∼
R2

αcsH
(16)

we have to solve the steady-state disc equations (see e.g. Frank et al., 2002).
These show that for radii R = 1018R18 cm we have H/R ∼ 10−3 and cs ∼

105R
−1/2
18 cm s−1, so that

tvisc ∼ 1010

(

α

0.03

)

R
3/2
18 yr. (17)

In other words, the timescale on which mass moves inwards to power the AGN

approaches the Hubble time for disc radii of order 0.3 pc. This is an extremely
powerful constraint. It shows that gas feeding an AGN must have low angular
momentum before it forms a disc, otherwise the value of Rcirc will be so high
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that there is no hope of the gas ever reaching the black hole. The gas must
fall towards the hole with an impact parameter of no more than a few tenths
of a parsec, which is tiny on the scale of a galaxy. Such a precise aim is very
unlikely unless the feeding process somehow involves a much wider distribution
of matter, most of which never accretes on to the SMBH. This accords at
least qualitatively with the idea that the basic mechanism driving black hole
growth is the same that builds up the bulge of a galaxy, namely mergers of
smaller galaxies. As we will see, this typically gives black hole masses M which
are ∼ 10−3 of the bulge mass, pointing to a process of SMBH growth which
is inherently wasteful in mass terms, just as we deduced above. A further
qualitative agreement is that the randomness of the accretion process means
that there is no correlation between its instantaneous axis, as revealed by
the observed directions of radio jets, and the large–scale structure of the host
galaxy.

The conditions discussed above typify bright AGN, i.e. those whose black
holes are growing rapidly. Of course the thin disc condition itself must fail if
the accreting matter does not cool efficiently. This can for example happen in
low–luminosity AGN (LLAGN).

4 SMBH feedback

The disc theory discussed above assumes that the accretion luminosity has no
effect on the accretion flow itself. However this assumption fails at luminosities
Lacc ≥ LEdd, where

LEdd =
4πGMc

κ
(18)

is the Eddington value, with κ ∼ 0.3 cm2 g−1 the electron scattering opacity.
For Lacc ≥ LEdd the disc drives off the excess accretion at each radius R so
as to keep its local accretion luminosity ∼ GMṀ/R just below the radiation
pressure limit. Thus Ṁ(R) decreases as R, and the hole gains mass at a rate
which is just ṀEdd = LEdd/ǫc

2, where ǫ is the radiation efficiency specified
by the ISCO (and thus dependent on the Kerr spin parameter a). The result
(Shakura & Sunyaev, 1973) is a luminosity only logarithmically above LEdd,
and an outflowing wind carrying away the super–Eddington mass rate Ṁout =
Ṁ − ṀEdd at a speed v ∼ (ṀEdd/Ṁ)c. This carries total momentum

Ṁoutv ∼
LEdd

c
, (19)

and total energy ∼ Ṁoutv
2/2 ∼ LEddv/c.
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There is direct evidence of such outflows with v ∼ 0.1c in some AGN (e.g.
Pounds et al., 2003a, b), and good reason to assume that they occur during
the most rapid growth phases of SMBH, as even growth at the rate ṀEdd

is barely enough to account for observed SMBH masses at high redshift. It
is also obvious that they can have a major effect on the host galaxy. The
Eddington outflow must impact the gas of the host bulge and sweep it up in
a shell. The speed of the shell depends on whether the shocked outflowing gas
cools or not. If it does, the host gas feels simply the momentum rate (19) (a
momentum–driven outflow). If the gas cannot cool within the flow timescale, it
also communicates its thermal pressure to the host gas, driving this outwards
at higher speed (an energy–driven outflow). King (2003, 2005) shows that in
a typical bulge, Compton cooling establishes momentum–driven conditions at
small radii. The outflow sweeps up a shell, which stalls fairly close to the
SMBH, until this grows its mass to the critical value

Mσ =
fgκ

πG2
σ4 = 2 × 108M⊙σ4

200 (20)

Here fg = 0.16 is the cosmic gas fraction Ωbaryon/Ωmatter and σ = 200σ200 km
s−1 is the velocity dispersion of the host bulge. At this point the shell expands
rapidly, reaching radii where Compton cooling is no longer effective. It then
accelerates, cutting off the mass supply to the SMBH, and indeed the gas in
the bulge, at a value

Mbulge ∼

(

mp

me

)2 σ

c
M ∼ 103M (21)

where mp, me are the proton and electron masses, and at the last step I have
assumed a typical velocity dispersion σ ∼ 200 km s−1.

Despite having no free parameter, (20) is in excellent agreement with obser-
vations of the M − σ relation (Ferrarese & Merritt, 2000; Gebhardt et al.,
2000). The SMBH–bulge mass relation is similarly close to observation. Note
that it is actually of the form Mbulge ∝ M5/4, which agrees well with the
Faber–Jackson relation (McLaughlin et al, 2006).

The agreements here suggest that the M − σ and Mbulge − M relations are
consequences of momentum–driven feedback from an Eddington outflow at
the black hole. It is easy to show that an energy–driven outflow would be
too efficient in driving mass away, and produce too small a value for Mσ and
Mbulge. Cosmological simulations of these effects adopt for numerical reasons
a form of distributed energy deposition, rather than solving the interaction
of the outflow with the bulge. These produce acceptable answers for Mσ and
Mbulge if one assumes that the distributed energy is only a small fraction
(actually ∼ σ/c ∼ 10−3) of that radiated by the black hole. The need to
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put this fraction in by hand is a clear sign that a good deal of the physics
producing these relations is missing from this approach.

5 SMBH spin

As remarked in the Introduction, accretion on to SMBH in AGN differs from
stellar–mass black hole accretion in close binaries in its randomness. In par-
ticular the initial sense of the accretion flow’s angular momentum must be
retrograde with respect to the hole spin about one–half of the time. One
might expect that this would automatically lead to slowly–spinning SMBH,
as retrograde accretion would cancel prograde. Indeed the retrograde case has
a larger lever arm, strengthening the argument. However until recently the
opposite view, that SMBH are all rapidly spinning, was the accepted one (cf
Volonteri et al, 2005).

The reason for this is the Lense–Thirring (LT) effect, i.e. dragging of inertial
frames. In the context of black–hole accretion this means that a test–particle
orbit inclined wrt the black hole spin must precess, at a rate which goes as
R−3. However the matter in an accretion disc is not test particles, but gas
which has viscosity. This means that the differential precession caused by the
LT effect produces a viscous torque between the hole spin and the disc. By
Hawking’s theorem this must tend to produce an axisymmetric situation. The
first calculations of the effect (Scheuer & Feiler, 1996) suggested that the end
effect was a disc co–aligned with the hole spin.

Since this co–alignment occurs on a viscous timescale, which is much shorter
than the mass–doubling timescale on which the hole accretes angular momen-
tum, this result would imply that all the mass–doubling takes place with the
disc accreting in a prograde fashion on to the hole. Since the hole increases its
mass enormously over time, this would mean that all SMBH should be spin-
ning at an almost maximal rate (Kerr a parameter ∼ 1). Although this makes
them bright, as it increases the accretion efficiency to a value ǫ ∼ 0.42, the
result creates a major difficulty. For since LEdd is uniquely fixed by the mass,
the maximum rate ṀEdd = LEdd/ǫc

2 at which the hole can accrete is severely
reduced. This increases the e–folding time for the growth of the SMBH mass.
With a ∼ 1 the most massive SMBHs observed at redshift z ∼ 6 must have
had ‘seed’ masses which were themselves already ∼ 106M⊙ or more, before
accretion started. By contrast, with more modest values a ∼ 0.5 growth from
even stellar masses is possible (cf King et al. 2008 and references therein).

There have been several attempts to explain how such large seed masses could
arise. However they may not be necessary, since Scheuer & Feiler’s (1996)
result that the LT effect causes co–alignment makes an implicit assumption,
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namely that the total angular momentum of the disc Jd is much larger than
that of the hole Jh. If this assumption is removed, King et al., 2005 showed
that counter–alignment of disc and hole occurs provided that the two angular
momentum vectors are misaligned by an angle θ with cos θ < −Jd/2Jh. In this
case retrograde accretion would be rapidly established, and reduce the hole
spin.

There remains the question of whether the condition Jd < 2Jh is ever satisfied.
In a recent paper King et al (2008) suggest that the disc size Rd, and thus
its total angular momentum Jd ∼ Md(GMRd)

1/2, are limited by the fact that
the disc becomes self–gravitating outside a radius such that the disc mass Md

exceeds (H/R)M ∼ 10−3M . From this they draw a number of conclusions. (a)
AGN black holes should on average spin moderately; (b) coalescences of AGN
black holes in general produce modest recoil velocities, so that there is little
likelihood of their being ejected from the host galaxy; (c) black holes can grow
even from stellar masses to ∼ 5×109 M⊙ at high redshift z ∼ 6; jets produced
in successive accretion episodes can have similar directions, but after several
episodes the jet direction deviates significantly. They argue that rare examples
of massive holes with significant spin may result from coalescences with SMBH
of similar mass, and are most likely to be found in giant ellipticals. There
currently seems to be no flagrant disagreement with observation for any of
these conclusions. Indeed statistical arguments using the inferred background
light provided by quasars (Soltan, 1982, and subsequent papers) suggest an
average accretion efficiency ǫ ∼ 0.1, favouring moderate black hole spin.
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