Studies of Active Galactic Nuclei with the VLT Interferometer

Klaus Meisenheimer Max-Planck-Institut für Astronomie

VLTI Summer School

Torun – September 5/6, 2007

Studies of Active Galactic Nuclei with the VLT Interferometer

Overview:

Introduction and Goal of this Lecture
 MIDI+VLTI observations of the closest Seyfert 2 galaxies
 Models of the torus
 MIDI+VLTI observations of the radio galaxy Centaurus A
 Outlook: More luminous and distant AGN
 The Future: New instruments at the VLTI
 Summary

VLTI Summer School

Torun – September 5/6, 2007

Introduction: Resolving the dust torus in AGN

For nearby Seyfert's, e.g. NGC 1068, NGC 4151

Schartmann, Meisenheimer, Camenzind, Wolf, Henning: A&A 437, 861 (2005)

Introduction: Resolving the dust torus in AGN

2 pc

50 mas

Introduction: Resolving the dust torus in AGN

Scientific Questions to address:

- Generic question: How are Active Nuclei fueled ?
- What role plays the torus of gas and dust in this ?
- Do all AGN contain a dust torus ?
- What is the structure of the dust torus ?

Goals of this Lecture

Present first results obtained with VLTI and MIDI Confront observations with models of dust torus Current observational limits (examples) \rightarrow Outlook on the immediate next steps Further AGN observations with the current VLTI New VLTI instruments and their capabilities

VLTI Summer School

Torun – September 5/6, 2007

2. MIDI + VLTI observations of the dust tori in the closest Seyfert 2 galaxies

2.1 Dust torus in the Circinus galaxy

2.2 Dust torus in NGC 1068

Hα 60 LJ

Closest Seyfert 2 galaxy $D = 4.0 \text{ Mpc} \rightarrow 1 \text{ pc} = 50 \text{ mas}$ $M_{bh} \simeq 10^6 \text{ M}_{sun}$

Very Large Telescope Interferometer

MIDI – MID-infrared Interferometer

1000

The MID-infrared Interferometer MIDI

Schematic Setup:

Observations with VLTI & MIDI on Paranal

The MID-infrared Interferometer MIDI

Observations:

- 1. point both unit telescope to same source
- 2. find guide-stars, close telescope loop
- 3. close loop of AO system (MACAO) on target (or nearby star)

Beam A

- 4. identify target in both MIDI beams
- 5. center target in both MIDI beams
- 6. search for "fringes" OPD = 0
- 7. interferometric integration
- 8. photometric integration

The MID-infrared Interferometer MIDI Output from the instrument

Konrad Tristram, K. M., Walter Jaffe, et al. 2007

Observational Model: Gaussian fit

the smooth model is a rather poor fit to the visibilities:

modify model by irregular screen:

Images: smooth model

irregular/clumpy model

More than a dozen people helped to get these results

Resolving the complex structure of the dust torus in the active nucleus of the Circinus galaxy*

Konrad R. W. Tristram¹, Klaus Meisenheimer¹, Walter Jaffe², Marc Schartmann¹, Hans-Walter Rix¹, Christoph Leinert¹, Sébastien Morel³, Markus Wittkowski⁴, Huub Röttgering², Guy Perrin⁵, Bruno Lopez⁶, David Raban², William D. Cotton⁷, Uwe Graser¹, Francesco Paresce⁴, Thomas Henning¹

¹ Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany

- ² Leiden Observatory, Leiden University, Niels-Bohr-Weg 2, 2300 CA Leiden, The Netherlands
- ³ European Southern Observatory, Casilla 19001, Santiago 19, Chile
- ⁴ European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748 Garching bei München, Germany
- ⁵ LESIA, UMR 8109, Observatoire de Paris-Meudon, 5 place Jules Janssen, 92195 Meudon Cedex, France
- ⁶ Laboratoire Gemini, UMR 6203, Observatoire de la Côte d'Azur, BP 4229, 06304 Nice Cedex 4, France
- ⁷ NRAO, 520 Edgemont Road, Charlottesville, VA 22903-2475, USA

MIDI GTO team for AGN studies

A&A, accepted August 31, 2007

ESO VLTI team

= arXiv:0709.0209

2.2 Dust torus in NGC 1068

David Raban, Walter Jaffe et al. 2007

2.2 Dust torus in NGC 1068

2.2 Dust torus in NGC 1068

Comparison with radio continuum and water masers

2.2 Dust torus in NGC 1068 K-band interferometry from VINCI @ VLTI

Studies of Active Galactic Nuclei with the VLT Interferometer

Lecture Part II

Introduction and Goal of this Lecture
 MIDI+VLTI observations of the closest Seyfert 2 galaxies
 Models of the torus
 MIDI+VLTI observations of the radio galaxy Centaurus A
 Outlook: More luminous and distant AGN
 The Future: New instruments at the VLTI
 Summary

Reminder: Dust torus in the Circinus galaxy

Images: smooth model

irregular/clumpy model

3. Models of the dust torus

What do we see ? - Variations on Moshe's theme

Nuclear dust in Seyfert galaxies What do we see? – Models of clumpy tori

Marc Schartmann, K.M., Max Camenzind et al. 2007

Nuclear dust in Seyfert galaxies What do we see? – Models of clumpy tori

Marc Schartmann, K.M., Max Camenzind et al. 2007

Nuclear dust⁴⁰₂₀

Wavelength dependance

Nuclear dust in Seyfert galaxies

What do we see ? Hydrodynamical Torus Models

Ingredients:

- black hole + star cluster potential
- young star cluster (> 40 Myrs)
- mass input: PNe
- energy input: SNe
- radiative cooling

unit time: 120 000 yrs = 1 orbit @ r = 5pc

Nuclear dust in Seyfert galaxies Hydrodynamical Torus Models Marc Schartmann, KM, Max Camenzind, Hubert Klahr et al.

Nuclear dust in Seyfert galaxies Hydrodynamical Torus Models

Nuclear dust in Seyfert galaxies What do we see ? – Models of the torus

hydrodynamical torus model:

"clumpy" torus model:

Dust Tori in Seyfert Galaxies

Conclusions

- VLTI + MIDI resolve pc-scale structures in nearby AGN.
- Seyfert 2 galaxies contain compact dust tori (d = 2... 10 pc).
- Hot inner dust (disk) and maser disk coincide.
- Torus models do already explain some of the structures.

VLTI Summer School

Torun – September 5/6, 2007

The nucleus of Centaurus A

Centaurus A =

- The nearest merger (3.8 Mpc)
- The nearest radio galaxy

• Contains black hole of $M_{bh} = 7 \times 10^7 M_{sun}$

K.M., Konrad Tristram, Walter Jaffe et al. arXiv:0707.0177

MIDI - VLTI observations of Centaurus A

Basic result:

 Unresolved core: 80-60% of 8...13 μm flux
 Dust disk: d ≈ 0.6 pc, b:a = 1:3 (i = 66° ?),

T = 240 K

The core spectrum of Centaurus A

The VLBI Jet of Centaurus A

Circum-nuclear gas in Centaurus A

 $P_{dust} = 3x10^{34} W$ $P_{heat} > 10^{35}$

 $P_{Xray} \simeq 2x10^{35} W$ = 0.0002 P_{Edd}

SINFONI observations (Nadine Neumayer)

Outlook: more distant AGN

MCG-05-23 (Sy 2, D = 38 Mpc), Mrk 1239 (Sy 1, D = 92 Mpc)

Outlook: more distant AGN

MCG-05-23 (Sy 2, D = 38 Mpc), Mrk 1239 (Sy 1, D = 92 Mpc)

Outlook: a very distant AGN ! MIDI observations of the quasar 3C 273 (z = 0.158, D_A = 550 Mpc)

Outlook: Next steps with MIDI & AMBER

Our immediate plans:

- Finish the investigation of the Circinus galaxy with MIDI
 → use baselines UT2–UT4 and UT1-UT3
- Extend the study of NGC 1068 → try to use the ATs for better uv coverage
- Resolve Centaurus A properly
- Get a proper measurement of 3C 273
- Try to observe the nearest Seyfert 1, NGC 4151 ($\delta = +40^{\circ}$)
- Try to resolve more distant Seyfert 1s with longest baselines

David Raban, Walter Jaffe (Leiden) Konrad Tristram, Leonard Burtscher, KM (Heidelberg)

Outlook: Next steps with MIDI & AMBER

But a lot more can be done !

Name $\alpha(J2000)$ $\delta(J2000)$ Type z Dist $\Delta(1pc)$ $S_N(core)$	beam Imme
[Mpc] [mas] [mJy]	
NGC 1068 02 40 40.7 -00 00 48 S2 0.00379 17.4 11.9 3400	$0^{\prime\prime}2$ torus.
NGC 1365 03 33 36.4 -36 08 25 S1.8 0.00546 25.2 8.2 610	0.0%5 torus.
? IRS 0518-25 05 21 01.7 -25 22 14 S2 0.0425 196.4 1.0 550	0".5 size ?
MCG-5-23-16 09 47 40.2 -30 56 54 S2 0.00827 38.1 5.4 650	$0^{\prime\prime}_{5}$ size, o
Mrk 1239 09 52 19.1 -01 36 43 S1 0.0199 91.9 2.2 640	$0^{\prime\prime}.5$ size ?
NGC 3256 10 27 51.8 -43 54 09 HII 0.00913 42.1 4.9 550	0".5 size ?
NGC 3281 10 31 52.1 -34 51 13 S2 0.01067 49.2 4.2 620	0.0%5 size?
NGC 3783 11 39 01.8 -37 44 19 S1 0.00973 44.9 4.6 590	0".5 size ?
NGC 5128 13 25 27.6 -43 01 09 RG 0.00182 8.4 24.6 1220	0.0%5 size, $0.0%$
IC 4329A 13 49 19.3 -30 18 34 S1 0.01605 74.0 2.8 350-500	0".5 detec
Mrk 463 13 56 02.9 $+18 22 19$ S1 0.0504 232.3 0.9 340	0.0%5 detection
Circinus 14 13 09.3 -65 20 21 S? 0.00145 6.6 31.3 9700	0.0%5 size, t
? NGC 5506 14 13 15.0 -03 12 27 S2 0.00618 28.5 7.2 910	0.0%5 size, o
NGC 7469 23 03 15.6 +08 52 26 S1 0.01631 75.2 2.7 410	0.0%5 detection
NGC 7582 23 18 23.5 -42 22 14 S2 0.00539 24.8 8.3 320	0.0%5 detection
3C 273 12 29 06.7 + 02 03 08 RQ 0.1583 731.0 0.3 350 var	0".5 detect
NGC 253 core 00 47 33.1 -25 17 17 LE 0.00080 3.6 57.3 380-1160	0".5 detec

The Future: New instruments at the VLTI PRIMA referenced imaging with MIDI & AMBER

Imaging is needed !

VLTI *uv* coverage

The Future: New instruments at the VLTI

MATISSE

The Future: New instruments at the VLTI MATISSE

MATISSE will allow to observe at 10 μm (as MIDI) and in L-band (3.6 μm)

This will give:
3x better resolution,
much better temperature measurements,
higher sensitivity = more AGN

The Future: New instruments at the VLTI

MATISSE

Image reconstruction

Input image:

Reconstructed image:

from K.-H.Hofmann, MPIfR

Studies of Active Galactic Nuclei with the VLT Interferometer

Summary

- Currently, MIDI @ VLTI allow us to study the dust distribution in Seyfert galaxies with 15 mas (~ 1pc) resolution.
- We see fine structure (disks, clumpiness) !
- No Seyfert 1 galaxy has been resolved yet so we still have to test the unification scheme: longer baselines !
- Models for this dust distribution ("torus") are rapidly evolving and are able to guide the observations.
- The next generation of IMAGING instruments at the VLTI will give a much clearer view.

VLTI Summer School

Torun – September 5/6, 2007